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Why does sequencing data need bioinformatics?

Evolution of sequencing data

The Human Genome Project
(1990-2003) ushered in the
era of "next"-generation

sequencing.
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Why does sequencing data need bioinformatics?

Evolution of sequencing data: NGS

NGS = “next generation sequencing”
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Why does sequencing data need bioinformatics?

ANGSD relies on bioinformatics
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What do we sequence?

What do we sequence?
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What do we sequence?

An essential macromolecule of life: DNA

the "hard drive" of all living
organisms
determines the traits of an
organism
contains the blueprint
information for proteins
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What do we sequence?

Two general types of eukaryotic DNA

genomic (nuclear) DNA
I contained and replicated

within the nucleus
I "linear"
I multiple chromosomes, which

are inherited from both
parents

mitochondrial DNA
I contained and replicated

within mitochondria
I circular
I represents 1 chromosome
I inherited (only!) from the

mother
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What do we sequence?

DNA: Deoxyribonucleic acid

each nucleotide:
1 sugar: 2’-deoxyribose (5

carbon atoms = pentose)
2 phosphate: 1-3 linked

phosphate units attached to
the 5’-carbon of the sugar

3 nitrogeneous base: either a
single-ring pyrimidine
(cytosine, thymine) or a
double-ring purine (adenine,
guanine)

Sequencing = identifying the
order of the bases
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How do we sequence?

How do we sequence?
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How do we sequence?

Next-generation sequencing

refers to highly parallelized sequencing of millions of DNA
fragments at the same time (in contrast to the traditional
one-region-at-a-time approach)
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How do we sequence?

Decoding the DNA

DNA sequencing mostly relies on enzymes that are DNA “readers”:
DNA Polymerase: synthesizes a new strand of DNA

I sequencing by synthesis platforms: Solexa/Illumina, Ion Torrent
DNA Ligase: joins the “sticky” ends of two strands of DNA together

I sequencing by ligation NGS platforms: SOLiD, Complete Genomics
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How do we sequence?

Next-generation sequencing platforms
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How do we sequence?

Next-generation sequencing platforms

Unifying characteristics of the different NGS platforms:

short fragments (250-1000 bp) are assessed via short reads
(50-250 bp)
require clonal amplification of every single DNA fragment
markedly higher error rates than Sanger sequencing of the
1980s-1990s (0.1–15%)

See Goodwin et al. [2016] for detailed descriptions of NGS platforms.

F. Dündar (ABC, WCM) Intro to High-Throughput DNA Sequencing January 14, 2020 16 / 50



Why do we sequence?

Why do we sequence?
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Why do we sequence?

Why do we sequence?

. . . to identify individuals
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Why do we sequence?

Why do we sequence?

. . . to understand the molecular basis of different cellular
phenotypes
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Why do we sequence?

Central dogma:
the genetic code

serves as a manual for
building different

proteins.
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Why do we sequence?

Understanding the genetic code and its interpretation

Both RNA and DNA molecules can be assessed
through sequencing in a high-throughput manner.

F. Dündar (ABC, WCM) Intro to High-Throughput DNA Sequencing January 14, 2020 21 / 50



Why do we sequence?

Understanding the genetic code and its interpretation
NGS can be used for (A) qualitative as well as (B) quantitative approaches.

\
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Why do we sequence?

Understanding DNA: it’s not just about the letters
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Why do we sequence?

Understanding DNA: it’s not just about the letters
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Why do we sequence?

Understanding RNA
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Why do we sequence?

Applications of NGS: RNA-seq is the most common one
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Why do we sequence?

Main steps of typical NGS experiments

TEMPLATE
PREP

Obtaining the
molecules of
interest:

DNA, RNA,
nucleotide-protein

complexes
⇓

Library
preparation:

fragmentation and
ligation of

sequencing adapters
⇓

Amplification

SEQUENCING

Sequencing by
Synthesis

vs.
Sequencing by

Ligation

short reads vs. long
reads

BIOINFORMATICS

Base calling
⇓

Alignment
Identifying loci of

the sequenced
fragments

⇓
Additional
processing

⇓
Interpretation
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Experimental design

Experimental design
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Experimental design

Where to sequence at WCM?

Genomics and Epigenomics Sequencing Services
highly experienced staff
nevertheless: know the issues you need to discuss with them!
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Experimental design

Experimental design considerations

How many replicates?
How to avoid batch effects?
How many reads?
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Experimental design

Why do we need replicates?

replicates are needed to understand the level of noise

Cross-platform replicates sometimes may make sense, too.
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Experimental design

Why do we need replicates?

"Samples are our windows to the population." [Krzywinski and Altman,
2013]

definitely needed for quantitative assessments, e.g. RNA-seq for
determining expression level differences [Schurch et al., 2016]

qualitative approaches (e.g. variant calling) also benefit from technical
replicates [Robasky et al., 2014, Derryberry et al., 2016]
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Experimental design

Experimental design considerations

How many replicates?
How to avoid batch effects?

I Understanding typical sources of noise and artifacts

How many reads?
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Experimental design

General problems for NGS

Problems = sources of technical noise

Sample preparation
DNA/RNA extraction with varying degrees of degradation
contaminations
mislabelling, mishandling
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Experimental design

Biases of Illumina-based DNA sequencing

Somewhat sequencing-machine-specific problems
sequencing errors
miscalled bases

Sample-specific problems: PCR artifacts
duplicated fragments (low library complexity)
GC bias: fragments with moderate GC content are preferably amplified
length bias: fragments between 250-700bp are strongly favored
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Experimental design

The most important biochemical assay for NGS: PCR

For NGS applications, template DNA fragments vary in size and GC content!
Exponential nature of the amplification process ⇒ small differences in the starting

population can lead to strongly skewed final populations.
Always keep the number of PCR cycles to an absolute minimum!
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Experimental design

Biases of Illumina-based DNA sequencing

Bioinformatics problems
DNA: long, repetitive elements are difficult to align to with short reads
(“mappability” issue)

I abundance of (structural) variants may complicate alignments
RNA: great dynamic range (lowly expressed to extremely abundant)

I saturation point is hardly reached: number of distinct transcripts
depends on the overall make-up of the library

I strongly affected by contaminations (DNA, rRNA, . . . )
inappropriate data processing, e.g. wrong parameter choices
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Experimental design

Case study: ENCODE’s comparison of mouse and human
tissues
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Experimental design

Case study: ENCODE’s comparison of mouse and human
tissues
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Experimental design

Suboptimal study design

human data: deceased organ donors
mouse data: 10-week-old littermates

Not all variables can be controlled for! Know the limitations of your study
before making bold claims! Recommended reading:
https://f1000research.com/articles/4-121/v1
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Experimental design

Avoiding bias by relying on randomization

F. Dündar (ABC, WCM) Intro to High-Throughput DNA Sequencing January 14, 2020 41 / 50



Experimental design

Experimental design considerations

How many replicates?
How to avoid batch effects?
How many reads?
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Experimental design

How deep is deep enough?
lower limit should usually be whatever ENCODE says:
https://www.encodeproject.org/about/experiment-guidelines/

Application Recommended seq. depth

differential gene expression 20 - 50 mio SR, 75 bp
variant calling 30-200x coverage
whole-genome bisulfite sequencing 30x coverage
ChIA-PET 200 mio PE

you may need more, longer, and possibly paired-end reads
I novel transcript identification
I alternative splicing
I ChIP-seq for broad histone marks
I 3D chromatin structure assessment assays

Oftentimes the addition of replicates is more meaningful than increased sequencing
depth! [Rapaport et al., 2013]
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Experimental design

Typical experimental setup
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