Analysis of bulk RNA-seq II: Reads to DGE

Analysis of Next-Generation Sequencing Data

Friederike Dündar

Applied Bioinformatics Core

Slides at https://bit.ly/2T3sjRg1

February 25, 2020

Weill Cornell Medicine

¹https://physiology.med.cornell.edu/faculty/skrabanek/lab/angsd/schedule_2020/

- 1 Gene expression quantification recap
- 2 Normalization of read counts
- 3 Exploratory analyses
- 4 Differential gene expression
- 5 Downstream analyses
- 6 References

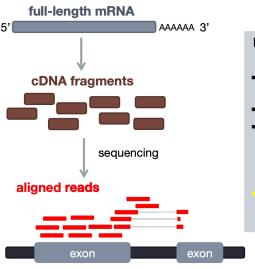
Many slides today were inspired or directly taken from the excellent book **Data Analysis for the Life Sciences** by Rafael Irizarry and Michael Love, and training material developed by the **Harvard Chan Bioinformatics Core**.

Go and check them out for even more details! The Harvard Chan Bioinformatics Core's material can be found at their github page:

https://github.com/hbctraining/DGE_workshop

Gene expression quantification recap

Alignment of NGS data is resource-intensive

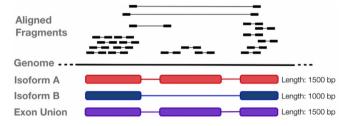


Particular challenges of Illumina sequencing:

- the query sequences (= reads) are very short
- there are millions of them!
- cannot expect 100% exact matches
 - > seq. errors
 - > biological variation
 - reference errors
- RNA-seq: some cDNA fragments can only be aligned if one allows for gigantic gaps (= introns)

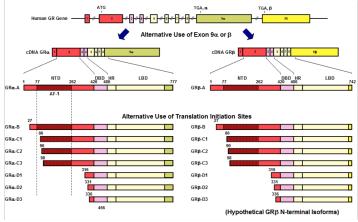
Quantification of gene expression

- Align
 - with splice-aware alignment tools! e.g. STAR
- 2 Count reads that overlap with annotated genes
 - complicated by alternative isoforms: genes != transcripts



Alternative isoforms are common in eukaryotic transcriptomes

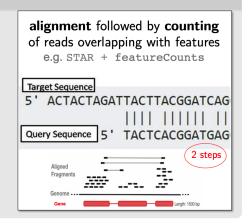
Gene isoforms = mRNAs produced from the *same locus*, but with different final sequences (possibly giving rise to different protein sequences, too)



(A) Alignment + counting

Historically, the reads of RNA-seq experiments were treated the same way as reads of DNA-seq experiments, i.e. it was deemed important that we knew the precise location that each read had originated from.

The results of alignment, however, are not inherently quantitative, which is why a 2nd counting step was needed.

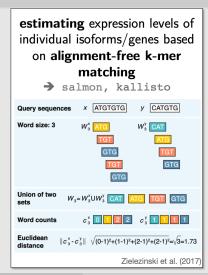


(B) Pseudoalignment

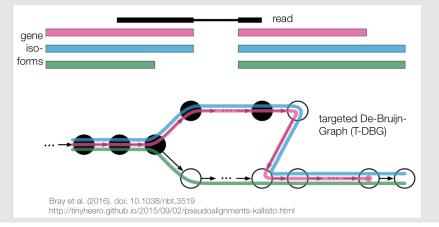
For standard bulk RNA-seq, we really just want the **number of reads** that are **compatible with a known transcript sequence**. If we decide to not care about the precise genome location, we can:

- reduce the size of our search space, i.e. our index of k-mers can be limited to cDNAs (no introns!)
- chop up the reference cDNAs AND our reads into fairly small k-mers
- perform a "simple" k-mer matching strategy and assign the read to the transcript that most of its k-mers matched to

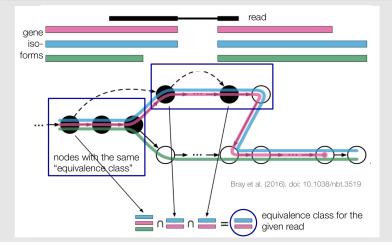
See Zielezinski et al. [2017] for a good explanation of pseudo-alignment etc.



(B) Transcript abundance estimation via pseudoalignment

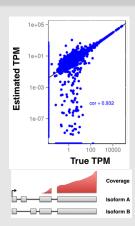


(B) Transcript abundance estimation via pseudoalignment



(B) Pseudoalignment caveats

- abundance estimates for lowly expressed transcripts are highly variable (not enough distinct k-mers)
- short RNAs have inherently fewer distinct k-mers
- problem when coverage of an isoform-defining region is low (or its sequence isnt't distinct)
- any read that originated from somewhere else in the genome than cDNAs may be mapped spuriously



For very similar transcripts, collapsing all abundances per gene into a **gene-centric measure** is more robust and accurate. [Soneson et al., 2015]

(B) Transcript abundance estimates

If you decide to use abundance estimates rather than gene-read overlap counts, use the tximport package [Soneson et al., 2015] package for their use with Bioconductor differential gene expression packages.

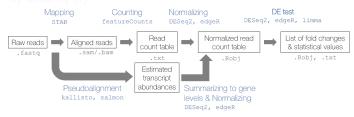
The advantages of using the transcript abundance quantifiers in conjunction with tximport to produce gene-level count matrices and normalizing offsets, are:

- in-built correction for any potential changes in gene length across samples (e.g. from differential isoform usage) [Trapnell et al., 2012]
- increased speed and less memory and less disk usage compared to alignment-based methods
- it is possible to avoid discarding fragments that can align to multiple genes with homologous sequence

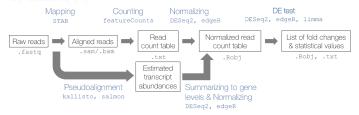
	Traditional	Pseudoalignment
Ex. workflow:	STAR + featureCounts	kallisto or salmon
Read mapping	Where does a read match	Which collection of unique
based on:	best?	k-mers does a read match
		best?
Reference:	Genome seq. + exon bound-	cDNA sequences
	aries	
Mapping result:	Genome coordinates (BAM)	Table of expression level esti-
		mates (txt)
Expression quan-	Counting how many reads	Summing the values assigned
tification:	overlap a gene ² .	to each collection of unique
		k-mers (equivalence class).
Output:	Read counts (integers)	Estimated transcript abun-
		dances (numeric)
Speed:	++ and +++	++++

²The read sequence is irrelevant at this point.

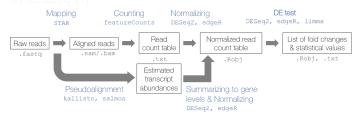
- DGE: Differential Gene Expression
 - Has the total ouput of a gene changed?
 - ▶ input for the statistical testing: (estimated) counts per gene used by DESeq2/edgeR/limma (see M. Love's protocols
- DTU:: Differential Transcript Usage
 - Has the isoform composition for a given gene changed? I.e. are there different dominant isoforms depending on the condition?
 - common when comparing different cell types (incl. healthy vs. cancer
 - input for the statistical testing: (estimated) counts per transcript used by DEYSec (1)



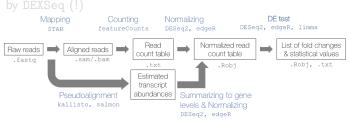
- DGE: Differential Gene Expression
 - ▶ Has the **total ouput** of a gene changed?
 - ▶ input for the statistical testing: (estimated) counts per gene used by DESeq2/edgeR/limma (see M. Love's protocols
- DTU:: Differential Transcript Usage
 - Has the isoform composition for a given gene changed? I.e. are there different dominant isoforms depending on the condition?
 - common when comparing different cell types (incl. healthy vs. cancer
 - input for the statistical testing: (estimated) counts per transcript used by DEYSec (1)



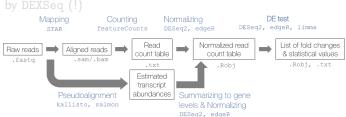
- DGE: Differential Gene Expression
 - ► Has the **total ouput** of a gene changed?
 - ▶ input for the statistical testing: (estimated) counts per gene used by DESeq2/edgeR/limma (see M. Love's protocols
- DTU:: Differential Transcript Usage
 - Has the isoform composition for a given gene changed? I.e. are there different dominant isoforms depending on the condition?
 - common when comparing different cell types (incl. healthy vs. cance
 - input for the statistical testing: (estimated) counts per transcript used



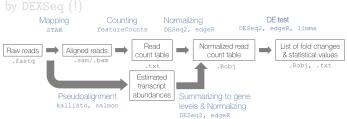
- DGE: Differential Gene Expression
 - ► Has the **total ouput** of a gene changed?
 - ▶ input for the statistical testing: (estimated) counts per gene used by DESeq2/edgeR/limma (see M. Love's protocols
- DTU:: Differential Transcript Usage
 - Has the isoform composition for a given gene changed? I.e. are there different dominant isoforms depending on the condition?
 - common when comparing different cell types (incl. healthy vs. cancer)
 - input for the statistical testing: (estimated) counts per transcript used



- DGE: Differential Gene Expression
 - Has the total ouput of a gene changed?
 - ▶ input for the statistical testing: (estimated) counts per gene used by DESeq2/edgeR/limma (see M. Love's protocols
- DTU:: Differential Transcript Usage
 - Has the isoform composition for a given gene changed? I.e. are there different dominant isoforms depending on the condition?
 - common when comparing different cell types (incl. healthy vs. cancer)
 - input for the statistical testing: (estimated) counts per transcript used



- DGE: Differential Gene Expression
 - ► Has the **total ouput** of a gene changed?
 - ▶ input for the statistical testing: (estimated) counts per gene used by DESeq2/edgeR/limma (see M. Love's protocols
- DTU:: Differential Transcript Usage
 - ▶ Has the isoform composition for a given gene changed? I.e. are there different dominant isoforms depending on the condition?
 - common when comparing different cell types (incl. healthy vs. cancer)
 - input for the statistical testing: (estimated) counts per transcript used



- DGE: Differential Gene Expression
 - ► Has the **total ouput** of a gene changed?
 - ▶ input for the statistical testing: (estimated) counts per gene used by DESeq2/edgeR/limma (see M. Love's protocols
- DTU:: Differential Transcript Usage
 - ▶ Has the isoform composition for a given gene changed? I.e. are there different dominant isoforms depending on the condition?
 - common when comparing different cell types (incl. healthy vs. cancer)
 - input for the statistical testing: (estimated) counts per transcript used by DEXSeq (!)

Normalization of read counts

Raw counts 3 = number of reads (or fragments) overlapping with the union of exons of a gene.

Raw count numbers are not just a reflection of the actual number of captured transcripts!

- sequencing depth
 - gene length
 - DNA sequence content (% GC)
 - expression of all other genes in the same sample

³also true for "estimated" gene counts from pseudoaligners

Raw counts 3 = number of reads (or fragments) overlapping with the union of exons of a gene.

Raw count numbers are not just a reflection of the actual number of captured transcripts!

- sequencing depth
 - gene length
 - DNA sequence content (% GC)
 - expression of all other genes in the same sample

³also true for "estimated" gene counts from pseudoaligners

Raw counts 3 = number of reads (or fragments) overlapping with the union of exons of a gene.

Raw count numbers are not just a reflection of the actual number of captured transcripts!

- sequencing depth
 - gene length
 - DNA sequence content (% GC)
 - expression of all other genes in the same sample

³also true for "estimated" gene counts from pseudoaligners

Raw counts 3 = number of reads (or fragments) overlapping with the union of exons of a gene.

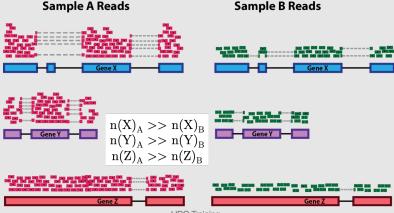
Raw count numbers are not just a reflection of the actual number of captured transcripts!

- sequencing depth
 - gene length
 - DNA sequence content (% GC)
 - expression of all other genes in the same sample

³also true for "estimated" gene counts from pseudoaligners

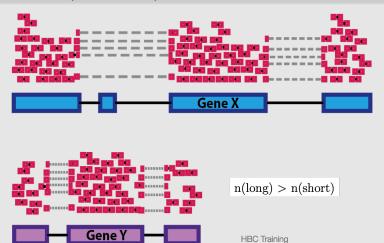
Influences on read count numbers

1. Sequencing depth (= total number of reads per sample) sequencing depth of Sample A \gg Sample B



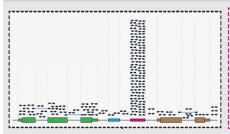
Influences on read count numbers

2. Gene length (and GC bias)



Influences on read count numbers

3. RNA composition - individual gene abundances



VVRNA

very highly expressed transcript soaks up significant portion of the reads reducing the range of read counts available for other transcripts in the absence of that highly expressed transcript, the remaining transcripts' expression differences become more clear

All the numbers within a given sample are *relative* abundance measurements.

Influences on read count numbers - summary

- gene length
- transcript sequence (% GC)

need to be corrected when comparing different **genes**

- sequencing depth
- expression of all other genes within the same sample

need to corrected when comparing the same gene between different **samples**

Which biases are relevant for comparing different samples?

Different units for expression values

 Raw counts: number of reads/ fragments overlapping with the union of exons of a gene

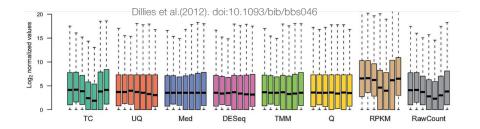
 X_i

- [RF]PKM: Reads/Fragments per Kilobase of gene per Million reads mapped – AVOID!
- $RPKM_i = rac{X_i}{(rac{l_i}{10^3})(rac{N}{10^6})}$ gene length seq. dept

- TPM: Transcripts Per Million
- $TPM_i = \underbrace{\frac{X_i}{l_i}}_{\text{gene read counts per bp}} * \underbrace{\frac{1}{\sum_j \frac{X_j}{l_k}}}_{\text{all gene counts over all gene bp}} * 10^6$

 rlog: log2-transformed count data normalized for small counts and library size (DESeq2)

Why not RPKMs?



- [RF]PKM values are not comparable between samples Do NOT use them!
- if you need normalized expression values for exploratory plots, use TPM or DESeq2's rlog values

Working with read counts

- Download the featureCounts results to your laptop.
- Read the featureCounts results into R.
- Let's normalize!

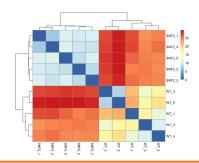
Exploratory analyses

Exploratory analyses

Exploratory analyses **do not test a null hypothesis**! They are meant to familiarize yourself with the data to discover biases and unexpected variability!

Typical exploratory analyses:

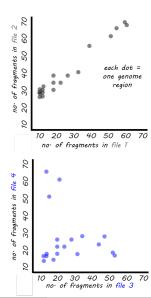
- **correlation** of gene expression between different samples
- (hierarchical) clustering
- dimensionality reduction methods, e.g. PCA
- dot plots/box plots/violin plots of individual genes



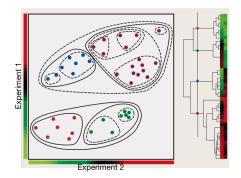
Use normalized and transformed read counts for data exploration!

Pairwise correlation of gene expression values

- replicates of the same condition should show high correlations (>0.9)
- Pearson method: metric differences between samples
 - influenced by outliers
 - covariance of two variables divided by the product of their standard deviation
 - suitable for normally distributed values
- Spearman method: based on rankings
 - less sensitive
 - less driven by outliers
- R function: cor()

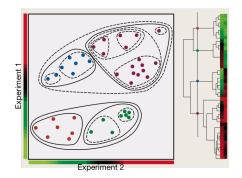


Goal: partition the objects into homogeneous groups, such that the within-group similarities are large.



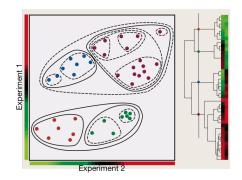
- Result: dendrogram
 - clustering is obtained by cutting the dendrogram at the desired level
- Similarity measure
 - Euclidean
 - Pearson
- Distance measure
 - ► Complete: largest distance
 - Average: average distance

Goal: partition the objects into homogeneous groups, such that the within-group similarities are large.



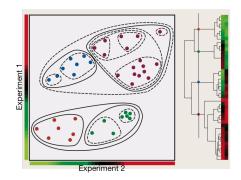
- Result: dendrogram
 - clustering is obtained by cutting the dendrogram at the desired level
- Similarity measure
 - Fuclidean
 - Pearson
- Distance measure
 - ► Complete: largest distance
 - Average: average distance

Goal: partition the objects into homogeneous groups, such that the within-group similarities are large.



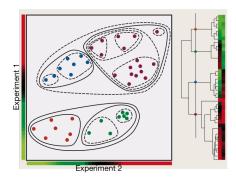
- Result: dendrogram
 - clustering is obtained by cutting the dendrogram at the desired level
- Similarity measure
 - Euclidean
 - Pearson
- Distance measure
 Complete: largest d
 - Complete: largest distanceAverage: average distance

Goal: partition the objects into homogeneous groups, such that the within-group similarities are large.



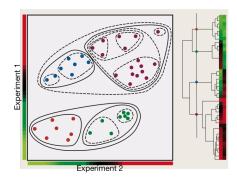
- Result: dendrogram
 - clustering is obtained by cutting the dendrogram at the desired level
- Similarity measure
 - Euclidean
 - Pearson
- Distance measure
 - Complete: largest distance
 - Average: average distance

Goal: partition the objects into homogeneous groups, such that the within-group similarities are large.



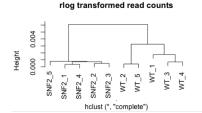
- Result: dendrogram
 - clustering is obtained by cutting the dendrogram at the desired level
- Similarity measure
 - Euclidean
 - Pearson
- Distance measure
 - ► Complete: largest distance
 - Average: average distance

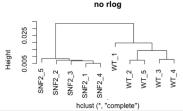
Goal: partition the objects into homogeneous groups, such that the within-group similarities are large.



- Result: dendrogram
 - clustering is obtained by cutting the dendrogram at the desired level
- Similarity measure
 - Euclidean
 - Pearson
- Distance measure
 - ► Complete: largest distance
 - Average: average distance

Hiearchical clustering - R code





Principal component analysis – capturing variability

Goal: reduce the dataset to have fewer dimensions, yet approx. preserve the distance between samples

starting point: matrix with expression values per gene and sample, e.g. 6.600 genes x 10 samples

					~.0.	٠,		· 0`				p
	SNF2_1	SNF2_2	SNF2_3	SNF2_4	SNF2_5	WT_1	WT_2	WT_3	WT_4	WT_5		
YDL248W	109	84	100	112	62	47	65	60	95	43		
YDL247W.A	0	1	1	0	3	0	0	1	0	0	- 7	assay(DESeq.rlog)[topVarGenes,]
YDL247W	6	6	1	3	4	2	3	4	7	9		
YDL246C	6	6	1	4	4	1	3	2	4	0	7	%>% t %>% prcomp
YDL245C	1	6	9	5	3	6	2	5	5	6		
YDL244W	79	59	49	60	37	9	8	12	30	14		

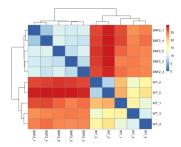
transformed into 6,600 principal components x 10 samples

	PC1	PC2
SNF2_1	-9.322866	0.8929154
SNF2_2	-9.390920	-0.6478100
SNF2_3	-9.176814	0.3460428
SNF2_4	-9.693035	1.2174519
SNF2_5	-9.450847	-0.3668670
WT_1	8.378671	-6.3321623
WT_2	10.421518	4.6749399
WT_3	8.486379	-1.1793146
WT_4	8.517490	-4.5814481

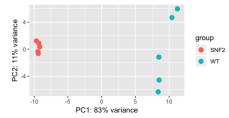
- linear combi of optimally weighted observed variables
- the vectors along which the variation between samples is maximal
- PC1-3 are usually sufficient to capture the major trends!

PCA vs. hierarchical clustering

- often similar results because both techniques should capture the most dominant patterns
- PCA will always be run on just a subset of the data!
- clustering will ALWAYS return clusters, PCA may not if the patterns of variation are too random



See practical_exploratory.Rmd R code to generate exploratory plots. Use the pcaExplorer package!



See the chapter "Distance and Dimension Reduction" in Irizarry and Love [2015] for more details and the StatQuest video(s) on youtube.

Differential gene expression

Understand your null hypothesis!

DGE: Differential Gene Expression

- Has the total ouput of a gene changed?
- ▶ input for the statistical testing: (estimated) counts per gene used by DESeq2/edgeR/limma
- see Soneson et al. [2015] and bioconductor's tximport package vignette for details

DTU: Differential Transcript Usage

- ▶ Has the **isoform composition** for a given gene changed? I.e. are there different *dominant* isoforms depending on the condition?
- common when comparing different cell types (incl. healthy vs. cancer)
- ▶ input for the statistical testing: (estimated) counts per transcript used by DEXSeq (!)
- ▶ see Love et al. [2018] for details

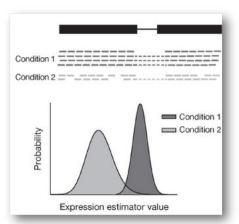
Understand your null hypothesis!

- DGE: Differential Gene Expression
 - Has the total ouput of a gene changed?
 - ▶ input for the statistical testing: (estimated) counts per gene used by DESeq2/edgeR/limma
 - see Soneson et al. [2015] and bioconductor's tximport package vignette for details

- DTU: Differential Transcript Usage
 - ► Has the **isoform composition** for a given gene changed? I.e. are there different *dominant* isoforms depending on the condition?
 - common when comparing different cell types (incl. healthy vs. cancer)
 - ▶ input for the statistical testing: (estimated) counts per transcript used by DEXSeq (!)
 - ▶ see Love et al. [2018] for details

DGE basics

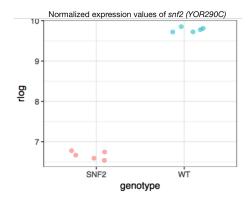
 H_0 : There is no difference in the read distributions of the 2 conditions.

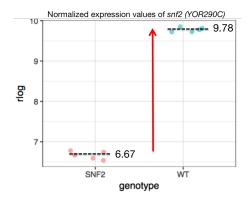


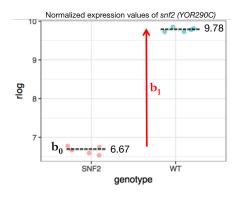
1 test per gene!

- 1. Estimate magnitude of DE taking into account differences in sequencing depth, technical, and biological read count variability.
- Estimate the significance of the difference accounting for performing thousands of tests.

 (adjusted) p-value



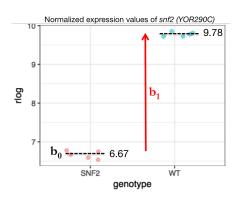




To describe all expression values of one (!) example gene (snf2), we can use a linear model like this:

$$Y = b_0$$
 + b_1 * x + genotype (discrete factor here!)

Linear models model a response variable as a linear combination of predictors (betas), plus randomly distributed noise (e).



To describe all expression values of one (!) example gene (snf2), we can use a linear model like this:

$$Y = b_0 + b_1 *x + c$$
expression intercept values (discrete factor here!)

Linear models model a response variable as a linear combination of predictors (betas), plus randomly distributed noise (e).

- b_0 : **intercept**, i.e. average value of the baseline group
- b₁: **difference** between baseline and non-reference group
- x: 0 if genotype == "SNF2", 1 if genotype == "WT"

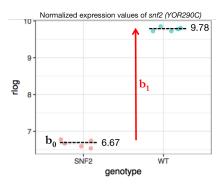
Model formulae syntax in R

- regression functions in R (e.g., lm(), glm()) use a "model formula" interface
- the basic format is:

```
response variable ~ explanatory variables where tilde means "is modeled by" or "is modeled as a function of".^4 e.g.: lm( y ~ x )
```

If you find yourself using linear models and somewhat complicated experimental designs more often than not, we strongly recommend to work through **chapters 4 and 5** of the PH525x series **Biomedical Data Science** [Irizarry and Love, 2016]

⁴See King [2016] for more details on the special meaning of mathematical operators within R formula contexts



- b_0 : **intercept**, i.e. average value of the baseline group
- b₁: difference between baseline and non-reference group
- x: 0 if genotype == "SNF2", 1 if genotype == "WT"

Describe expression values *snf2* using a linear model:

Factor of interest (b_1) can be estimated as follows:

Both values (b0, b1) are **estimates**! (They're spot-on because the values are so clear and the model is so simple!)

DGE basics

 H_0 : There is no difference in the read distributions of the 2 conditions.



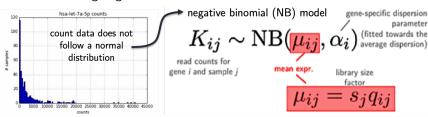
1 test per gene!

- 1. Estimate magnitude of DE taking into account differences in sequencing depth, technical, and biological read count variability.
- Estimate the significance of the difference accounting for performing thousands of tests.

 (adjusted) p-value

DGE steps (à la DESeq2)

- Fitting a sophisticated regression model to the read counts (per gene!)
 - library size factor
 - dispersion estimate using information across multiple genes
 - ▶ assuming neg. binomial distribution to describe read count distribution



DGE steps (à la DESeq2)

Fitting a sophisticated regression model to the read counts (done per gene; includes normalization)

$$K_{ij}$$
 \sim $ext{NB}(\mu_{ij}, lpha_i)^{ ext{gene-specific dispersion}}$

read counts for gene i and sample i

- ② Estimating **coefficients** to obtain the difference between the estimated mean expression of the different groups ($\Rightarrow log2FC$)
 - ▶ define the contrast of interest, e.g. Y ~ batchEffect + conditon
 - always put the factor of interest last
 - order of the factor levels determines the direction of the log2FC values

DGE steps (à la DESeq2)

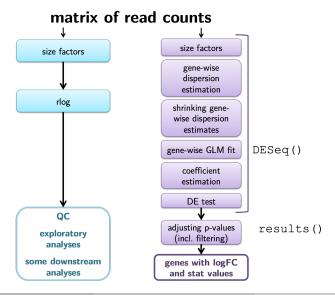
Fitting a sophisticated regression model to the read counts (done per gene; includes normalization)

$$K_{ij}\sim ext{NB}(\mu_{ij},lpha_i)^{ ext{gene-specific dispersion}top parameter}$$
 read counts for

- ② Estimating coefficients to obtain the difference between the estimated mean expression of the different groups (⇒ log2FC)
- Test whether the log2FC is "far away" from zero (remember H0!)
 - ▶ log-likelihood test or Wald test are offered by DESeq2
 - multiple hypothesis correction!

gene i and sample j

Summary: from read counts to DGE et al.



Comparison of additional tools for DGE analysis

Table 5: Comparison of programs for differential gene expression identification. Based on (Rapaport et al., Seyednasrollah et al., 2013; Schurch et al., 2015).

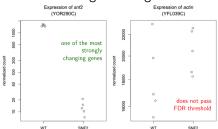
Feature	DESeq2	edgeR	limmaVoom	Cuffdiff	
Seq. depth normalization	Sample-wise size factor	Gene-wise trimmed median of means (TMM)	Gene-wise trimmed median of means (TMM)	FPKM-like or DESeq-like	
Assumed distribution	Neg. binomial	Neg. binomial	$log ext{-}normal$	Neg. binomial	
Test for DE	Exact test (Wald)	Exact test for over-dispersed data	Generalized linear model	t-test	
False positives	Low	Low	Low	High	
Detection of differential isoforms	No	No	No	Yes	
Support for multi-factored experiments	Yes	Yes	Yes	No	
Runtime (3-5 replicates)	Seconds to minutes	Seconds to minutes	Seconds to minutes	Hours	

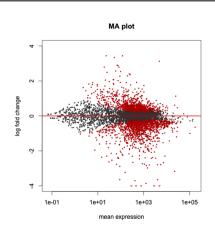
When in doubt, compare the results of limma, edgeR, and DESeq2 to get a feeling for how robust your favorite DE genes are. All packages can be found at Bioconductor.

Downstream analyses

Understanding the RESULTS of the DGE analysis

- Investigate the results() output:
 - How many DE genes? (FDR/q-value!)
 - ► How strongly do the DE genes change?
 - ► Directions of change?
 - Are your favorite genes among the DE genes?





Understanding the FUNCTIONS of your DE genes

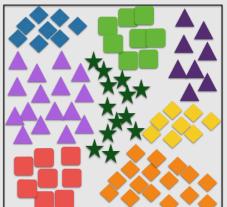
There are myriad tools for this – many are web-based, many are R packages, many will address very specific questions. Typical points of interest are:

- enriched gene ontology (GO) terms
 - ontology = standardized vocabulary
 - ▶ 3 classes of gene ontologies are maintained:
 - biological processes (BP), cell components (CC), and molecular functions (MF)
- enriched pathways
 - ▶ gene sets: e.g. from MSigDB [Liberzon et al., 2015]
 - physical interaction networks: e.g. from STRING [Szklarczyk et al., 2017]
 - ▶ metabolic (and other) pathways: e.g. from KEGG [Kanehisa et al., 2017]
- upstream regulators

None (!) of these methods should lead you to make definitive claims about the role of certain pathways for your phenotype. These are **hypothesis-generating** tools! Also: make sure you use **shrunken logFC** values [Zhu et al., 2019].

1. Over-representation analysis (ORA)

All known genes in a species (categorized into groups)



DEGs

HBC Training

Cate- gory	Back- ground	DE list	Over- repre- sented?	
Α	35/6600	25/500	likely	
В	56/6600	2/500	unlikely	
С	10/6600	9/500	likely	

1. Over-representation analysis (ORA)

- "2x2 table method"
- assessing overlap of DE genes with genes of a given pathway
- statistical test: e.g. hypergeometric test
- limitations:
 - direction of change is ignored
 - magnitude of change is ignored
 - interprets genes as well as pathways as independent entities

See Khatri et al. [2012] for details!

1. Over-representation analysis (ORA)

Table S1. ORA pathway analysis tools.

Name	Scope of Analysis	P-value	Correction for Multiple Hypotheses	Availability
Onto-Express	GO	Hypergeometric, binomial, chi-square	FDR, Bonferroni, Sidak, Holm	Web
GenMAPP/ MAPPFinder	GO, KEGG, MAPP	Percentage/z-score	None	Standalone
(High through- put) GoMiner	GO	Relative enrichment, Hypergeometric	None	Standalone, Web
FatiGO GOstat	GO, KEGG GO	Hypergeometric Chi-square	None FDR	Web
GOTree Machine FuncAssociate	GO GO	Hypergeometric Hypergeometric	None Bootstrap	Web Web
GOToolBox	GO	Hypergeometric	Bonferroni, Holm, FDR, Hommel, Hochberg	
GeneMerge	GO	Hypergeometric	Bonferroni	Web
GOEAST	GO	Hypergeometric, Chi- square	Benjamini-Yekutieli	Web
ClueGO	GO, KEGG, BioCarta, User defined	Hypergeometric	Bonferroni, Bonferroni step-down, Benjamini- Hochberg	Standalone

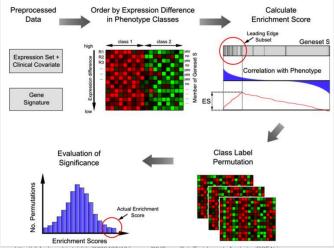
2. Functional Class Scoring ("Gene set enrichment")

- gene-level statistics for all genes in a pathway are aggregated into a single pathway-level statistic
- score will depend on size of the pathway, and the amount of correlation between genes in the pathway
- all genes are used
- direction and magnitude of change matter
- coordinated changes of genes within the same pathway matter, too

2. Functional Class Scoring ("Gene set enrichment")

Table S2. FCS pathway analysis tools. Khatri et al. (2012). doi: 0.1371/journal.pcbi.1002375									
Name	Scope of Anal- ysis	Gene-level Statis- tic	Gene Set Statistic	P-value	Correction for Multi- ple Hypotheses	Availability			
GSEA	GO, KEGG, BioCarta, MAPP, tran- scription factors, mi- croRNA, cancer molecules	Signal-to-noise ra- tio, t-test, cosine, euclidian and man- hattan distance, Pearson correlation, (log2) fold-change, log difference	Kolmogorov- Smirnov	Phenotype permutation, Gene set permutation	FDR	Standalone, R package			
sigPathway	GO, KEGG, BioCarta, hu- manpaths	t-statistic	Wilcoxon rank sum	Phenotype permu- tation, Gene set permutation	FDR (NPMLE)	R package			
Category	GO, KEGG	t-statistic		Phenotype permu- tation	NA	R package			
SAFE	GO, KEGG, PFAM	Student's t-test, Welch's t-test, SAM t-test, f-statistic, Cox proportional hazards model, linear regression	Wilcoxon rank sum, Fisher's exact test statis- tic, Pearson's test, t-test of average differ- ence	Phenotype permutation	FWER (Bonferroni, Holm's step-up), FDR (Benjamini-Hochberg, Yekutieli-Benjamini)	R package			
GlobalTest	GO, KEGG	NA	simple and multinomial lo- gistic regression, Q-statistics mean	Phenotype permutation, asymptotic distribution, Gamma distribution	NA	R package			
PCOT2	User specified	Hotelling's T^2		Phenotype permutation, gene set permutation	FDR (Benjamini- Hochberg, Yekutieli- Benjamini), FWER (Bonferroni, Holm, Hochberg, Hommel)	R package			
SAM-GS	User specified	d-statistic	sum of squared d-statistic	Phenotype permu- tation	FDR	Excel plug-in			

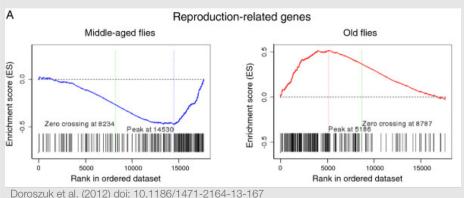
2. Functional Class Scoring: Example GSEA



http://slideplayer.biz.tr/slide/2738467/10/images/20/Gene+Set+Enrichment+Analysis+(GSEA).jpg

2. Functional Class Scoring ("Gene set enrichment")

Example GSEA results for positive and negative correlation



Summary – downstream analyses

Know your biological question(s) of interest!

- all enrichment methods potentially suffer from gene length bias
 - long genes will get more reads
- for GO terms
 - use goseq to identify enriched GO terms [Young et al., 2010]
 - use additional tools, such as GOrilla, REVIGO [Eden et al., 2009]
 - Supek et al., 2011] to summarize the often redundant GO term lists
- for KEGG pathways:
 - ▶ e.g. GAGE and PATHVIEW [Luo and Brouwer, 2013, Luo et al., 2017]
- miscellaneous including attempts to predict upstream regulators
 - ► Enrichr [Chen et al., 2013]
 - ► RegulatorTrail [Kehl et al., 2017]
 - Ingenuity Pathway Analysis Studio (proprietory software!)

See the additional links and material on our course website!

 5 https://www.r-bloggers.com/tutorial-ma-seq-differential-expression-pathway-analysis-with-sailfish-deseq2-gage-and-pathview/

Know your biological question(s) of interest!

- all enrichment methods potentially suffer from gene length bias
 - ▶ long genes will get more reads
- o for GO terms
 - use goseq to identify enriched GO terms [Young et al., 2010]
 use additional tools, such as GOrilla, REVIGO [Eden et al., 2009, Supek et al., 2011] to summarize the often redundant GO term list
- for **KEGG pathways**:
 - ▶ e.g. GAGE and PATHVIEW [Luo and Brouwer, 2013, Luo et al., 2017]
- miscellaneous including attempts to predict upstream regulators
 - ► Enrichr |Chen et al., 2013|
 - ► RegulatorTrail [Kehl et al., 2017]
 - Ingenuity Pathway Analysis Studio (proprietory software!

See the additional links and material on our course website!

 2 https://www.r-bloggers.com/tutorial-rna-seq-differential-expression-pathway-analysis-with-ish-deseq2-gage-and-pathview/

Know your biological question(s) of interest!

- all enrichment methods potentially suffer from gene length bias
 - long genes will get more reads
- for GO terms:
 - ▶ use goseg to identify enriched GO terms [Young et al., 2010]
 - use additional tools, such as GOrilla, REVIGO [Eden et al., 2009,
 Supek et al., 2011] to summarize the often redundant GO term lists
- for **KEGG pathways**:
 - ▶ e.g. GAGE and PATHVIEW [Luo and Brouwer, 2013, Luo et al., 2017]
- miscellaneous including attempts to predict upstream regulators
 - ► Enrichr [Chen et al., 2013]
 - ▶ RegulatorTrail [Kehl et al., 2017]
 - Ingenuity Pathway Analysis Studio (proprietory software!)

See the additional links and material on our course website!

*https://www.r-bloggers.com/tutorial-ma-seq-differential-expression-pathway-analysis-with-sailfish-deseq2-gage-and-pathview/

Know your biological question(s) of interest!

- all enrichment methods potentially suffer from gene length bias
 - long genes will get more reads
- for GO terms:
 - ▶ use goseq to identify enriched GO terms [Young et al., 2010]
 - use additional tools, such as GOrilla, REVIGO [Eden et al., 2009,
 Supek et al., 2011] to summarize the often redundant GO term lists
- for **KEGG** pathways:
 - ▶ e.g. GAGE and PATHVIEW [Luo and Brouwer, 2013, Luo et al., 2017
- miscellaneous including attempts to predict upstream regulators
 - ▶ Enrichr [Chen et al., 2013]
 - RegulatorTrail [Kehl et al., 2017]
 - Ingenuity Pathway Analysis Studio (proprietory software!)

See the additional links and material on our course website!

https://www.r-bloggers.com/tutorial-rna-seq-differential-expression-pathway-analysis-withish-deseq2-gage-and-pathview/

Know your biological question(s) of interest!

- all enrichment methods potentially suffer from gene length bias
 - long genes will get more reads
- for GO terms:
 - use goseq to identify enriched GO terms [Young et al., 2010]
 - use additional tools, such as GOrilla, REVIGO [Eden et al., 2009,
 Supek et al., 2011] to summarize the often redundant GO term lists
- for **KEGG pathways**:
- miscellaneous including attempts to predict unstream regulators
- miscellaneous including attempts to predict upstream regulators
 - Enrich [Chen et al., 2015]
 - ▶ Regulator Trail | Kehl et al., 2017
 - Ingenuity Pathway Analysis Studio (proprietory software!)

See the additional links and material on our course website!

Know your biological question(s) of interest!

- all enrichment methods potentially suffer from gene length bias
 - long genes will get more reads
- for GO terms:
 - use goseq to identify enriched GO terms [Young et al., 2010]
 - use additional tools, such as GOrilla, REVIGO [Eden et al., 2009, Supek et al., 2011] to summarize the often redundant GO term lists
- for KEGG pathways:
 - ▶ e.g. GAGE and PATHVIEW [Luo and Brouwer, 2013, Luo et al., 2017] ⁵
- miscellaneous including attempts to predict upstream regulators
 - ► Enrichr [Chen et al., 2013]
 - ▶ RegulatorTrail [Kehl et al., 2017]
 - Ingenuity Pathway Analysis Studio (proprietory software!)

See the additional links and material on our course website!

https://www.r-bloggers.com/tutorial-rna-seq-differential-expression-pathway-analysis-withsh-deseq2-gage-and-pathview/

Know your biological question(s) of interest!

- all enrichment methods potentially suffer from gene length bias
 - long genes will get more reads
- for GO terms:
 - use goseq to identify enriched GO terms [Young et al., 2010]
 - use additional tools, such as GOrilla, REVIGO [Eden et al., 2009, Supek et al., 2011] to summarize the often redundant GO term lists
- for KEGG pathways:
 - e.g. GAGE and PATHVIEW [Luo and Brouwer, 2013, Luo et al., 2017]
 - miscellaneous including attempts to predict upstream regulators
 - ► Enrichr [Chen et al., 2013]
 - ▶ RegulatorTrail [Kehl et al., 2017]
 - Ingenuity Pathway Analysis Studio (proprietory software!)

See the additional links and material on our course website!

 $^{^{5}}$ https://www.r-bloggers.com/tutorial-rna-seq-differential-expression-pathway-analysis-with-sailfish-deseq2-gage-and-pathview/

Know your biological question(s) of interest!

- all enrichment methods potentially suffer from gene length bias
 - long genes will get more reads
- for GO terms:
 - use goseq to identify enriched GO terms [Young et al., 2010]
 - use additional tools, such as GOrilla, REVIGO [Eden et al., 2009, Supek et al., 2011] to summarize the often redundant GO term lists
- for KEGG pathways:
 - e.g. GAGE and PATHVIEW [Luo and Brouwer, 2013, Luo et al., 2017]
- miscellaneous including attempts to predict upstream regulators
 - ► Enrichr [Chen et al., 2013]
 - ▶ RegulatorTrail [Kehl et al., 2017]
 - ▶ Ingenuity Pathway Analysis Studio (proprietory software!)

See the additional links and material on our course website!

 $^5 https://www.r-bloggers.com/tutorial-rna-seq-differential-expression-pathway-analysis-with-sailfish-deseq2-gage-and-pathview/$

Know your biological question(s) of interest!

- all enrichment methods potentially suffer from gene length bias
 - long genes will get more reads
- for GO terms:
 - use goseq to identify enriched GO terms [Young et al., 2010]
 - use additional tools, such as GOrilla, REVIGO [Eden et al., 2009, Supek et al., 2011] to summarize the often redundant GO term lists
- for KEGG pathways:
 - ▶ e.g. GAGE and PATHVIEW [Luo and Brouwer, 2013, Luo et al., 2017] ⁵
- miscellaneous including attempts to predict upstream regulators
 - ► Enrichr [Chen et al., 2013]
 - ▶ RegulatorTrail [Kehl et al., 2017]
 - Ingenuity Pathway Analysis Studio (proprietory software!)

See the additional links and material on our course website!

 5 https://www.r-bloggers.com/tutorial-rna-seq-differential-expression-pathway-analysis-with-sailfish-deseq2-gage-and-pathview/

Know your biological question(s) of interest!

- all enrichment methods potentially suffer from gene length bias
 - long genes will get more reads
- for GO terms:
 - use goseq to identify enriched GO terms [Young et al., 2010]
 - use additional tools, such as GOrilla, REVIGO [Eden et al., 2009, Supek et al., 2011] to summarize the often redundant GO term lists
- for KEGG pathways:
 - ▶ e.g. GAGE and PATHVIEW [Luo and Brouwer, 2013, Luo et al., 2017] ⁵
- miscellaneous including attempts to predict upstream regulators
 - ► Enrichr [Chen et al., 2013]
 - ► RegulatorTrail [Kehl et al., 2017]
 - Ingenuity Pathway Analysis Studio (proprietory software!)

See the additional links and material on our course website!

 $^5 https://www.r-bloggers.com/tutorial-rna-seq-differential-expression-pathway-analysis-with-sailfish-deseq2-gage-and-pathview/$

Know your biological question(s) of interest!

- all enrichment methods potentially suffer from gene length bias
 - long genes will get more reads
- for GO terms:
 - use goseq to identify enriched GO terms [Young et al., 2010]
 - use additional tools, such as GOrilla, REVIGO [Eden et al., 2009, Supek et al., 2011] to summarize the often redundant GO term lists
- for KEGG pathways:
 - e.g. GAGE and PATHVIEW [Luo and Brouwer, 2013, Luo et al., 2017]
- miscellaneous including attempts to predict upstream regulators
 - ► Enrichr [Chen et al., 2013]
 - ► RegulatorTrail [Kehl et al., 2017]
 - Ingenuity Pathway Analysis Studio (proprietory software!)

See the additional links and material on our course website!

 $^5 https://www.r-bloggers.com/tutorial-rna-seq-differential-expression-pathway-analysis-with-sailfish-deseq2-gage-and-pathview/$

References

- Edward Y. Chen, Christopher M. Tan, Yan Kou, Qiaonan Duan, Zichen Wang, Gabriela V. Meirelles, Neil R. Clark, and Avi Ma'ayan. Enrichr: Interactive and collaborative HTML5 gene list enrichment analysis tool. *BMC Bioinformatics*, 2013. doi: 10.1186/1471-2105-14-128. URL http://amp.pharm.mssm.edu/Enrichr.
- Eran Eden, Roy Navon, Israel Steinfeld, Doron Lipson, and Zohar Yakhini. GOrilla: a tool for discovery and visualization of enriched GO terms in ranked gene lists. *BMC bioinformatics*, 10(1):48, jan 2009. doi: 10.1186/1471-2105-10-48. URL http://cbl-gorilla.cs.technion.ac.il.
- R. Irizarry and M. Love. Leanpub, 2015. URL https://leanpub.com/dataanalysisforthelifesciences.
- R. Irizarry and M. Love. Biomedical Data Science, 2016.
- Minoru Kanehisa, Miho Furumichi, Mao Tanabe, Yoko Sato, and Kanae Morishima. KEGG: New perspectives on genomes, pathways, diseases and drugs. *Nucleic Acids Research*, 2017. doi: $10.1093/\mathrm{nar/gkw}1092$.

- Tim Kehl, Lara Schneider, Florian Schmidt, Daniel Stöckel, Nico Gerstner, Christina Backes, Eckart Meese, Andreas Keller, Marcel H. Schulz, and Hans Peter Lenhof. RegulatorTrail: A web service for the identification of key transcriptional regulators. *Nucleic Acids Research*, 2017. doi: $10.1093/\mathrm{nar/gkx350}.$ URL https://regulatortrail.bioinf.uni-sb.de/.
- Purvesh Khatri, Marina Sirota, and Atul J. Butte. Ten years of pathway analysis: Current approaches and outstanding challenges. *PLoS Computational Biology*, 2012. doi: 10.1371/journal.pcbi.1002375.
- $William \ B. \ King. \ Model \ Formulae \ Tutorial, \ 2016. \ URL \\ http://ww2.coastal.edu/kingw/statistics/R-tutorials/formulae.html.$
- Arthur Liberzon, Chet Birger, Helga Thorvaldsdóttir, Mahmoud Ghandi, Jill P. Mesirov, and Pablo Tamayo. The Molecular Signatures Database Hallmark Gene Set Collection. *Cell Systems*, 2015. doi: 10.1016/j.cels.2015.12.004.

- Michael I Love, Charlotte Soneson, and Rob Patro. Swimming downstream: statistical analysis of differential transcript usage following Salmon quantification. F1000Research, 7(952), 2018. doi: 10.12688/f1000research.15398.1.
- Weijun Luo and Cory Brouwer. Pathview: An R/Bioconductor package for pathway-based data integration and visualization. *Bioinformatics*, 2013. doi: 10.1093/bioinformatics/btt285.
- Weijun Luo, Gaurav Pant, Yeshvant K. Bhavnasi, Steven G. Blanchard, and Cory Brouwer. Pathview Web: User friendly pathway visualization and data integration. *Nucleic Acids Research*, 2017. doi:
 - 10.1093/nar/gkx372. URL https://pathview.uncc.edu/.
- Charlotte Soneson, Michael I. Love, and Mark D. Robinson. Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences. *F1000Research*, 4(0):1521, 2015. doi: 10.12688/f1000research.7563.2.

- Fran Supek, Matko Bošnjak, Nives Škunca, and Tomislav Šmuc. REVIGO summarizes and visualizes long lists of gene ontology terms. *PloS one*, 6 (7):e21800, jan 2011. doi: 10.1371/journal.pone.0021800. URL http://revigo.irb.hr/.
- Damian Szklarczyk, John H. Morris, Helen Cook, Michael Kuhn, Stefan Wyder, Milan Simonovic, Alberto Santos, Nadezhda T. Doncheva, Alexander Roth, Peer Bork, Lars J. Jensen, and Christian Von Mering. The STRING database in 2017: Quality-controlled protein-protein association networks, made broadly accessible. *Nucleic Acids Research*, 2017. doi: $10.1093/\mathrm{nar/gkw}937$.
- Cole Trapnell, Adam Roberts, Loyal Goff, Geo Pertea, Daehwan Kim, David R Kelley, Harold Pimentel, Steven L Salzberg, John L Rinn, and Lior Pachter. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. *Nature Protocols*, 7(3): 562–78, March 2012. doi: 10.1038/nprot.2012.016.

- Matthew D. Young, Matthew J. Wakefield, Gordon K. Smyth, and Alicia Oshlack. Gene ontology analysis for RNA-seq: accounting for selection bias. *Genome Biology*, 2010. doi: 10.1186/gb-2010-11-2-r14.
- Anqi Zhu, Joseph G. Ibrahim, and Michael I. Love. Heavy-Tailed prior distributions for sequence count data: Removing the noise and preserving large differences. *Bioinformatics*, 35(12):2084–2092, 2019. doi: 10.1093/bioinformatics/bty895.
- Andrzej Zielezinski, Susana Vinga, Jonas Almeida, and Wojciech M. Karlowski. Alignment-free sequence comparison: Benefits, applications, and tools. *Genome Biology*, 2017. doi: 10.1186/s13059-017-1319-7.