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Re-cap

Additional recommendations from Merv

o https://web.stanford.edu/class/bios221/book /introduction.html
o https://onlinelibrary.wiley.com/doi/book/10.1002/0470114754

Modern Statistics for Modern Biology

Susan Holmes, Wolfgang Huber

Introduction

recent revolutions n biological data analyses:

« Biology, formerly a science with sparse, often only qualitative
data i i i
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Re-cap

Re-cap: properties of read count data

Property

Discrete, non-negative
measurements with greater
variability than what could
be handled by a Poisson
distribution

Relevant for

Estimating robust changes of
expression values between
different condition

How it's addressed

The gene-wise read counts are
modeled with a negative
binomial distribution; the
variances are estimates based
on all genes in a given matrix
to reduce the noise

Heteroskedasticity (lower
read counts often have
greater variance than higher
read counts)

Large dynamic range

Obtaining robust transcript
abundance measurements that
roughly follow a normal
distribution, which is often
expected for exploratory analyses

Variance shrinkage using the
variances from all genes in a
given matrix

log-transformation

Not an immediate reflection
of true transcript
abundance

Interpretation and comparison of
transcript abundances

Normalization for gene length,
sequencing depths, GC
content and the overall RNA
universe
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Re-cap

Summary: from read counts to DGE et al.

matrix of read counts
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size factors ‘
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exploratory
analyses

some downstream
analyses
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coefficient
estimation

DE test
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and stat values
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Post-p-value calculations

Adjusting for multiple hypothesis testing with independent

filtering

O thousands of genes = thousands of tests = the absolute number of false positives
becomes a troublesome burden even at p-values of 1%

0 the adjustment of the p-values for the abundant hypothesis testing is typically done
via the false discovery rate as described by Benjamini and Hochberg 2

> the more tests we perform, the more strongly the individual p-values will
be “punished”

O Love et al. [2014] and others have repeatedly argued that genes with very low read
counts can be ignored for downstream analyses and statistical tests are their read
counts are often too unreliable and variable to be accurately assessed with only 3-5
replicates

How low is too low? ]

The results() function of DESeq2 will try to find the optimal expression cut-off to
maximize the absolute number of genes that pass the adjusted p-value threshold.

2see 7p.adjust ()
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Post-p-value calculations

Shrinking the logFC values

o visualizations and downstream analyses may sometimes benefit from
using the fold changes instead of the normalized read count values

per gene

O Normalized read counts = transcript abundances per gene per sample

0 logFC = magnitude of the difference between multiple samples and

conditions
Test: p.adj.value < 0.05

< - . .
(]
2
£
S
b}
2
o
K<}

I 4 vvve o'y

T T T T
1e-01 1e+01 1e+03 1e+05

Friederike Diindar (ABC, WCM) Analysis of bulk RNA-seq Ill: DGE and beyon March 10, 2020 10 / 26



Post-p-value calculations

Comparison of additional tools for DGE analysis

Table 5: Comparison of programs for differential gene expression identification. Based on (Rapaport et al., 2013;
Seyednasrollah et al., 2013; Schurch et al., 2015).

Feature DESeq2 edgeR limmaVoom Cuffdiff
Seq. depth Sample-wise size Gene-wise Gene-wise FPKM-like or
normalization factor trimmed median trimmed median DESeq-like
of means (TMM)  of means (TMM)
Assumed Neg. binomial Neg. binomial log-normal Neg. binomial
distribution
Test for DE Exact test (Wald) Exact test for Generalized t-test
over-dispersed linear model
data
False positives Low Low Low High
Detection of No No No Yes
differential
isoforms
Support for Yes Yes Yes No
multi-factored
experiments
Runtime (3-5 Seconds to Seconds to Seconds to Hours
replicates) minutes minutes minutes

When in doubt, compare the results of 1imma, edgeR, and DESeq2 to get a feeling for
how robust your favorite DE genes are. All packages can be found at Bioconductor.
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Downstream analyses

Understanding the RESULTS of the DGE analysis

o Investigate the results() MA plot
output: .
» How many DE genes?
(FDR/g-value!) '
» How strongly do the DE
genes change? H
Directions of change? 3
Are your favorite genes g
among the DE genes?
Expression of snf2 Expression of actin
(YOR290C) (YFL039C)
® R ° . 54 B
ER g1 : ! T T T T
g one of the most 1e-01 1e+01 1e+03 1e+05
strongly g o
E’;{ g | changing genes g g1 ° mean expression
FIER H .
t fs) g
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&1 : 2 oo does not pass
o | % 8 FDR threshold
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Downstream analyses

Understanding the FUNCTIONS of your DE genes

There are myriad tools for this — many are web-based, many are R packages,
many will address very specific questions. Typical points of interest are:

o enriched gene ontology (GO) terms
» ontology = standardized vocabulary
> 3 classes of gene ontologies are maintained:
o biological processes (BP), cell components (CC), and molecular
functions (MF)
o enriched pathways
» gene sets: e.g. from MSigDB [Liberzon et al., 2015]
» physical interaction networks: e.g. from STRING [Szklarczyk et al., 2017]
» metabolic (and other) pathways: e.g. from KEGG [Kanehisa et al., 2017]

o upstream regulators

None (!) of these methods should lead you to make definitive claims about the
role of certain pathways for your phenotype. These are hypothesis-generating
tools! Also: make sure you use shrunken logFC values [Zhu et al., 2019].
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Downstream analyses

Two typical approaches of enrichment analyses

1. Over-representation analysis (ORA)

All known genes in a species
(categorized into groups)
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Downstream analyses

Two typical approaches of enrichment analyses

1. Over-representation analysis (ORA)

o “2x2 table method”
o assessing overlap of DE genes with genes of a given pathway
o statistical test: e.g. hypergeometric test
o limitations:
» direction of change is ignored
» magnitude of change is ignored
> interprets genes as well as pathways as independent entities

See Khatri et al. [2012] for details!
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Downstream analyses

Two typical approaches of enrichment analyses

1. Over-representation analysis (ORA)

Table S1. ORA pathway analysis tools.
Khatri et al. (2012). doi: 0.1371/journal.pcbi.1002375

Name Scope of P-value Correction for Multi- Availability

Analysis ple Hypotheses
Onto-Express GO Hypergeometric, bino- FDR, Bonferroni, Sidak, Web

mial, chi-square Holm
GenMAPP/ GO, KEGG, Percentage/z-score None Standalone
MAPPFinder MAPP
(High  through- GO Relative  enrichment, None Standalone,
put) GoMiner Hypergeometric ‘Web
FatiGO GO, KEGG  Hypergeometric None ‘Web
GOstat GO Chi-square FDR
GOTree Machine GO Hypergeometric None ‘Web
FuncAssociate GO Hypergeometric Bootstrap ‘Web
GOToolBox GO Hypergeometric Bonferroni, Holm, FDR,
Hommel, Hochberg
GeneMerge GO Hypergeometric Bonferroni ‘Web
GOEAST GO Hypergeometric, Chi- Benjamini-Yekutieli Web
square

ClueGO GO, KEGG, Hypergeometric Bonferroni, Bonferroni  Standalone

BioCarta, step-down, Benjamini-

User defined Hochberg
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Downstream analyses

Two typical approaches of enrichment analyses

2. Functional Class Scoring (“Gene set enrichment”)

o gene-level statistics for all genes in a pathway are aggregated into a
single pathway-level statistic

o score will depend on size of the pathway, and the amount of correlation
between genes in the pathway

o all genes are used

o direction and magnitude of change matter

o coordinated changes of genes within the same pathway matter, too
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Downstream analyses

Two typical approaches of enrichment analyses

2. Functional Class Scoring (“Gene set enrichment”)

Table S2. FCS pathway analysis tools.
Khatri et al. (2012). doi: 0.1371/journal.pcbi. 1002375

Name Scope of Anal- Gene-level Statis- Gene Set  P-value Correction for Multi-  Availability
ysis tic isti ple Hypotheses
GSEA GO, KEGG, Signal-tonoise ra- K - P ype permu- FDR Standalone,
BioCarta, tio, t-test, cosine, Smirnov tation, Gene set R package
MAPP, tran-  euclidian and man- permutation
scription hattan distance,
factors, mi- Pearson correlation,
croRNA, cancer  (log2) fold-change,
molecules log difference
sigPathway GO,  KEGG, t-statistic Wilcoxon rank Phenotype permu- FDR (NPMLE) R package
BioCarta, hu- sum tation, Gene set
manpaths permutation
Category GO, KEGG t-statistic Phenotype permu-  NA R package
tation
SAFE GO, KEGG, Student’s t-test, Wilcoxon rank Phenotype permu- FWER (Bonferroni, R package
PFAM Welch’s t-test, SAM  sum, Fisher’s  tation Holm’s step-up), FDR
t-test,  f-statistic, exact test statis- (Benjamini-Hochberg,
Cox  proportional tic, Pearson’s Yekutieli-Benjamini)
hazards model, test, t-test of
linear regression average  differ-
ence
GlobalTest GO, KEGG NA simple and  Phenotype permu- NA R package

multinomial lo- tation, asymptotic
gistic regression,  distribution,

Q-statistics Gamma distribu-
mean tion
PCOT2 User specified Hotelling’s T2 Phenotype permu-  FDR (Benjamini- R package
tation, gene set Hochberg,  Yekutieli-
permutation Benjamini), FWER
(Bonferroni, Holm,
Hochberg, Hommel)
SAM-GS  User specified d-statistic sum of squared Phenotype permu- FDR Excel
d-statistic tation plug-in
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Downstream analyses

Two typical approaches of enrichment analyses

2. Functional Class Scoring: Example GSEA
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Downstream analyses

Two typical approaches of enrichment analyses

2. Functional Class Scoring (“Gene set enrichment”)

Example GSEA results for positive and negative correlation

A Reproduction-related genes
Middle-aged flies 0Old flies
o ——_

e _ o -.\\
g © o i
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- ® S
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- 3 ]
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Rank in ordered dataset Rank in ordered dataset

Doroszuk et al. (2012) doi: 10.1186/1471-2164-13-167
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Downstream analyses

Summary — downstream analyses

Know your biological question(s) of interest!

o all enrichment methods potentially suffer from gene length bias

> long genes will get more reads
o for GO terms:

» use goseq to identify enriched GO terms [Young et al., 2010]

» use additional tools, such as GOrilla, REVIGO [Eden et al., 2009,

Supek et al., 2011] to summarize the often redundant GO term lists

o for KEGG pathways:

» e.g. GAGE and PATHVIEW [Luo and Brouwer, 2013, Luo et al., 2017] 3
o miscellaneous including attempts to predict upstream regulators

» Enrichr [Chen et al., 2013]

» RegulatorTrail [Kehl et al., 2017]

» Ingenuity Pathway Analysis Studio (proprietory software!)

See the additional links and material on our course website!

3 https://www.r-bloggers.com /tutorial-rna-seq-differential-expression- pathway-analysis-with-
sailfish-deseq2-gage-and-pathview/
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