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1 Prologue

What is R? R is a free software environment for statistical computing and graphics. It can
effectively analyze large-scale datasets, such as those resulting from high-throughput sequencing
experiments. It promotes automated and reproducible analyses of scientific data, creates a wide
spectrum of publication quality figures, and has an extensive library of add-on packages to facil-
itate many complex statistical analyses. Because it is free and ubiquitously available (it runs on
Windows, Mac, and Linux computers), your investment in learning R will pay dividends for years
to come.

What is RStudio? While R is very powerful, it is essentially a command line program and is
thus not the friendliest thing to use. Especially when learning R, a friendlier environment is helpful,
and RStudio provides this, giving you things you expect in a modern interface like integrated file
editing, syntax highlighting, code completion, smart indentation, tools to manage plots, browse
files and directories, visualize object structures, etc.

From your computer, choose the RStudio application. This will start R under the hood for
you.

2 Introduction

The Console panel (lower left panel) is where you type commands to be run immediately. When R
is waiting for a new command, you will see a prompt character, >.

2.1 R as a calculator

R understands all the usual mathematical operators, keeping the usual order of operations, including
forcing an order with parentheses (PEMDAS):

1 + 2

3 - 4

5 * 6

7 / 8

1 + 2 * 3

(1 + 2) * 3

Let’s focus on 1 + 2 and its result:

1+3

## [1] 4

What is the [1] before the correct result? All numbers in R are vectors, and the [1] is a hint
about how the vector is indexed. To see a long vector of random numbers, type:
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head(rnorm(100), n = 15)

## [1] 1.50452530 0.09800236 -0.81114717 0.12167865 1.27631259

## [6] 0.19246376 -1.67559784 2.61841914 -1.87682488 0.02221273

## [11] -1.88289342 -0.44458393 -0.54254855 1.85580193 -1.11226544

We will learn more about vectors and their indeces in Section 3.1.

2.2 R has variables

Just as in UNIX, it can be really useful to assign values to variables, so they can be referred to
later. This is done using the assignment operator (<-).

us.population <- 3.22e8 # From Wolfram|Alpha

us.area <- 3719000 # From Wolfram|Alpha

us.pop.density <- us.population / us.area

us.pop.density

## [1] 86.58241

( us.pop.density <- us.population / us.area )

## [1] 86.58241

1. Once a variable is defined, you will see it show up in the environment panel in RStudio.
2. R will not automatically print out the value of an assigned variable. Type the name of the

variable by itself to see it. Alternatively, wrapping the assignment in parentheses executes
the assignment and prints the result.

3. Case matters: US.area is not the same as us.area.
4. Word separation in R is traditionally done with periods, but this is slowly losing favor. Other

options include snake case (separated by underscores) or camelCase (capitalize each new
word).

Note that in RStudio, the Tab key will attempt to autocomplete the variable or function name that
your cursor is currently on.

2.3 R is interpreting your input

R is called a “high-level, interpreted“ programming language. What this means is that R takes care
of a lot of basic tasks for you, which is different to many other (compiled) programming languages
such as C or Fortran.

So, when you type:

i <- 5

R will do the following helpful leg-work for you to interpret your input in a manner that the
computer actually understands1:

• That ”5.0” is a floating-point number.

1Taken from Noam Ross’ blog entry.
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• That i should store numeric-type data.

• To find a place in memory for to put ”5”.

• To register i as a pointer to that place in memory.

You don’t even have to translate 5.0 into its binary representation!

Since R takes care of all of these details for you, it will take more time to interpret your commands
than non-interpreted languages as it needs to figure all of these details out on its own.

2.4 Data types

So far, we have only been dealing with numerical data, but in the real world, data takes many
forms. R has several basic data types that you can use.

has.diabetes <- TRUE # logical (note case!)

patient.name <- "Jane Doe" # character

moms.age <- NA # represents an unknown ("missing") value

NY.socialite.iq <- NULL # represents something that doesn't exist

R can convert between data types using a series of as.() methods.

as.numeric(has.diabetes)

## [1] 1

as.character(us.population)

## [1] "3.22e+08"

as.character(moms.age) # still NA - we still don't know!

## [1] NA

2.5 Installing packages

One of the major advantages of using R for data analysis is the active community that surrounds
it. There is a rich ecosystem of packages to the base R system. Some of these provide general
functionality while others address very specific tasks.

There are two main repositories of R packages: CRAN (Comprehensive R Archive Network) and
Bioconductor.

CRAN is the somewhat more traditional package library and it contains libraries covering all sorts
of functions for different types of analyses including finance, genetics, high performance computing,
machine learning, social sciences, geography etc. CRAN can be accessed from http://cran.r-

project.org/ (where you also download the R software). Follow the “Packages” link to browse
the 6000+ packages currently available.

Since we will be using the ggplot2 package for preparing publication-quality figures, here we
will download and install the tidyverse package, which includes ggplot2, as well as tidyr and
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magrittr. install.packages will download a source package (= a collection of R functions, see

Section 7) and installs it in a library on your computer (e.g. /usr/lib/R/library).

install.packages("tidyverse") # package name is given as a string

If this is the first time a package is being installed on your computer, R may ask you to select
a CRAN mirror. Pick something geographically close by. Note that you only have to install a
package once (per version of R).

Depending on how your computer (and R installation) is set up, you may receive a message indi-
cating that the central location for packages is not writable; in this case R will ask if you want to
use a personalized collection of packages stored in your home directory.

If you happen to have downloaded a package to your computer, you can install it without R checking
the remote repositories:

install.packages("newpackage.tar.gz", repos = FALSE)

Installing a package does not make it ready for use in your current R session. To do this, use the
library() function. You need to do this in every session or script that will use functions from
this library.

# the magrittr package brings a new infix operator: %>%

# that can be thought of like the UNIX pipe operator "|"

library(magrittr) # package name is an object (not a string)

head(state.area) %>% sum

## [1] 1071319

The library command (i) loads the functions of a previously installed package from the com-
puter’s library and (ii) attaches the functions to the user’s workspace, i.e. new functions are now
available for use (such as %>% from the magrittr package). If you want to use functions from an
installed package without attaching it to your workspace, you can invoke them with the :: or
::: operators:

# use a specific ggplot2 function without previous library() call

ggplot2::ggplot()

The devtools package also allows for the installation via different routes although installation from
the repositories should always be your first bet as those guarantee that the packages can actually
be installed on different platforms.

devtools::install_github("thomasp85/patchwork")

2.6 Getting help

Much work has gone into making R self-documenting. There are extensive built-in help pages for
all R commands, which are accessible with the help() function. To see how sqrt() works, type:

help(sqrt)

?sqrt
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The help page will show up in the Help section of the RStudio window.

The help pages will often group similar functions together (e.g., the related functions log() and

exp() are found on the same page).

3 Data Structures

R has several different types of data structures and knowing what each is used for and when they
are appropriate is fundamental to the efficient use of R.

The base data structures can be organised by their dimensionality (1d, 2d, or nd) and whether
they are homogeneous (all contents must be of the same type) or heterogeneous (the contents can
be of different types).

Vectors are ordered collections of elements, where each of the objects must be of the same data
type, but can be any data type.

A matrix is a rectangular array, having some number of columns and some number of rows.
Matrices can only comprise one data type (if you want multiple data types in a single structure,
use a data frame).

Lists are like vectors, but whereas elements in vectors must all be of the same type, a single list
can include elements from any data type. Elements in lists can be named. A common use of lists
is to combine multiple values into a single variable that can then be passed to, or returned by, a
function.

Data frames are similar to matrices, in that they can have multiple rows and multiple columns,
but in a data frame, each of the columns can be of a different data type, although within a column,
all elements must be of the same data type. You can think of a data frame as being like a list, but
instead of each element in the list being just one value, each element corresponds to a complete
vector.

3.1 Vectors

We’ve already seen a vector when we ran the rnorm() command. Let’s run that again, but this
time assigning the result to a variable.

x <- rnorm(100)

Many commands in R take a vector as input; a feature of R that we will again discuss in Sec-
tion 6.
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sum(x)

## [1] -7.122459

max(x)

## [1] 2.785203

summary(x)

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## -2.26441 -0.73406 -0.06904 -0.07122 0.65005 2.78520

length(x)

## [1] 100

plot(x)

hist(x)
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3.1.1 Creating vectors

There are many ways of creating vectors. The most common way is using the c() function, where
c stands for concatenation. Here we assign a vector of characters (character strings must be quoted)
to a variable colors.

colors <- c("red", "orange", "yellow", "green",

"blue", "indigo", "violet")

The c() function can combine vectors.

colors <- c("infrared", colors, "ultraviolet")

# remember that "infrared" and "ultraviolet" are one-element vectors

By assigning the result back to the colors variable, we are updating its value. The net effect is to
both prepend and append new colors to the original colors vector.

While c() can be used to create vectors of any data type, an easy way to make a numerical vector
of sequential numbers is with the “:” operator

indices <- 41:50
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In addition to using the : notation to create vectors of sequential numbers, there are a handful of
useful functions for generating vectors with systematically created elements. Here we will look at
seq() and rep() .

The seq() function can take five different arguments (from, to, by, length, along.with), al-
though some are mutually exclusive with others. You can pass argments by name rather than
position; this is helpful for skipping arguments. Note that all of the arguments have default values,
which will be used if you don’t specify them.

seq(1, 10) # same as 1:10

seq(1, 4, 0.5) # all numbers from 1 to 4, incrementing by 0.5

seq(0, 1, length.out = 10)

seq(from = 1, to = 4, by = 0.5)

seq(from = 0, to = 1, length.out = 10)

seq(to = 99)

Another commonly used function for making regular vectors is rep() . This repeats the values
in the argument vector as many times as specified. This can be used with character and logical
vectors as well as numeric. When using the length.out argument, you may not get a full cycle of
repetition.

rep(colors, 2) # sames as: rep(colors, times = 2)

## [1] "infrared" "red" "orange" "yellow"

## [5] "green" "blue" "indigo" "violet"

## [9] "ultraviolet" "infrared" "red" "orange"

## [13] "yellow" "green" "blue" "indigo"

## [17] "violet" "ultraviolet"

rep(colors, each = 2)

## [1] "infrared" "infrared" "red" "red"

## [5] "orange" "orange" "yellow" "yellow"

## [9] "green" "green" "blue" "blue"

## [13] "indigo" "indigo" "violet" "violet"

## [17] "ultraviolet" "ultraviolet"

rep(colors, each = 2, times = 2)

## [1] "infrared" "infrared" "red" "red"

## [5] "orange" "orange" "yellow" "yellow"

## [9] "green" "green" "blue" "blue"

## [13] "indigo" "indigo" "violet" "violet"

## [17] "ultraviolet" "ultraviolet" "infrared" "infrared"

## [21] "red" "red" "orange" "orange"

## [25] "yellow" "yellow" "green" "green"

## [29] "blue" "blue" "indigo" "indigo"

## [33] "violet" "violet" "ultraviolet" "ultraviolet"

rep(colors, length.out = 10)

## [1] "infrared" "red" "orange" "yellow"

© Copyright 2020 Weill Cornell Medicine page 8



Introduction to R

## [5] "green" "blue" "indigo" "violet"

## [9] "ultraviolet" "infrared"

3.1.2 Accessing and assigning individual vector elements

Individual vector elements are accessed using indexing vectors, which can be numeric, character or
logical vectors.

You can access an individual element of a vector by its position (or “index”). In R, the first element
has an index of 1.

colors[1]

## [1] "infrared"

colors[7]

## [1] "indigo"

You can also change the elements of a vector using the same notation as you use to access them.

colors[7] <- "purple"

You can access multiple elements of a vector by specifying a vector of element indices.

R has many built-in datasets for us to play with. You can view these datasets using the data()

function. Two examples of vector datasets are state.name and state.area.

We will get the last ten states (alphabetically) by using the “:” operator, and use that numerical
vector to access the elements at those positions.

indices <- 41:50

indices[1]

## [1] 41

indices[2]

## [1] 42

length(indices)

## [1] 10

state.name[indices]

## [1] "South Dakota" "Tennessee" "Texas" "Utah"

## [5] "Vermont" "Virginia" "Washington" "West Virginia"

## [9] "Wisconsin" "Wyoming"

We can test all the elements of a vector at once using logical expressions, generating a logical
vector. Let’s use this to get a list of small states. First figure out which states are in the bottom
quartile, and then compare every element to that number. This returns a vector of logical elements
indicating, for every state, whether or not that state is smaller than the cutoff. We use that logical
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vector as our indexing vector, returning only those elements which correspond to a TRUE value at
that position.

summary(state.area)

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 1214 37317 56222 72368 83234 589757

cutoff <- 37317

state.area < cutoff

## [1] FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE FALSE TRUE

## [12] FALSE FALSE TRUE FALSE FALSE FALSE FALSE TRUE TRUE TRUE FALSE

## [23] FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE FALSE FALSE

## [34] FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE FALSE FALSE FALSE

## [45] TRUE FALSE FALSE TRUE FALSE FALSE

state.name[state.area < cutoff]

## [1] "Connecticut" "Delaware" "Hawaii" "Indiana"

## [5] "Maine" "Maryland" "Massachusetts" "New Hampshire"

## [9] "New Jersey" "Rhode Island" "South Carolina" "Vermont"

## [13] "West Virginia"

We can test for membership in a vector using the %in% operator. To see if a state is among the
smallest:

"New York" %in% state.name[state.area < cutoff]

## [1] FALSE

"Rhode Island" %in% state.name[state.area < cutoff]

## [1] TRUE

You can also get the index positions of elements that meet your criteria using the which() function.

which(state.area > cutoff)

## [1] 1 2 3 4 5 6 9 10 12 13 15 16 17 18 22 23 24 25 26 27 28 31

## [23] 32 33 34 35 36 37 38 41 42 43 44 46 47 49 50

state.name[which(state.area > cutoff)]

## [1] "Alabama" "Alaska" "Arizona" "Arkansas"

## [5] "California" "Colorado" "Florida" "Georgia"

## [9] "Idaho" "Illinois" "Iowa" "Kansas"

## [13] "Kentucky" "Louisiana" "Michigan" "Minnesota"

## [17] "Mississippi" "Missouri" "Montana" "Nebraska"

## [21] "Nevada" "New Mexico" "New York" "North Carolina"

## [25] "North Dakota" "Ohio" "Oklahoma" "Oregon"

## [29] "Pennsylvania" "South Dakota" "Tennessee" "Texas"

## [33] "Utah" "Virginia" "Washington" "Wisconsin"

## [37] "Wyoming"
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R also lets us name every element of a vector using the names() function, which will allow us to
use a character vector to access individual elements directly.

names(state.area) <- state.name

state.area["Wyoming"]

## Wyoming

## 97914

state.area[c("Wyoming", "Alaska")]

## Wyoming Alaska

## 97914 589757

R supports sorting, using the sort() and order() functions.

sort(state.area) # sorts the areas of the states from smallest to largest

order(state.area) # returns a vector of positions of the sorted elements

state.name[order(state.area)] # sort the state names by state size

state.name[order(state.area, decreasing = TRUE)]

We can also randomly sample elements from a vector, using sample() .

sample(state.name, 4) # randomly picks four states

sample(state.name) # randomly permute the entire vector

sample(state.name, replace = TRUE) # selection with replacement

Other miscellaneous useful commands on vectors include:

rev(x) # reverses the vector

sum(x) # sums all the elements in a numeric or logical vector

cumsum(x) # returns a vector of cumulative sums (or a running total)

diff(x) # returns a vector of differences between adjacent elements

max(x) # returns the largest element

min(x) # returns the smallest element

range(x) # returns a vector of the smallest and largest elements

mean(x) # returns the arithmetic mean

3.2 Factors

A factor is used to store categorical data, more precisely, it encodes each entry of a vector as an
integer. A factor keeps track of all the positions of the distinct values in a given vector. The set of
distinct values are called levels. To see (and set) the levels of a factor, you can use the levels()

function, which will return the levels as a vector.

R has an example factor built in:

state.division

## [1] East South Central Pacific Mountain

## [4] West South Central Pacific Mountain

## [7] New England South Atlantic South Atlantic

## [10] South Atlantic Pacific Mountain
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## [13] East North Central East North Central West North Central

## [16] West North Central East South Central West South Central

## [19] New England South Atlantic New England

## [22] East North Central West North Central East South Central

## [25] West North Central Mountain West North Central

## [28] Mountain New England Middle Atlantic

## [31] Mountain Middle Atlantic South Atlantic

## [34] West North Central East North Central West South Central

## [37] Pacific Middle Atlantic New England

## [40] South Atlantic West North Central East South Central

## [43] West South Central Mountain New England

## [46] South Atlantic Pacific South Atlantic

## [49] East North Central Mountain

## 9 Levels: New England Middle Atlantic ... Pacific

levels(state.division)

## [1] "New England" "Middle Atlantic" "South Atlantic"

## [4] "East South Central" "West South Central" "East North Central"

## [7] "West North Central" "Mountain" "Pacific"

To get a hint about how R stores factors (or any other object), we can use the str() function to

view the structure of that object. You can also use the class() function to learn the class of an
object, without having to see all the details.

str(state.division)

## Factor w/ 9 levels "New England",..: 4 9 8 5 9 8 1 3 3 3 ...

class(state.division)

## [1] "factor"

Note the list of integers corresponds to the level at each position. While factors may behave
like character vectors in many ways, they are originally more efficient because they are internally
represented as integers and computers are good at working with integers.

You can convert a vector to a factor using the factor() function. Here we create a vector using
the sample() function, where we are storing each color as a character string, and then convert it
into a factor.

bingo.balls <- sample(colors, size = 40, replace = TRUE)

str(bingo.balls)

bingo.balls.f <- factor(bingo.balls)

str(bingo.balls.f)

We will conclude this paragraph with a concise summary by Hadley Wickham:

While factors look (and often behave) like character vectors, they are actually integers.
Be careful when treating them like strings. Some string methods (like gsub() and
grepl()) will coerce factors to strings, while others (like nchar()) will throw an error,
and still others (like c()) will use the underlying integer values. For this reason, its
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usually best to explicitly convert factors to character vectors if you need
string-like behaviour.

3.3 Matrices and lists

Matrices can be thought of a two-dimensional vectors, where every element has to be of the
same data type. They are typically created with the matrix() function:

matrix(data, nrow, ncol, byrow, dimnames)

Elements are accessed following the same rules as described above, but given the two-dimensional
nature of matrices, you will use 2 indexing vectors: one for rows, and one for columns
( mat[row index, column index] ).

testmat <- matrix(c(1:10), nrow = 5) # create a matrix

testmat[3,1] # extract the entry from the third row and first column

## [1] 3

testmat[1,] # all entries of the 1st row

## [1] 1 6

testmat[,2] # all entries of the 2nd column

## [1] 6 7 8 9 10

matrix(1:12, nrow = 3)[c(1:3), 2:4] # multiple rows/columns can also be used

## [,1] [,2] [,3]

## [1,] 4 7 10

## [2,] 5 8 11

## [3,] 6 9 12

If both dimensions have been named, you can also use the names for subsetting:

head(USPersonalExpenditure)

## 1940 1945 1950 1955 1960

## Food and Tobacco 22.200 44.500 59.60 73.2 86.80

## Household Operation 10.500 15.500 29.00 36.5 46.20

## Medical and Health 3.530 5.760 9.71 14.0 21.10

## Personal Care 1.040 1.980 2.45 3.4 5.40

## Private Education 0.341 0.974 1.80 2.6 3.64

USPersonalExpenditure["Food and Tobacco", ] # 1D vector result!

## 1940 1945 1950 1955 1960

## 22.2 44.5 59.6 73.2 86.8

USPersonalExpenditure[1:3, c("1940","1950")]

## 1940 1950

## Food and Tobacco 22.20 59.60

## Household Operation 10.50 29.00
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## Medical and Health 3.53 9.71

If your result is one-dimensional, it is by default returned as one-dimensional vector. If you dont
want this behavior, you can use drop=FALSE:

# compare to the output above

USPersonalExpenditure["Food and Tobacco", , drop = FALSE]

## 1940 1945 1950 1955 1960

## Food and Tobacco 22.2 44.5 59.6 73.2 86.8

Since all elements in a matrix have to be of the same data type, R will automatically change the
data type of all entries if a new one of a different data type is entered.

str(testmat)

## int [1:5, 1:2] 1 2 3 4 5 6 7 8 9 10

testmat[1,1] <- "X" # add a character

typeof(testmat)

## [1] "character"

# notice how the entire matrix is treated the same way as a 1D vector

is.numeric(testmat)

## [1] FALSE

The order of the coercion applied by R is as follows:

NULL < raw < logical < integer < double < complex < character < list < expression

This holds also true for 1D vectors.

3.4 Lists

Lists are like ragged tables, where every column can be of a different data type, and can have
different numbers of elements. Each “column” of a list can be accessed in one of two ways: if the
column is not named, we can access a single (!) entry with the double bracket [[ ]] notation. If
it is named, we can also use a $ syntax.

# assess the structure of a list

str(state.center)

## List of 2

## $ x: num [1:50] -86.8 -127.2 -111.6 -92.3 -119.8 ...

## $ y: num [1:50] 32.6 49.2 34.2 34.7 36.5 ...

names(state.center)

## [1] "x" "y"

# alternative subsetting options for the same list element

state.center$x

state.center[["x"]]
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state.center[[which(names(state.center) == "x")]]

# notice the difference here:

state.center[names(state.center) == "x"] # [ ] returns a list!

# you can also access multiple entries of the list, but only with [ ]

state.center[c(1,2)]

state.center[c("y","x")]

An additional important property of lists is that they can be nested, i.e. you can easily construct
list of lists:

library(magrittr)

list(state_center_coordinates = state.center,

state_statistics = state.x77) %>% str

## List of 2

## $ state_center_coordinates:List of 2

## ..$ x: num [1:50] -86.8 -127.2 -111.6 -92.3 -119.8 ...

## ..$ y: num [1:50] 32.6 49.2 34.2 34.7 36.5 ...

## $ state_statistics : num [1:50, 1:8] 3615 365 2212 2110 21198 ...

## ..- attr(*, "dimnames")=List of 2

## .. ..$ : chr [1:50] "Alabama" "Alaska" "Arizona" "Arkansas" ...

## .. ..$ : chr [1:8] "Population" "Income" "Illiteracy" "Life Exp" ...

# or just add 'state.x77' to the original list

state.centers <- state.center

state.centers$state_stats <- state.x77

str(state.centers) # notice the difference to the list() example though

## List of 3

## $ x : num [1:50] -86.8 -127.2 -111.6 -92.3 -119.8 ...

## $ y : num [1:50] 32.6 49.2 34.2 34.7 36.5 ...

## $ state_stats: num [1:50, 1:8] 3615 365 2212 2110 21198 ...

## ..- attr(*, "dimnames")=List of 2

## .. ..$ : chr [1:50] "Alabama" "Alaska" "Arizona" "Arkansas" ...

## .. ..$ : chr [1:8] "Population" "Income" "Illiteracy" "Life Exp" ...

For more information about matrices and lists, see Week 1 of http://chagall.med.cornell.edu/
Rcourse/ and http://adv-r.had.co.nz/Data-structures.html.

3.5 Data frames

Data frames are two-dimensional data structures like matrices, but, unlike matrices, they can
contain multiple different data types. You can think of a data frame as a list of vectors, where
all the vector lengths are the same. Data frames are commonly used to represent tabular data
such as the data stored in spreadsheets; they are one of the main reasons why statisticians have
taken to R since it is tremendously useful to have be able to manipulate different types of data
simultaneously.
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When we were learning about vectors, we used several parallel vectors, each with length 50 to
represent different types of information about US states. The collection of vectors really belongs
together, and a data frame is the tool for doing this.

state.df <- data.frame(state.name,

state.abb, state.area, state.center,

stringsAsFactors = FALSE)

head(state.df)

## state.name state.abb state.area x y

## Alabama Alabama AL 51609 -86.7509 32.5901

## Alaska Alaska AK 589757 -127.2500 49.2500

## Arizona Arizona AZ 113909 -111.6250 34.2192

## Arkansas Arkansas AR 53104 -92.2992 34.7336

## California California CA 158693 -119.7730 36.5341

## Colorado Colorado CO 104247 -105.5130 38.6777

The data.frame() function combines the four vectors into a single object. There are a couple of
noteworthy things that happened here:

• different types of vectors (characters, numeric) were combined
• state.center wasn’t even a pure vector, but a list with two elements – since the elements

were of the same length, they were coerced into separate columns of the data frame (x, y)
• stringsAsFactors = FALSE argument avoids that the character vectors are parsed as factors

(see Section 3.2 of why that’s a preferable setting in many cases)

Data frames have a split personality: They behave both like a tagged list of vectors, and like a
matrix! This gives you many options for accessing elements.

When accessing a single column, the list notation with the dollar sign is preferred.

# different options for subsetting the second column

state.df$state.abb

state.df[[ "state.abb" ]]

state.df[[ 2 ]]

When accessing multiple columns or a subset of rows, the matrix notation is used (rows and columns
are given indexing vectors, which can be of any type (numeric, character, logical)).

state.df[ , 1:2]

state.df[41:50, 1:2]

state.df[c(50, 1), c("state.abb", "x", "y")]

state.df[order(state.df$state.area)[1:5], ]

state.df[order(state.df$state.area), ][1:5, ]

The last two examples produce the same output; which is more efficient?

We can give names to both the rows and the columns of a data frame. This makes picking out
specific rows less error-prone. Column names are accessed with the names() or colnames()

functions; row names are accessed using rownames() .

rownames(state.df) <- state.abb

state.df[c("NY", "NJ", "CT", "RI"), c("x", "y")]
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names(state.df) <- c("name", "abb", "area", "long", "lat")

Note that if you only fetch data from one column, you’ll get a vector back. If you want a one-column
data frame, use the drop = FALSE option.

You can add a new column the same way you would add one to a list.

state.df$division <- state.division # Remember, this is a factor

state.df$z.size <- (state.df$area - mean(state.df$area))/sd(state.df$area)

state.df[ , "z.size", drop = FALSE]

3.6 Importing (and exporting) data

In most cases, you won’t be typing the data in by hand but rather importing it from spreadsheets
or text files. R provides tools for importing a variety of text file formats. If you receive data in
Excel format, you’ll usually want to save it as tab-delimited or CSV (comma separated values)
text2. The read.delim() , read.csv() or read.table() functions can then be used to import
the data into a data frame.

The read.table() function is the most general, giving you exquisite control over how to import
your data. One of the defaults of this function is header = FALSE. For this reason, we suggest that
you always explicitly use the header option (you don’t want to accidentally miss your first data
point).

ablation <- read.table("ablation.csv", header = TRUE, sep = ",")

You can export a data frame using write.table() .

write.table(ablation, "my_ablation.txt", quote = FALSE, row.names = FALSE)

4 Plotting

Although R has some basic plotting functionality, the ggplot2 package is more comprehensive and,
importantly, consistent, as it is based on a common “grammar”3

ggplot2 is written by Hadley Wickham (http://hadley.nz/). He maintains a number of other
libraries; they are of excellent quality, and are very well documented. However, they are updated
frequently, so make sure that you are reading the current documentation. For ggplot2, this can be
found at https://ggplot2.tidyverse.org/reference/.

ggplot2 relies entirely on data frames (or Hadley’s version of it: tibbles) for input.

Let’s make our first ggplot with the ablation data that we imported earlier.

2If you do need to read and write directly to a XLS file, check out the openxlsx package.
3For an introduction into base R plots, see, e.g., https://bookdown.org/rdpeng/exdata/the-base-plotting-

system-1.html. For a collection of publication-ready images mostly generated with base R, check out https://

shinyapps.org/apps/RGraphCompendium/index.php.
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library(ggplot2) # load the functions of the ggplot2 package into your workspace

ggplot(ablation, aes(x = Time, y = Score)) + geom_point()
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At a minimum, the two things that you need to give ggplot are:

1. The dataset (which must be a data frame or an object that can be interpreted as one), and
the variable(s) you want to plot (here: ablation)

2. The type of plot you want to make (here: a dot plot via geom point()).

This is what the data frame looked like:

head(ablation)

## Measurement Experiment CellType Direction Time Score

## 1 LDLR-ABLATION E1909 WT ABL 0 2.82

## 2 LDLR-ABLATION E1909 WT ABL 5 11.37

## 3 LDLR-ABLATION E1909 WT ABL 10 9.03

## 4 LDLR-ABLATION E1909 WT ABL 20 28.27

## 5 LDLR-ABLATION E1909 WT ABL 30 42.86

## 6 LDLR-ABLATION E1909 A-KD ABL 0 6.99

You should notice that the axes are assigned to selected columns of the object just by the name (as
if they were objects themselves), not via the usual subsetting routine of character strings.

ggplot gives you ample and fine-grained control over plotting parameters.

# Here, we'll change the color and size of the points.

ggplot(ablation, aes(x = Time, y = Score)) + geom_point(color = "red", size = 4)

This fixes the color and size for all points. Alternatively, you can use the “aesthetics” parameter
to have these properties reflect continuous or discrete values.

ggplot(ablation, aes(x = Time, y = Score)) +

geom_point(aes(color = Experiment, shape = CellType), size = 4)
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ggplot objects are built up by adding layers. You can add as many layers as you like – the order
matters, though, as the first layer may be obstructed by the next layer as shown in the next
plot.

ggplot(ablation, aes(x = Time, y = Score)) +

geom_text(aes(label = CellType), hjust = 0, size = 3) +

geom_point(aes(color = Experiment), size = 4)
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It is sometimes useful to save off the base ggplot object and add layers in separate commands. The
plot is only rendered when R “prints” the object. This is useful for several reasons:

1. We don’t need to create one big huge command to create a plot, we can create it piecemeal.
2. The plot will not get rendered until it has received all of its information, and therefore allows

ggplot2 to be more intelligent than R’s built-in plotting commands when deciding how large
a plot should be, what the best scale is, etc.

p <- ggplot(ablation, aes(x = Time, y = Score)) # create the base plot

p <- p + geom_point(aes(color = Experiment, shape = Measurement), size = 4)

# add a line

p <- p +

geom_line(aes(group = interaction(Experiment, Measurement, CellType),

color = Experiment, linetype = CellType))

print(p) # plot gets rendered now
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Here we’ve added a layer that plots lines, with a separate line for each unique combination of
Experiment, Measurement, and CellType. The interaction() function takes a set of factors,
and computes a composite factor.

library(magrittr)

interaction(ablation$Experiment, ablation$Measurement, ablation$CellType) %>% head

## [1] E1909.LDLR-ABLATION.WT E1909.LDLR-ABLATION.WT

## [3] E1909.LDLR-ABLATION.WT E1909.LDLR-ABLATION.WT

## [5] E1909.LDLR-ABLATION.WT E1909.LDLR-ABLATION.A-KD

## 12 Levels: E1909.LDLR-ABLATION.A-KD ... E1921.TfR-ABLATION.WT

We have also added a new binding to geom point(). The shape of each point is determined by the
corresponding Measurement. Note that ggplot prefers six or fewer distinct shapes (i.e., there are
no more than six levels in the corresponding factor). You can, however, use more adding a layer
like scale shape manual(values = 1:11).

The most commonly used aesthetic types are shown here:

# let's jitter the points slightly for better visibility

p + geom_point(aes(color = Experiment, shape = Measurement),

size = 4, position = position_dodge(0.5)) +

scale_shape_manual(values = c(1,16)) # manually specify the shapes

This plot is probably showing too much data at once. One approach to resolve this would be to
make separate plots for the LDLR and TfR measurements. You can make multiple plots at once
using facets. Here are a few options.

library(patchwork) # package for easier combined plotting of multiple ggplots

p1 <- p + facet_grid(Measurement ~ .)

p2 <- p + facet_grid(. ~ Measurement)

p3 <- p + facet_grid(Experiment ~ Measurement)

p4 <- p + facet_grid(Measurement ~ Experiment)

(p1 | p2) / (p2 | p3) # patchwork-based combination
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For more details on using other scale () layers to modify your plots, and all other data types (e.g.
geom bar , geom hist etc.) see the R Graphics Cookbook (http://www.cookbook-r.com/

Graphs/) or the online documentation for ggplot (https://ggplot2.tidyverse.org/reference/).

5 Data wrangling

You may have noticed that the format of the ablation data frame is a bit peculiar. It is, however,
in the canonical format for storing and manipulating data that you should be using. The hallmark
of this canonical (tidy) format is that there is only one (set of) independently observed value(s) in
each row. All of the other columns are identifying values. They explain what exactly was measured,
and can be thought of as metadata.

More specifically, a tidy dataset is defined as one where:

• Each variable forms a column.
• Each observation forms a row.

When your data is in this format, it is straightfoward to subset, transform, and aggregate it by any
combination of factors of the identifying variables. That is why, for example, the ggplot package
essentially requires that your data is in tidy format.

The tidyverse that Hadley Wickham has been instrumental in creating has this format at its core,
and his tidyr package includes functions to help coerce your data into this format.

5.1 Going long

If you are given data in non-canonical format, you can use the gather() function to fix it. This

will convert a data frame with several measurement columns (i.e., “fat” or “wide”) into a “skinny”
or “long” data frame which has one row for every observed (measured) value. The gather()

function takes multiple columns that all have the same measurement type, and collapses them into
key-value pairs, duplicating all other columns as needed.

Let’s start with a “fat” data frame that contains data about mouse weights.

set.seed(1)

mouse_sim_weights <- data.frame(

time = seq(as.Date("2017/1/1"), by = "month", length.out = 12),

Mickey = rnorm(12, 20, 1), Minnie = rnorm(12, 20, 2),

Mighty = rnorm(12, 20, 4)

)

head(mouse_sim_weights)
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## time Mickey Minnie Mighty

## 1 2017-01-01 19.37355 18.75752 22.47930

## 2 2017-02-01 20.18364 15.57060 19.77549

## 3 2017-03-01 19.16437 22.24986 19.37682

## 4 2017-04-01 21.59528 19.91013 14.11699

## 5 2017-05-01 20.32951 19.96762 18.08740

## 6 2017-06-01 19.17953 21.88767 21.67177

This dataset consists of only one type of measurement – mouse weights – where each column in this
dataset represents the weights of a given mouse over a year. The columns ‘Mickey’, ‘Minnie’ and
‘Mighty’ are the names of each mouse, and each of the three columns contain weight data for that
respective mouse. This is a format that many spreadsheets will share. The tidy version of this data,
however, would have all the weight measurements in one column (the “values”) and another column
detailing which mouse (or column) that measurement came from (the “keys”). This reformatting
can be achieved via the gather() function.

library(tidyr)

mouse_weights <- gather(data = mouse_sim_weights, # data frame to be manipulated

key = mouse, # name of the future column storing the mouse names

value = weight, # name of the future column storing the weight measurements

Mickey, Minnie, Mighty) # all the columns that contain the values

head(mouse_weights)

## time mouse weight

## 1 2017-01-01 Mickey 19.37355

## 2 2017-02-01 Mickey 20.18364

## 3 2017-03-01 Mickey 19.16437

## 4 2017-04-01 Mickey 21.59528

## 5 2017-05-01 Mickey 20.32951

## 6 2017-06-01 Mickey 19.17953

# this is equivalent

mouse_weights <- gather(data = mouse_sim_weights,

key = mouse,

value = weight,

Mickey:Mighty) # only works if the columns are consecutive, of course

After gathering our data, each variable forms a column. Our three variables are time, mouse, and
weight. Each row is now an observation. Before tidying our data, each row represented three
observations. Note that the arguments to the key and value options become the names of the new
columns. Now that the data have been tidied, it is trivial to use as input to ggplot.

p1 <- ggplot(mouse_weights, aes(x = mouse, y = weight)) +

geom_boxplot(aes(fill = mouse))

p2 <- ggplot(mouse_weights, aes(x = time, y = weight)) +

geom_boxplot(aes(group = time))

p3 <- ggplot(mouse_weights, aes(x = time, y = weight)) +

geom_boxplot(aes(group = time)) + geom_point(aes(color = mouse))

p4 <- ggplot(mouse_weights, aes(x = time, y = weight)) +

geom_point(aes(color = mouse)) + geom_line(aes(group = mouse, color = mouse))

© Copyright 2020 Weill Cornell Medicine page 22



Introduction to R

(p1 | p2) / (p3 | p4)

14

16

18

20

22

24

26

Mickey Mighty Minnie
mouse

w
ei

gh
t

mouse

Mickey

Mighty

Minnie

14

16

18

20

22

24

26

Jan 2017 Apr 2017 Jul 2017 Oct 2017
time

w
ei

gh
t

14

16

18

20

22

24

26

Jan 2017 Apr 2017 Jul 2017 Oct 2017
time

w
ei

gh
t

mouse

Mickey

Mighty

Minnie

14

16

18

20

22

24

26

Jan 2017 Apr 2017 Jul 2017 Oct 2017
time

w
ei

gh
t

mouse

Mickey

Mighty

Minnie

5.2 Going wide

The complement of the gather() function is the spread() function. We can reshape our mouse
weights to their original format, or reshape our ablation dataset into a dataframe where there is
one row per time point and one column per CellType. For the ablation dataset, note that all of
the experimentally measured values in new data frame will come from the original Score column
(indicated by the value option).

spread(data = mouse_weights, key = mouse, value = weight)

spread(ablation, key = CellType, value = Score)

It is also possible to have columns that are combinations of identifiers, but you will need to include
an extra step of manually combining those columns first. Say we wanted a wide table where
each of the measurement columns showed the value for a specific combination of Experiment and
CellType. We would use another function from the tidyr package, unite() , col is the name of
the new column, and we need to supply the columns to paste together. Here, ExptCell is the new
column that we are defining, as a combination of Experiment and CellType, where the names of
the identifiers will be separated by a period.

library(magrittr)

abl_united <- unite(ablation, col = ExptCell,

Experiment, CellType, sep = ".")

head(abl_united)

## Measurement ExptCell Direction Time Score

## 1 LDLR-ABLATION E1909.WT ABL 0 2.82

## 2 LDLR-ABLATION E1909.WT ABL 5 11.37

## 3 LDLR-ABLATION E1909.WT ABL 10 9.03

## 4 LDLR-ABLATION E1909.WT ABL 20 28.27

## 5 LDLR-ABLATION E1909.WT ABL 30 42.86

## 6 LDLR-ABLATION E1909.A-KD ABL 0 6.99

spread(abl_united, ExptCell, Score) %>% head

## Measurement Direction Time E1909.A-KD E1909.WT E1915.A-KD E1915.WT

## 1 LDLR-ABLATION ABL 0 6.99 2.82 35.01 11.75

## 2 LDLR-ABLATION ABL 5 22.01 11.37 32.56 11.17

## 3 LDLR-ABLATION ABL 10 48.13 9.03 48.79 34.77

## 4 LDLR-ABLATION ABL 20 64.67 28.27 57.20 30.97
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## 5 LDLR-ABLATION ABL 30 63.54 42.86 53.63 34.15

## 6 TfR-ABLATION ABL 0 26.06 0.56 57.22 20.32

## E1921.A-KD E1921.WT

## 1 35.87 6.63

## 2 39.21 17.79

## 3 43.77 19.05

## 4 55.66 42.41

## 5 48.33 35.12

## 6 25.45 0.32

Finally, the opposite of the unite() function is separate() .

head(separate(abl_united, ExptCell, c("Expt", "Cell"), sep = "\\."))

## Measurement Expt Cell Direction Time Score

## 1 LDLR-ABLATION E1909 WT ABL 0 2.82

## 2 LDLR-ABLATION E1909 WT ABL 5 11.37

## 3 LDLR-ABLATION E1909 WT ABL 10 9.03

## 4 LDLR-ABLATION E1909 WT ABL 20 28.27

## 5 LDLR-ABLATION E1909 WT ABL 30 42.86

## 6 LDLR-ABLATION E1909 A-KD ABL 0 6.99

Note that here, if the separator is a character string, it is interpreted as a regular expression, so we
have to escape out the period character. The separate() function can be used to split any single
column which captures multiple variables.

6 Repeated operations and functions

If you want to perform the same operation multiple times, you would typically turn to a for-loop
(remember the scripting exercises for downloading numerous FASTQ files etc.)

For-loops in R have the following syntax:

for (value in sequence){
statement

}

Consider this simple for-loop:

j <- 1

for (i in 1:10) {
j[i] = i+10

}

This is a fairly slow operation because through each round of the for-loop, j[i] needs to be
allocated, i.e. its size has to be evaluated and an appropriate place in memory must be found – all
of this takes time (and remember that R does a lot of interpretation for you!)

You could avoid some of this by calculating how big j needs to be to hold all entries.
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j <- rep(NA, 10) # define a vector of length 10 before the loop

for (i in 1:10) {
j[i] = i+10

}

This is a bit better because every j[i] already exists in memory. However, notice how the variable
for counting (i) is part of your workspace now.

ls()

## [1] "abl_united" "ablation" "colors"

## [4] "cutoff" "has.diabetes" "i"

## [7] "indices" "j" "moms.age"

## [10] "mouse_sim_weights" "mouse_weights" "NY.socialite.iq"

## [13] "p" "p1" "p2"

## [16] "p3" "p4" "patient.name"

## [19] "seed_value" "state.area" "state.centers"

## [22] "state.df" "testmat" "us.area"

## [25] "us.pop.density" "us.population" "x"

Apply family To help you with both the clever memory allocation and to avoid the cluttering
of your workspace, R has a couple of in-built functions of the “apply” family. The different apply
functions differ in the type of input and output, but all of them enable you to apply a user-defined
function to all elements in an object4.

The generally accepted reasons for using these functions rather than for-loops are:

4For more details on these functions, see, for example, the data camp tutorial: https://www.datacamp.com/

community/tutorials/r-tutorial-apply-family.
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• They require less code to write.

• They do not need an iteration counter.

• They do not store intermediate results.

library(magrittr)

# The basic function is lapply, which returns a list

lapply(1:10, function(z) z + 10) %>% unlist

## [1] 11 12 13 14 15 16 17 18 19 20

Under the hood, lapply still uses a for-loop on each element of our vector defined by 1:10, but
notice how z is not stored in our workspace.

ls()

## [1] "abl_united" "ablation" "colors"

## [4] "cutoff" "has.diabetes" "i"

## [7] "indices" "j" "moms.age"

## [10] "mouse_sim_weights" "mouse_weights" "NY.socialite.iq"

## [13] "p" "p1" "p2"

## [16] "p3" "p4" "patient.name"

## [19] "seed_value" "state.area" "state.centers"

## [22] "state.df" "testmat" "us.area"

## [25] "us.pop.density" "us.population" "x"

Vectorization However, if you find yourself writing a for-loop (even in the disguise of an apply
function), you should ask yourself whether there is a way for you to make use of the fact that R
is most efficient when performing vectorized computations where you supply all of the elements of
a vector simultaneously, rather than as sequential, individual components. Our for-loop can easily
be solved like this in R:

1:10 + 10

## [1] 11 12 13 14 15 16 17 18 19 20

As you can see, R computet the sum of 10 and each of the vector elements defined by 1:10 without
us explicitly stating that it should do the addition for every individual element. The same principle
underlies many other seemingy trivial functions such as sum() , log , mean etc. (see Section 3.1

for more examples). All of these accept entire vectors as input, which is typically the fastest way
to compute anything in R5. The shorter your R code, the faster it usually is! (This is not the case
in all other languages.)

Remember that matrices are treated as vectors, too!

testmat <- matrix(c(1:10), nrow = 5)

sum(testmat) == sum(1:10)

## [1] TRUE

5Under the hood, there’s still plenty of for-looping because that is how computers work. But those loops are often
implemented in a more efficient language, such as C or Fortran.

© Copyright 2020 Weill Cornell Medicine page 26



Introduction to R

length(testmat)

## [1] 10

In addition, there are vectorized functions that will work on individual dimensions of the matrix:
rowSums , colSums , rowMeans , colMeans . The genefilter package has even more imple-
mented: rowSds , colSds , rowVars , colVars , rowttests , rowFtests .

# example: there will be as many sums as there are rows in testmat

rowSums(testmat)

## [1] 7 9 11 13 15

6.1 Functions

Functions can take different forms in R. The most common type will encompass a function name
and some variables/parameters such as mean()6. In addition, it is often helpful that users define
their own functions once they have arrived at a workflow for their data analyses that they are
satisfied with.

Following the description by https://www.tutorialspoint.com/r/r_functions.htm, the general
make-up of a function is as follows:� �
1 function_name <- function(arg_1 , arg_2 , ...) {

2 Function body

3 }� �
with:

• Function Name – This is the actual name of the function (here: function name).

• Arguments – An argument is a placeholder. When a function is invoked, you pass a value
to the argument. Arguments are optional; that is, a function may contain no arguments.
Arguments can also have default values.

• Function Body - The body of the function can be arbitrarily long and complex (preferably:
short and simple). It simply contains a collection of statements and operations that define
what the function does. Within the body of a function, all of the input arguments become
variables that you can use, including passing them to other functions.

• Return Value - The return value of a function is the last expression in the function body to
be evaluated. It is good practice to explicitly use the return() function to specify the output
though.

mySummary <- function(x) {
my.mean <- mean(x) # making use of other functions

my.sd <- sd(x)

out <- list(mean = my.mean, sd = my.sd)

return(out)

}

6For an overview of all functions of the base R installation, see library(help = "base")).

© Copyright 2020 Weill Cornell Medicine page 27

https://www.tutorialspoint.com/r/r_functions.htm


Introduction to R

# after sourcing the code that defines the function it will become part of your

# workspace

mySummary(x = c(1:100))

## $mean

## [1] 50.5

##

## $sd

## [1] 29.01149

Here, our function, called mySummary, takes a single argument called x. This function assumes that
x is a numeric vector, and computes the mean and standard deviation of that vector. The function
returns a list with two tagged components. The code executed by our function is enclosed in curly
braces .

# functions with multiple arguments and default value

raiseNumber <- function(x, power = 1) {
x ^ power

}

raiseNumber(x = 10)

## [1] 10

raiseNumber(x = 10, power = 3)

## [1] 1000

6.1.1 Documenting functions

Our examples so far have been fairly simply, but functions can become quite complex fairly quickly.
It is therefore useful to get into the habit of documenting your functions, i.e. to keep track of why
you wrote a function at a given point in time and what the details of its arguments are.

The roxygen2 package has dramatically reduced your ability to find excuses not to document
functions as it provides a clear, stringent and powerful framework for keeping documentation to-
gether with the actual function in R scripts. Here is an example of a function annotated with
roxygen2-style comments.� �
1 #' A Cat Function

2 #'
3 #' This function allows you to express your love of cats.

4 #'
5 #' This function uses a sophisticated algorithm to determine what type

6 #' of person you are. The function was initially developed by Hilary

7 #' Parker and slightly modified here.

8 #'
9 #' @param love Boolean. Indicate whether you love cats. Default: TRUE

10 #' @param nlove Integer. Indicate how much you love cats. Default: 10

11 #'
12 #' @return Prints a statment.
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13 #'
14 #' @keywords cats

15 #' @examples

16 #' cat_function(love = FALSE)

17 #' @export

18 cat_function <- function(love=TRUE , nlove = 10){

19 if(love==TRUE & !hate){

20 print(paste("I love cats! They are", nlove , "times better than

dogs."))

21 }

22 else {

23 print("Something is wrong with me.")

24 }

25 }� �
From Hadley Wickham’s R package book:

Roxygen comments start with a hash symbol followed by a single quote. They come
before a function. All the roxygen lines preceding a function are called a block. Each
line should be wrapped in the same way as your code, normally at 80 characters.

Blocks are broken up into tags, which look like @tagName details. The content of a tag
extends from the end of the tag name to the start of the next tag (or the end of the
block).

At the bare minimum, you should strive to add at least the first block covering the first line (=
title) and a brief description. Briefly noting what each argument for the function does by adding
one tag @param per argument is also highly recommended as well as @return to describe what type
of output the user should obtain from the function.

As you can see above, there are numerous tags available to describe almost all aspects of a user-
defined object (such as a function).

6.2 Infix operators

Infix operators are short operators for data manipulation, transformation and customization that
are, at their core, also functions. You have already made use of several infix operators, such as� �
1 $, [ ], [[ ]], +, -,<-� �
Operators for logical assessments are also shipped with base R:� �
1 & # and

2 | # or

3 ! # not

4 == # equal� �
Another very useful infix operator is %in%, which matches values:

## compare this

"a" %in% c("a","b","d","a")

## [1] TRUE
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## to this

"a" == c("a","b","d","a")

## [1] TRUE FALSE FALSE TRUE

For a more complete list of infix operators and their explanation see http://applied-r.com/data-
infix-operators-in-r/.

7 Creating your own package

At the minimum, a package bundles together code and documentation, which allows others (in-
cluding your future self) to easily re-use your code. You might also add (smallish) data and test
functions into a package. Even if you do not plan on sharing your code with anyone else, I have to
agree with Karl Broman who insists that “assembling a few R fucntion with a package will make
it way easier for you to use them regularly.”

Since R is a highly interactive language, you will usually not immediately start writing a new
package once you begin a new type of analysis, but it is good practice to write your functions
in a way that will allow to quickly turn them into a package once you find yourself using them
repeatedly (see Section 6). All you have to do is to:

• describe each paramater that your function has following the documentation guidelines (see
Section 6.1.1)

• avoid giving non-unique names to your functions and objects; try to be reasonably explicit
and absolutely avoid overwriting in-built variables such as t or c within your functions

The devtools package along with the roxygen2 package have made the creation of an R package
fairly simple. All you have to type is:

devtools::create("gReat")

RStudio goes even further as you can initiate a package via ”File” ⇒ “New project”.

Each R package should have the following components:

• a folder named R/ : this will contain the scripts with your functions, e.g. PlottingFunctions.R,
WranglingFunctions.R

• a folder named man/ : this is where the documentation for all of your functions will be kept;
each function will have its own .Rd file, which contains all the info that users will get when
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invoking the generic help() function. Thanks to roxygen2 you won’t have to ever generate
the files stored here on your own, but the folder has to be there.

• a simple text file named DESCRIPTION : describes the dependencies and general information
about your package

• a simple text file named NAMESPACE : manages the functions that your package depends on;
devtools and roxygen2 will again make sure that this is taken care of without you having
to manipulate this file manually

Additional folders can contain optional components, such as:

• R objects that contain data that will be available after the package installation (kept in
data/ as .rda files, with documentation kept in the R/ folder; see http://r-pkgs.had.co.

nz/data.html for details). The data stored this way will be available just like its functions –
we made use of numerous data sets provided by the base R packages throughout this tutorial
(e.g. state.name).

• external data (e.g. .txt or .csv files) that can be imported into R via the usual base R
functions such as read.table() is kept in inst/ext data/

• additional documentation in the form of short tutorials written in .Rmd and kept in vignettes/

• if you plan to include functions that are written in other languages than R, you can store the
compiled code in source/

The DESCRIPTION file provides basic informations about the package (see http://cran.r-project.
org/doc/manuals/R-exts.html#The-DESCRIPTION-file) and has in general the following struc-
ture:� �
1 Package: gReat

2 Type: Package

3 Title: Functions For Great Analyses.

4 Version: 0.1

5 Date: 2020 -02 -02

6 Author: Helmut Kohl

7 Maintainer: person("Angela", "Merkel", email = "am@example.de",

8 role = c("aut", "cre"))

9 Description: This packages helps with the analysis of my data.

10 It has fantastic functions. Really , the best. They implement

11 cool algorithms and enable amazing workflows.

12 License: Artistic -2.0

13 LazyLoad: yes # load data from the package when used; see http ://r-pkgs

.had.co.nz/data.html#data

14 Depends: # Packages that must be present to install this package.

15 R (>= 3.1.0) # you can also specify versions

16 Imports:

17 packageA

18 packageB

19 packageC

20 Suggests: # packages that are not required to make your package work

21 packageE� �
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If the package is going to be submitted to Bioconductor, the additional field biocViews must in-
cludes keywords from the Bioconductor biocViews categories list (http://wiki.fhcrc.org/bioc/
biocViews_categories).

Difference between Depends and Imports fields: All the packages listed under Depends will
have to be installed. In addition, all their functions will be loaded into the interpreter’s session en-
vironment. This can cause clashes if different packages have functions of the same name. The safer
option is to list the needed packages in the Imports field, which will not directly attach the func-
tions of those packages, but link them to a package namespace (think myPackage::myFunction()

style).

7.1 The different states of a package

While you are developing the package, it is helpful to frequently load the functions you’ve completed
into your workspace to test them out. This can be done via

devtools::load_all()

Once you’re satisfied with the state of your package, it is time to build it, i.e. to bundle all the
components up into a tar archive that can be submitted to the common repositories such as CRAN
or BioC or that can just be shared with your collaborators.

# triad for package building

devtools::load_all()

devtools::document() # this poulates the NAMESPACE file and man/ folder

devtools::build()

The resulting tar.gz file can then be installed via

install.packages("gReat.tar.gz", repos = NULL)

The devtools cheat sheet contains an excellent schema to illustrate the different states a package
can live in and how the devtools function help with that.

The contents of a package can be stored on disk as a: 
• source - a directory with sub-directories (as above) 
• bundle - a single compressed file (.tar.gz) 
• binary - a single compressed file optimized for a specific 

OS 

Or installed into an R library (loaded into memory during an 
R session) or archived online in a repository. Use the 
functions below to move between these states. 

install.packages() CRAN ○
install.packages(type = "source") CRAN ○

○ ○
R CMD install ○ ○

○ ○
devtools::install() ○
devtools::build() ○ ○
devtools::install_github() github ○
devtools::load_all() ○ ○
Build & Reload (RStudio) ○ ○ ○
library() ○ ○
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Package Development 
with devtools Cheat Sheet 

Package Structure
A package is a convention for organizing files into 
directories.  

This sheet shows how to work with the 7 most common 
parts of an R package:

Setup ( "  DESCRIPTION)
The  " DESCRIPTION file describes your work and sets 
up how your package will work with other packages.

# Package 
"  DESCRIPTION 
$  R/ 
$  tests/ 
$  man/ 
$  vignettes/ 
$  data/ 
"  NAMESPACE 

You must have a DESCRIPTION file 

Add the packages that yours relies on with 
devtools::use_package() 

Adds a package to the Imports field (or Suggests 
field (if second argument is "Suggests").

%
%

Setup
Write code

Test
Document

Teach
Add data
Organize

devtools::add_build_ignore("file") 
Adds file to .Rbuildignore, a list of files that will not be included 
when package is built.

%

Setup ( "  DESCRIPTION)
The  " DESCRIPTION file describes your work and sets 
up how your package will work with other packages.

You must have a DESCRIPTION file 

Add the packages that yours relies on with 
devtools::use_package() 

Adds a package to the Imports file (default) or 
Suggests field (if second argument is "Suggests").

Package: mypackage 
Title: Title of Package 
Version: 0.1.0 
Authors@R: person("Hadley", "Wickham", email =  
    "hadley@me.com", role = c("aut", "cre", "cst")) 
Description: What the package does (one paragraph) 
Depends: R (>= 3.1.0) 
License: GPL-2 
LazyData: true 
Imports:  
    dplyr (>= 0.4.0), 
    ggvis (>= 0.2) 
Suggests: 
    knitr (>= 0.1.0)

Import packages that your package 
must have to work. R will install 
them when it installs your package.

Suggest packages that re not really 
essential to yours. Users can install 
them manually, or not, as they like.

Imports Suggests

%

Package: mypackage 
Title: Title of Package 
Version: 0.1.0 
Authors@R: person("Hadley", "Wickham", email =  
    "hadley@me.com", role = c("aut", "cre")) 
Description: What the package does (one paragraph) 
Depends: R (>= 3.1.0) 
License: GPL-2 
LazyData: true 
Imports:  
    dplyr (>= 0.4.0), 
    ggvis (>= 0.2) 
Suggests: 
    knitr (>= 0.1.0)

MIT license applies to 
your code if re-shared.

MIT

Visit r-pkgs.had.co.nz for more

%

Use $ tests/ to store unit tests that will inform you if 
your code ever breaks.

Test ( $  tests/)

Add a tests/ directory and import testthat with  
devtools::use_testthat() 

Sets up package to use automated tests with 
testthat 

Write tests with context(), test(), and expectations 

Save your tests as .R files in tests/testthat/ 

1. Modify your code or tests. 

2. Test your code with one of  

devtools::test() 
Runs all tests saved in 
$ tests/.  

Ctrl/Cmd + Shift + T  
(keyboard shortcut) 

3. Repeat until all tests pass

Workflow

%
%

expect_equal() is equal within small numerical tolerance?
expect_identical() is exactly equal?
expect_match() matches specified string or regular expression?
expect_output() prints specified output?
expect_message() displays specified message?
expect_warning() displays specified warning?
expect_error() throws specified error?
expect_is() output inherits from certain class?
expect_false() returns FALSE?
expect_true() returns TRUE?

context("Arithmetic") 

test_that("Math works", { 
  expect_equal(1 + 1, 2) 
  expect_equal(1 + 2, 3) 
  expect_equal(1 + 3, 4) 
})

Example test

Learn more at http://r-pkgs.had.co.nz •  devtools  1.6.1 •  Updated: 1/15

Write code ( $  R/)
All of the R code in your package goes in $ R/. A package 
with just an R/ directory is still a very useful package.

Create a new package project with 

devtools::create("path/to/name") 
Create a template to develop into a package. 

Save your code in $ R/ as scripts (extension .R)

1. Edit your code. 
2. Load your code with one of  

devtools::load_all() 
Re-loads all saved files in $ R/ into memory.  

Ctrl/Cmd + Shift + L (keyboard shortcut) 
Saves all open files then calls load_all(). 

3. Experiment in the console. 
4. Repeat.

%

%
Workflow

• Use consistent style with r-pkgs.had.co.nz/r.html#style 
• Click on a function and press F2 to open its definition 
• Search for a function with Ctrl + .

RStudio® is a trademark of RStudio, Inc.  •  All rights reserved
info@rstudio.com  •  844-448-1212 • rstudio.com 

Suggest packages that are not very 
essential to yours. Users can install 
them manually, or not, as they like.

Import packages that your package 
must have to work. R will install 
them when it installs your package.

GPL-2 license applies to your 
code, and all code anyone 
bundles with it, if re-shared.

GPL-2
No strings attached.

CC0

RStudio® is a trademark of RStudio, Inc.  • CC BY RStudio •  info@rstudio.com  •  844-448-1212 • rstudio.com Learn more at http://r-pkgs.had.co.nz •  devtools  1.6.1 •  Updated: 1/15
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Packages

• devtools

• ggplot2

• magrittr

• roxygen2

Also recommended: data.table, packages of the tidyverse
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