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Introduction

Most treatments of Hopfield networks (PNAS 1982) as-
sume a weight matrix of the form

Jij X % €70 M

where ¢, represents the strength of the ™ memory and
n* is a vector of Os and 1s. Here we consider the more
realistic case in which the weight matrix has additional
components:

Jij = Wij + ¢ %N,:l%ﬂf(?ﬁ — fu)

where WW;; is a random matrix that corresponds to the
(sparse) connectivity in the absence of stored memories,
c;j 1s 1 if neuron j is connected to neuron : and 0 other-
wise, a fraction f, of the components of n* are equal to
1, and N, neurons participate in the ™ memory.
Randomly connected networks of excitatory and in-
hibitory neurons with no memories (all the ¢, equal to
zero) exhibit, over a broad range of parameters, a sin-
gle stable state at low firing rate. We investigate, using
both mean field analysis and simulations with spiking
model neurons, the conditions for the formation of ad-
ditional fixed points — new memories — as the ¢, grow.
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The problem

It Iswell known that idealized neurons can form
attractor (Hopfield) networks:

+1

-1
2-neuron Hopfield network with fixed points
at (+1,-1) and (-1, +1).

A beautiful model, but ssmplifications have been made:

e Symmetric

e Unitsare+lor -1

 All-all coupling

 Neuronsaresimple: no voltage gated channels...
e Couplingissmple: no synapsesor dendrites...

What about real, spiking, excitatory and
Inhibitory neuronswith synaptic, non-symmetric
coupling and spar se connectivity?




Thelssues

Randomly connected excitatory and inhibitory neurons
(often) have a globally attacting fixed point at low firing rate
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Structured connectivity can embed memories
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Constraints.

1. If nomemoriesareactive, network fires at
background rate. | mportant
2. At most, one memory can be active at atime.

I.  Non-symmetric connectivity.

. . Not so
Il. Sparse connectivity.

Important

Can these constraints be satisfied?



The Prescription

Start with arandomly connected network:
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Analysis

Takethelimit f (fraction of neuronsin a memory) - O.

« Each memory isall-excitatory network;

 Sincef - 0, background firing rateisindependent of
firing rate of memory neurons.

Can use (relatively) standard graphical techniques:

Vmem, out

€ (strength of memory)

V

mem, in
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When strength of memory (i.e., theincreasein connection
strength among some subpopulation of neurons) issmall,
thereisonly one equilibrium and no memory is embedded.

Stable equilibrium at background firing rate.

— Gain functions: output firing rate of memory
neurons as a function of input rate.




Two possibilities as € increases.
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Stable equilibrium.
® Unstableequilibrium.

— Gain functions: outupt firing rate of memory
neurons as a function of input rate.

Good: Memory is
embedded at high
firing rate without
disturbing the
background.

Bad:

1. Fluctuationstypically
destabilize new
background.

2. Threshold islow -- this
Isa problem if you only
want one memory to be
activeat atime.

2a.1t’salso a problem if
you want to avoid

epilepsy ...



Gain curve from ssmulation with 10,000 6-neur ons
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At equilibrium, no positive inflection

For detailssee: Latham et al, " Intrinsic dynamicsin
neuronal networks. I. Theory." Available at

http://culture.neurobio.ucla.edu/~pel/



Output firing rate

Input firing rate

Possible mechanismsfor a positive inflection:

e NMDA receptors,
o Paired-pulsefacilitation.



To enhancethis effect, adjust connectivity so that
the pool of inhibitory neuronsthat isfiring at a
relatively lower rate preferentially connectsto the
memory neurons.
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Simulations

10,000 spiking 6-neurons -- no NM DA channels
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Excitatory firing rate (hz)

10,000 spiking 8-neurons with
pseudo-NM DA receptors \
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For these parameters, network is sensitive to degredation
of input. For amemory to last indefinitely:

> 90% of the memory neurons must be activated
< 15% of non-memory neurons can be activated



Summary

Can embed memoriesif the gain curve (input

firing rate versusoutput firing rate) has a positive
Inflection at the backgound firing rate.

Thiswill require something like NM DA channels or

paired-pulse facilitation, for which the effective
connection strength increases with post-synaptic

voltage.
Thepicture:
No memories At most Two or more Memory (ies)
one memory memories per manently on
at atime at atime
0 e et connection strength, €
Desired regime.

|n our simulations,
thisregime was small

Simulationswith morerealistic neurons are necessary!!



Mean Field Analysis

Equilibrium firing rate equations:
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Sour ces of randomness;

1. W and c -- random connectivity.
2. Non-active memories (see Chapter 10 of Hertz,
Krogh and Palmer).



Define overlaps:

=Ny

Perform suitable averaging, arrive at mean-field
equationswhen 1 neuron is active:

Mean firing

rate (which has
Itsown equilibrium
eguation)

Average isover random connectivity
and non-active memories

Warning: the existence of excitatory neurons
adds considerable algebra, but not much new

conceptually.



Firing-rate-model simulations-- no memories

All excitatory network

— Mean field prediction
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