Illumina's sequencing by synthesis Analysis of Next-Generation Sequencing Data

Friederike Dündar

Applied Bioinformatics Core

Slides at https://bit.ly/2T3sjRg¹

January 21, 2020

Weill Cornell Medicine

¹https://physiology.med.cornell.edu/faculty/skrabanek/lab/angsd/schedule_2020/

F. Dündar (ABC, WCM)

Illumina's sequencing by synthesis

January 21, 2020 1 / 38

- 2 Template preparation
- 3 Sequencing-by-synthesis
- 4 Single and paired-end reads

DNA Sequencing Overview & Recap

Three Generations of DNA Sequencing

- 1st: Sanger sequencing [Sanger et al., 1977]
 - Cost per Mb: USD 2,400
 - Read length: 800 bp
 - Run time: 3 hrs
- 2nd: Next-generation or high-throughput sequencing [Illumina]
 - Cost per Mb: (less than) USD 0.07
 - Read length: 50-150 bp
 - Run time: 10 days
- 3rd: Single-molecule and/or long-read sequencing [PacBio]
 - Cost per Mb: USD 0.13-0.6
 - Read length: 1.4 kb
 - Run time: 0.5-2h

Ease-of-use and through-put have been dramatically increased at the cost of (some) accuracy.

Three Generations of DNA Sequencing

Details of first, second, and third generation sequencing technologies with respect to their cost per megabase, instrument cost, read length, and accuracy

Platform	Company	Cost per megabase (USD)	Cost per instrument (USD)	Read-length (bp)	Run time	Throughput	Raw accuracy
<i>First generation</i> Maxam-Gilbert Sanger	NA Applied Biosystems	_ 2400	_ 95,000	800	2h 3h	Low Low	- 99.9999%
Second generation							
GS FLX	454 Life Sciences, Roche	~60.0	500,000	700	24 h	High	99.9%
SOLiD	Life Technologies	~0.13	495,000	35	8–14 davs	Very high	99.94%
Genome Analyzer	Solexa, Illumina	~0.07	690,000	36	10 days	Very high	>98.5%
Polonator	Dover	~1.00	155,000	13	8–10 days	High	99.7%
HeliScope	Helicos Biosciences	~1.00	1,350,000	30	7 days	High	>99%
<i>Third generation</i> Ion Torrent	DNA Electronics Ltd.	1.00	80,000	200-400	3 h	Moderate	99.2%
CGA Pacific Bio RS	BGI Pacific biosciences	~0.5-1.00	1200,000	10 1400	6 h 0.5–2 h	Very high Moderate	99.99 % 88.0%
Oxford Nanopore	Oxford technologies	Not yet calculated	750,000	Up to 4Tb	Upto 48h	Very high	99.99%

Table from Keith [2017]

F. Dündar (ABC, WCM)

Illumina's sequencing by synthesis

NGS = IIIumina-based sequencing

In practice, **Illumina's** sequencing platform is by far the most dominant one thanks to its high throughput, constant improvements, and library preparation support (kits).

Since acquiring Solexa in 2006, Illumina has been setting the pace in terms of optimizing yield and costs (e.g. Reuter et al. [2015]). By mid-2019, PacBio was expected to belong to Illumina, too – on Jan 2, 2020, Illumina stepped away from the deal with a \$98M termination fee.

Main steps of typical NGS experiments

TEMPLATE PREP

Obtaining the molecules of interest: DNA, RNA, nucleotide-protein complexes Library preparation: fragmentation and ligation of sequencing adapters Amplification

SEQUENCING

Sequencing by Synthesis vs. Sequencing by Ligation

short reads vs. long reads

BIOINFORMATICS

Base calling ↓ Alignment Identifying loci of the sequenced fragments ↓ Additional processing ↓ Interpretation

Template preparation

Template preparation

- Nucleic acid extraction
- **2** Library preparation \Rightarrow adapters for sequencing
- 3 Clonal amplification ⇒ making sure the signal is going to be strong enough

Template preparation

1. DNA/RNA extraction

Nucleic acids must be purified out of a mix of all sorts of organic and inorganic molecules.

F. Dündar (ABC, WCM)

Basic steps

Goal: Little or **no degradation** and complete profiling of the **entire length** of each DNA or RNA molecule.

Lysis

• Lysis = release of nucleic acids (NA) from cells/nuclei (= cell & nucleus destruction) using

- salt solutions, detergents, lytic enzymes or
- physical forces: mechanical force, heat, freezing
- different cells (bacteria, plant cells, mammalian tissues...) have very different optimal lysis properties (see Thatcher [2015]!)

Lysis

- Lysis = release of nucleic acids (NA) from cells/nuclei (= cell & nucleus destruction) using
 - salt solutions, detergents, lytic enzymes or
 - physical forces: mechanical force, heat, freezing
- different cells (bacteria, plant cells, mammalian tissues...) have very different optimal lysis properties (see Thatcher [2015]!)

Lysis

- Lysis = release of nucleic acids (NA) from cells/nuclei (= cell & nucleus destruction) using
 - salt solutions, detergents, lytic enzymes or
 - physical forces: mechanical force, heat, freezing
- different cells (bacteria, plant cells, mammalian tissues...) have very different optimal lysis properties (see Thatcher [2015]!)

Lysis

- Lysis = release of nucleic acids (NA) from cells/nuclei (= cell & nucleus destruction) using
 - salt solutions, detergents, lytic enzymes or
 - physical forces: mechanical force, heat, freezing
- different cells (bacteria, plant cells, mammalian tissues...) have very different optimal lysis properties (see Thatcher [2015]!)

Separate NA: Liquid-liquid extraction (Phenol-Chloroform)

http://slideplayer.com/slide/10173005/34/images/28/Genomic+DNA+prep:+removing+proteins+and+RNA.jpg

Separate NA: Solid-phase DNA extraction

- liquid-liquid extraction relies on toxic chemicals and is difficult to automate/standardize
- solid phase extraction is based on silica molecules (e.g. within a column or as magnetic silica-based beads) that will bind the nucleic acids in the presence of a chaotropic buffer ^a
- non-DNA components are washed away, before releasing the DNA from the solid adsorber

 $\ensuremath{^a\!A}$ chaotrope is an ion that disrupts hydrogen bonding, leading to higher protein solubility in water.

F. Dündar (ABC, WCM)

2. Library preparation: getting the NA molecules ready for the sequencer

https://www.agilent.com/cs/library/eseminars/public/Next%20Generation%20Sequencing%20101.pdf

2. Library preparation

TruSeq Library Prep Protocol

Nextera Library Prep Protocol

Different library preparations may yield different distributions of PCR fragment sizes – should be suited to the question at hand

What to consider before choosing a library preparation

Sample type

- High quality DNA? Easy to extract?
- How much?
- Experiment goal
 - RNA-seq, ChIP-seq, variant identification, ...?
- ③ Beware of excess PCR cycles!

Library preps all come with their own advantages and disadvantages! Know what to look for during and talk to other people (in your lab, the sequencing facility, online...)!

Loading the library onto the **flowcell**

Following library prep, the DNA fragments are floated over the flowcell, which is essentially a glass side full of oligonucleotides that are complementary to the adapters of the library, thereby leading to the physical attachment of the DNA fragments.

- 8 microfluidic channels (= "lanes")
- within the channels, the sequencing reaction will happen

3. Clonal amplification = cluster generation

Flowcell

To generate strong signals during sequencing, every fragment is "cloned", yielding physically separate clusters of DNA fragments with identical sequences.

Ideally, the fragments represent the full genome.

Clusters

3. Clonal amplification = cluster generation via PCR

bridge amplification

denaturation

cluster generation removal of complementary strands → identical fragment copies remain

Sequencing-by-synthesis

Decoding the DNA: DNA polymerase

- cannot start DNA synthesis from scratch, always needs **primers**
- relies on the presence of a template strand, which is complemented

Identifying the order of the nucleotides for every fragment

Illumina's sequencing is based on **fluorophore-labelled dNTPs** with **reversible** terminator elements that will become incorporated and excited by a laser one at a time.

The number of cycles determines the read length

50-150 cycle repetitions = 50-150 bp read length

The actual raw data of Illumina sequencing are **images**, but nowadays Illumina will return the **base calls**, i.e. text files of As, Cs, Ts, Gs.

F. Dündar (ABC, WCM)

The number of flowcell lanes determines the sequencing depth

Every read represents one cluster on the flowcell.

- every cluster = one DNA fragment
- $\bullet\,$ the more clusters one sequences, the more information (= reads) one gets

Machine	Yield per lane
HiSeq4000	400 mio reads
NovaSeq	800-2500 mio reads

Application	Recommended seq. depth
differential gene expression variant calling	20 - 50 mio SR, 75 bp 30-200x coverage
whole-genome bisulfite sequencing	30x coverage

F. Dündar (ABC, WCM)

Single and paired-end reads

Types of reads

Single reads are the cheaper. Paired-end (PE) reads are helpful for:

- alignment along repetitive regions
- chromosomal rearrangements and gene fusion detection
- de novo genome and transcriptome assembly
- precise information about the size of the original fragment (**insert size**)
- PCR duplicate identification

References

See the website

https://bit.ly/2T3sjRg

Clinical Chemistry 61:1 89-99 (2015) Reviews

DNA/RNA Preparation for Molecular Detection

Stephanie A. Thatcher^{1*}

SURVEY AND SUMMARY

Capturing the 'ome': the expanding molecular toolbox for RNA and DNA library construction

Morgane Boone^{1,2,*}, Andries De Koker^{1,2} and Nico Callewaert^{1,2,*}

¹Center for Medical Biotechnology, VIB, Zwijnaarde 9052, Belgium and ²Department of Biochemistry and Microbiology, Ghent University, Ghent 9000, Belgium

Received November 05, 2017; Revised February 05, 2018; Editorial Decision February 22, 2018; Accepted February 23, 2018

References

Figure taken from the following publications: Levy and Myers [2016]

- Illumina Inc. Patterned Flow Cell Technology. In *Technical Spotlight:* Sequencing, pages 1–2. 2015. URL
 - https://www.illumina.com/content/dam/illumina-
 - marketing/documents/products/technotes/patterned-flow-cell-technology-technical-note-770-2015-010.pdf.
- Jonathan M. Keith, editor. *Bioinformatics: Volume I: Data, Sequence Analysis, and Evolution*, volume 1525. Humana Press, methods in molecular biology edition, 2017.
- Shawn E. Levy and Richard M. Myers. Advancements in Next-Generation Sequencing. *Annual Review of Genomics and Human Genetics*, 2016. doi: 10.1146/annurev-genom-083115-022413.
- Jason A. Reuter, Damek V. Spacek, and Michael P. Snyder. High-Throughput Sequencing Technologies. *Molecular Cell*, 58(4): 586–597, May 2015. doi: 10.1016/j.molcel.2015.05.004.
- F. Sanger, S. Nicklen, and A. R. Coulson. DNA sequencing with chain-terminating inhibitors. *Proceedings of the National Academy of Sciences*, 74(12), 1977. doi: 10.1073/pnas.74.12.5463.

Stephanie A. Thatcher. DNA/RNA preparation for molecular detection. *Clinical Chemistry*, 2015. doi: 10.1373/clinchem.2014.221374.