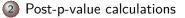
Analysis of bulk RNA-seq III: DGE and beyond Analysis of Next-Generation Sequencing Data

Friederike Dündar

Applied Bioinformatics Core


Slides at https://bit.ly/2T3sjRg¹

March 10, 2020

Weill Cornell Medicine

¹https://physiology.med.cornell.edu/faculty/skrabanek/lab/angsd/schedule_2020/

3 Downstream analyses

Re-cap

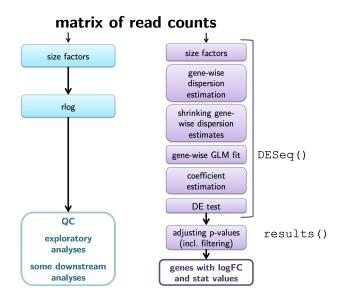
Re-cap

https://leanpub.com/dataanalysisforthelifesciences

Exploratory Data Analysis Quantile Quantile Plots Boxplots Scatterplots And Correlation Stratification Bi-variate Normal Distribution	92 96 98 99	Data Analysis for th Life Sciences
Plots To Avoid	CONTENTS	and the second second second second
Robust Summaries		
Wilcoxon Rank Sum Test	The Poisson Distribution	
Matrix Algebra		
Motivating Examples		
Matrix Notation		
Solving System of Equations	R.	
Vectors, Matrices and Scalars		
Matrix Operations		
Examples	Euclidean Distance	
Linear Models	Distance in High Dimensions	
The Design Matrix .	Dimension Reduction Motivation	
The Mathematics Behind lm()	Singular Value Decomposition	
Standard Errors	Projections	
Interactions and Contrasts	Rotations	
Linear Model with Interactions	Multi-Dimensional Scaling Plots	
Analysis of variance		
Co-linearity		Rafael A. Irizarry and Michael I. Love
Rank		
Removing Confounding		
Going Further		
Going Further		
Inference For High Dimensional Data	Bin Smoothing	
Introduction	Loess	
Inference in Practice		
Procedures	Cross-validation	
Error Rates	Batch Effects	409
The Bonferroni Correction		
Direct Approach to FDR and q-values (Advanced)		
Basic Exploratory Data Analysis	Discovering Batch Effects with EDA	
	Gene Expression Data	
Statistical Models	Mativation for Statistical Approaches	
The Binomial Distribution	Adjusting for Batch Effects with Linear Models	
	Factor Analysis	
	Modeling Batch Effects with Factor Analysis	

I do not get a commission; I honestly believe this book is a great resource and should be on every bioinformatician's desk and/or hard drive.

Additional recommendations from Merv


https://web.stanford.edu/class/bios221/book/introduction.html
 https://onlinelibrary.wiley.com/doi/book/10.1002/0470114754

Modern Statistics for Modern Biology Susan Holmes, Wolfgang Huber	← Chapters	Wiley Online Library Access by Correll University Library
troduction text reduction blogg, former/a science with space, often only qualitative data has turned into a field where production of quantitative data has turned into a field where production of quantitative data has turned into a field where production of quantitative gate and the second of		Andread Strategy 2007 Andread Strategy 2007

Re-cap: properties of read count data

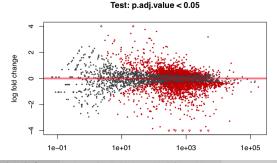
Property	Relevant for	How it's addressed
Discrete , non-negative measurements with greater variability than what could be handled by a Poisson distribution	Estimating robust changes of expression values between different condition	The gene-wise read counts are modeled with a negative binomial distribution; the variances are estimates based on all genes in a given matrix to reduce the noise
Heteroskedasticity (lower read counts often have greater variance than higher read counts)	Obtaining robust transcript abundance measurements that roughly follow a normal distribution, which is often	Variance shrinkage using the variances from all genes in a given matrix
Large dynamic range	expected for exploratory analyses	log-transformation
Not an immediate reflection of true transcript abundance	Interpretation and comparison of transcript abundances	Normalization for gene length, sequencing depths, GC content and the overall RNA universe

Summary: from read counts to DGE et al.

Post-p-value calculations

Adjusting for multiple hypothesis testing with independent filtering

- thousands of genes = thousands of tests \Rightarrow the absolute number of false positives becomes a troublesome burden even at p-values of 1%
- the adjustment of the p-values for the abundant hypothesis testing is typically done via the false discovery rate as described by Benjamini and Hochberg ²
 - the more tests we perform, the more strongly the individual p-values will be "punished"
- Love et al. [2014] and others have repeatedly argued that genes with very low read counts can be ignored for downstream analyses and statistical tests are their read counts are often too unreliable and variable to be accurately assessed with only 3-5 replicates


How low is too low?

The results() function of DESeq2 will try to find the optimal expression cut-off to maximize the absolute number of genes that pass the adjusted p-value threshold.

²see ?p.adjust()

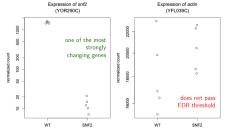
Shrinking the logFC values

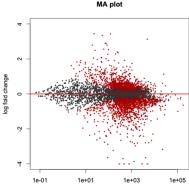
- visualizations and downstream analyses may sometimes benefit from using the **fold changes** instead of the normalized read count values per gene
 - Normalized read counts \Rightarrow transcript abundances per gene per sample
 - logFC \Rightarrow magnitude of the difference between multiple samples and conditions

Comparison of additional tools for DGE analysis

Table 5: Comparison of programs for differential gene expression identification. Based on (Rapaport et al., 2013; Seyednasrollah et al., 2013; Schurch et al., 2015).

Feature	$\mathbf{DESeq2}$	edgeR	limmaVoom	Cuffdiff
Seq. depth normalization	Sample-wise size factor	Gene-wise trimmed median of means (TMM)	Gene-wise trimmed median of means (TMM)	FPKM-like or DESeq-like
Assumed distribution	Neg. binomial	Neg. binomial	log-normal	Neg. binomial
Test for DE	Exact test (Wald)	Exact test for over-dispersed data	Generalized linear model	t-test
False positives	Low	Low	Low	High
Detection of differential isoforms	No	No	No	Yes
Support for multi-factored experiments	Yes	Yes	Yes	No
Runtime (3-5 replicates)	Seconds to minutes	Seconds to minutes	Seconds to minutes	Hours


When in doubt, compare the results of limma, edgeR, and DESeq2 to get a feeling for how robust your favorite DE genes are. All packages can be found at Bioconductor.


Friederike Dündar (ABC, WCM) Analysis of bulk RNA-seq III: DGE and beyon March 10, 2020 11 / 26

Downstream analyses

Understanding the RESULTS of the DGE analysis

- Investigate the results() output:
 - How many DE genes? (FDR/q-value!)
 - How strongly do the DE genes change?
 - Directions of change?
 - Are your favorite genes among the DE genes?

mean expression

Understanding the FUNCTIONS of your DE genes


There are myriad tools for this – many are web-based, many are R packages, many will address very specific questions. Typical points of interest are:

- enriched gene ontology (GO) terms
 - ontology = standardized vocabulary
 - ▶ 3 classes of gene ontologies are maintained:
 - $\bullet\,$ biological processes (BP), cell components (CC), and molecular functions (MF)
- enriched pathways
 - ▶ gene sets: e.g. from MSigDB [Liberzon et al., 2015]
 - physical interaction networks: e.g. from STRING [Szklarczyk et al., 2017]
 - metabolic (and other) pathways: e.g. from KEGG [Kanehisa et al., 2017]
- upstream regulators

None (!) of these methods should lead you to make definitive claims about the role of certain pathways for your phenotype. These are **hypothesis-generating** tools! Also: make sure you use **shrunken logFC** values [Zhu et al., 2019].

1. Over-representation analysis (ORA)

All known genes in a species (categorized into groups)

DEGs

HBC Training

Cate- gory	Back- ground	DE list	Over- repre- sented?
А	35/6600	25/500	likely
В	56/6600	2/500	unlikely
С	10/6600	9/500	likely

Friederike Dündar (ABC, WCM)

Analysis of bulk RNA-seq III: DGE and beyon

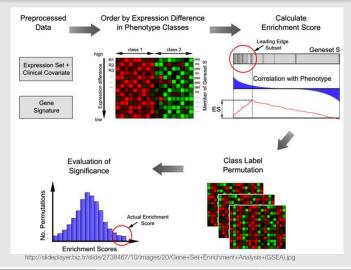
1. Over-representation analysis (ORA)

- "2x2 table method"
- assessing overlap of DE genes with genes of a given pathway
- statistical test: e.g. hypergeometric test
- Iimitations:
 - direction of change is ignored
 - magnitude of change is ignored
 - interprets genes as well as pathways as independent entities

See Khatri et al. [2012] for details!

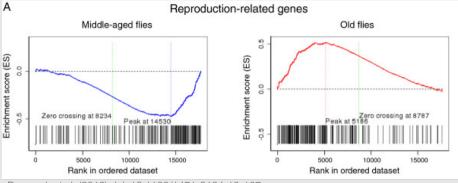
1. Over-representation analysis (ORA)

Table S1. ORA pathway analysis tools.Khatri et al. (2012). doi: 0.1371/journal.pcbi.1002375					
Name	Scope of Analysis	P-value	Correction for Multi- ple Hypotheses	Availability	
Onto-Express	GO	Hypergeometric, bino- mial, chi-square	FDR, Bonferroni, Sidak, Holm	Web	
GenMAPP/	GO, KEGG,	Percentage/z-score	None	Standalone	
MAPPFinder	MAPP				
(High through-	GO	Relative enrichment,	None	Standalone,	
put) GoMiner		Hypergeometric		Web	
FatiGO	GO, KEGG	Hypergeometric	None	Web	
GOstat	GO	Chi-square	FDR		
GOTree Machine	GO	Hypergeometric	None	Web	
FuncAssociate	GO	Hypergeometric	Bootstrap	Web	
GOToolBox	GO	Hypergeometric	Bonferroni, Holm, FDR,		
			Hommel, Hochberg		
GeneMerge	GO	Hypergeometric	Bonferroni	Web	
GOEAST	GO	Hypergeometric, Chi- square	Benjamini-Yekutieli	Web	
ClueGO	GO, KEGG,	Hypergeometric	Bonferroni, Bonferroni	Standalone	
	BioCarta,		step-down, Benjamini-		
	User defined		Hochberg		


- 2. Functional Class Scoring ("Gene set enrichment")
 - gene-level statistics for all genes in a pathway are aggregated into a single pathway-level statistic
 - score will depend on size of the pathway, and the amount of correlation between genes in the pathway
 - all genes are used
 - direction and magnitude of change matter
 - coordinated changes of genes within the same pathway matter, too

2. Functional Class Scoring ("Gene set enrichment")

Name	Scope of Anal- ysis	Gene-level Statis- tic	Gene Set Statistic	P-value	Correction for Multi- ple Hypotheses	Availability
GSEA	GO, KEGG, BioCarta, MAPP, tran- scription factors, mi- croRNA, cancer molecules	Signal-to-noise ra- tio, t-test, cosine, euclidian and man- hattan distance, Pearson correlation, (log2) fold-change, log difference	Kolmogorov- Smirnov	Phenotype permu- tation, Gene set permutation	FDR	Standalone, R package
sigPathway	GO, KEGG, BioCarta, hu- manpaths	t-statistic	Wilcoxon rank sum	Phenotype permu- tation, Gene set permutation	FDR (NPMLE)	R package
Category	GO, KEGG	t-statistic		Phenotype permu- tation	NA	R package
SAFE	GO, KEGG, PFAM	Student's t-test, Welch's t-test, SAM t-test, f-statistic, Cox proportional hazards model, linear regression	Wilcoxon rank sum, Fisher's exact test statis- tic, Pearson's test, t-test of average differ- ence	Phenotype permu- tation	FWER (Bonferroni, Holm's step-up), FDR (Benjamini-Hochberg, Yekutieli-Benjamini)	R package
GlobalTest	GO, KEGG	NA	simple and multinomial lo- gistic regression, Q-statistics mean	Phenotype permu- tation, asymptotic distribution, Gamma distribu- tion	NA	R package
PCOT2	User specified	Hotelling's T^2		Phenotype permu- tation, gene set permutation	FDR (Benjamini- Hochberg, Yekutieli- Benjamini), FWER (Bonferroni, Holm, Hochberg, Hommel)	R package
SAM-GS	User specified	d-statistic	sum of squared d-statistic	Phenotype permu- tation	FDR	Excel plug-in


Table S2. FCS pathway analysis tools.

2. Functional Class Scoring: Example GSEA

2. Functional Class Scoring ("Gene set enrichment")

Example GSEA results for positive and negative correlation

Doroszuk et al. (2012) doi: 10.1186/1471-2164-13-167

Summary – downstream analyses

Know your biological question(s) of interest!

- all enrichment methods potentially suffer from gene length bias
 - long genes will get more reads
- for GO terms:
 - ▶ use goseq to identify enriched GO terms [Young et al., 2010]
 - use additional tools, such as GOrilla, REVIGO [Eden et al., 2009, Supek et al., 2011] to summarize the often redundant GO term lists

• for KEGG pathways:

- ▶ e.g. GAGE and PATHVIEW [Luo and Brouwer, 2013, Luo et al., 2017] ³
- miscellaneous including attempts to predict upstream regulators
 - Enrichr [Chen et al., 2013]
 - RegulatorTrail [Kehl et al., 2017]
 - Ingenuity Pathway Analysis Studio (proprietory software!)

See the additional links and material on our course website!

 $^{3} https://www.r-bloggers.com/tutorial-rna-seq-differential-expression-pathway-analysis-with-sailfish-deseq2-gage-and-pathview/$

References

References

- Edward Y. Chen, Christopher M. Tan, Yan Kou, Qiaonan Duan, Zichen Wang, Gabriela V. Meirelles, Neil R. Clark, and Avi Ma'ayan. Enrichr: Interactive and collaborative HTML5 gene list enrichment analysis tool. *BMC Bioinformatics*, 2013. doi: 10.1186/1471-2105-14-128. URL http://amp.pharm.mssm.edu/Enrichr.
- Eran Eden, Roy Navon, Israel Steinfeld, Doron Lipson, and Zohar Yakhini. GOrilla: a tool for discovery and visualization of enriched GO terms in ranked gene lists. *BMC bioinformatics*, 10(1):48, jan 2009. doi: 10.1186/1471-2105-10-48. URL http://cbl-gorilla.cs.technion.ac.il.
- Minoru Kanehisa, Miho Furumichi, Mao Tanabe, Yoko Sato, and Kanae Morishima. KEGG: New perspectives on genomes, pathways, diseases and drugs. *Nucleic Acids Research*, 2017. doi: 10.1093/nar/gkw1092.
- Tim Kehl, Lara Schneider, Florian Schmidt, Daniel Stöckel, Nico Gerstner, Christina Backes, Eckart Meese, Andreas Keller, Marcel H. Schulz, and Hans Peter Lenhof. RegulatorTrail: A web service for the identification of key transcriptional regulators. *Nucleic Acids Research*, 2017. doi: 10.1093/nar/gkx350. URL https://regulatortrail.bioinf.uni-sb.de/.

Purvesh Khatri, Marina Sirota, and Atul J. Butte. Ten years of pathway analysis: Current approaches and outstanding challenges. *PLoS Computational Biology*, 2012. doi: 10.1371/journal.pcbi.1002375.
Arthur Liberzon, Chet Birger, Helga Thorvaldsdóttir, Mahmoud Ghandi, Jill P. Mesirov, and Pablo Tamayo. The Molecular Signatures Database Hallmark Gene Set Collection. *Cell Systems*, 2015. doi: 10.1016/j.cels.2015.12.004.

- Michael I Love, Wolfgang Huber, and Simon Anders. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. *Genome Biology*, 15(12):550, December 2014. doi: 10.1186/s13059-014-0550-8.
 Weijun Luo and Cory Brouwer. Pathview: An R/Bioconductor package for pathway-based data integration and visualization. *Bioinformatics*, 2013. doi: 10.1093/bioinformatics/btt285.
- Weijun Luo, Gaurav Pant, Yeshvant K. Bhavnasi, Steven G. Blanchard, and Cory Brouwer. Pathview Web: User friendly pathway visualization and data integration. *Nucleic Acids Research*, 2017. doi:
 - 10.1093/nar/gkx372. URL https://pathview.uncc.edu/.

- Fran Supek, Matko Bošnjak, Nives Škunca, and Tomislav Šmuc. REVIGO summarizes and visualizes long lists of gene ontology terms. *PloS one*, 6 (7):e21800, jan 2011. doi: 10.1371/journal.pone.0021800. URL http://revigo.irb.hr/.
- Damian Szklarczyk, John H. Morris, Helen Cook, Michael Kuhn, Stefan Wyder, Milan Simonovic, Alberto Santos, Nadezhda T. Doncheva, Alexander Roth, Peer Bork, Lars J. Jensen, and Christian Von Mering. The STRING database in 2017: Quality-controlled protein-protein association networks, made broadly accessible. *Nucleic Acids Research*, 2017. doi: 10.1093/nar/gkw937.
- Matthew D. Young, Matthew J. Wakefield, Gordon K. Smyth, and Alicia Oshlack. Gene ontology analysis for RNA-seq: accounting for selection bias. *Genome Biology*, 2010. doi: 10.1186/gb-2010-11-2-r14.
- Anqi Zhu, Joseph G. Ibrahim, and Michael I. Love. Heavy-Tailed prior distributions for sequence count data: Removing the noise and preserving large differences. *Bioinformatics*, 35(12):2084–2092, 2019. doi: 10.1093/bioinformatics/bty895.