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Background

C The cortex is high gain, in the sense that

fluctuations in excitatory firing rate would grow
without feedback from inhibitory neurons.
In other words, one excitatory spike causes

excitatory spike somewhere else
in the network.

This makes the cortex prone to instabilities

(e.g., kindling and epilepsy).

How is it that cortical networks are robust to

instabilities?

We address this question in the context of

attractor networks, for which the stability
problem is especially severe. If we can understand
how to build stable attractor networks, we can
gain a general understanding of how to build
stable recurrent networks that do other kinds of
computations.
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Observation:

Claim:

Example:

the cortex is dominated by
recurrent connectivity?

its main purpose is to restrict space of
input/output transformations.

orientation selectivity.
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Another example: attractor aetworks.
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Question:

Why are we even asking this question?

Small amount of kindling leads to seizures.

1 in 200 people have epilepsy.

C Back of the envelope calculation:
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Can we understand how to build biologically
plausible recurrent networks with restricted
input/output transformations?

Because neuronal networks are high gain.

PSP:  0.1 mV

:      50 M

:       10 ms
rate:  1 Hz
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each excitatory
spike causes 25
other spikes!
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High gain networks live on the edge of stability.

Strengthening connections to build a network with

restricted input/output relation in such a high gain
system is a recipe for disaster.
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Our goal:

Understand how to build a network in the high

gain regime that is resistant to instabilities.

As an example, consider attractor networks.

Take into account an additional experimental

constraint: firing rates on attractor must be
relatively low, ~10-20 Hz.
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Toy model with one memory

n  = F n - n + bx(J J )[N  f 1 f(  - )] S x- n( )f

x = { 1 =fprob
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A little algebra

n = F n - n bx

n = F + bx

( )
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J J g( ) + m
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1.  Solve for as a function of :n n

3. equations for the excitatory cells:N

i

n  = F n - n n n( )J J = g( )I I
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2. Replace by g( ) in excitatory equation.

Drop “ ” sub- and super-scripts.

Define:
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Average over :x

n - n - nJ J( ) ( )= F + b + (1- Ff f( ) ( ))m

m m=   F + b -      F( ) ( )- n - nJ J( ) ( )

n - n nJ( )= F ( ) + DF( , )f m

m m= DF( , )n

Or: DF( , )n m

For a memory to exist, this equation
must have two sable solutions
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large , background unstableb

medium , memory and
background stable

b

small , no memoryb

Dynamics:

t   n - n nd /dt ( )J n= F ( ) + DF( , ) -f m

t dm/dt m m= DF( , ) -n
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is independent of

Equations for and decouple

Only have to worry about the -equation
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Bistability (memories) can exist, but ...

there is a firing rate/stability problem.

Sparse coding limit ( 0)f 6
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Equations for and no longer decouple

Have to worry about - and -equations

Therefore, have to consider 2-D equilibrium space

both
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Beyond the sparse coding limit ( > 0)f
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DF( , ) =  F + b -  F( ) ( )n - n - nJ J( ) ( )m m

Because inhibition dominates, which leads to

( ) coupling:J n-

solution to -equationm

Why does drop as increases?DF( , ) nn m
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solution to -equationn
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Potentially robust bistability; memory at low rates:
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For comparison, the sparse coding ( 0) limit:f 6

Analogous to low firing rate background state:
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Quadratic integrate-and-fire.

Synaptic coupling: g( - ) ( - )

8000 excitatory neurons

2000 inhibitory neurons

Membrane time constant: 10 ms

Synaptic time constants:      3 ms

Fraction of neurons involved in a memory, : 0.1

Connectivity pattern:

Current nonlinearity:
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Simulations

reverse

J c W= g +( ( [N  f 1 f(  - )] ))b S x x-( )fij ijij E i jm=1

p
-1 pp

sparseness: 1 with probability 0.25; 0 otherwise

random background
multiple (  ) memoriesp

clipping function:
x

g x( )
~2.3 mV
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In most models of attractor networks, firing rates

limited by saturation.

We took advantage of dynamic stabilization to

operate on unstable, non-saturating branch.

This led to robust, low rates on attractor, and

protected the network against instabilities.

In future work we will investigate whether other

types of computations – ones that do not rely
on attractors – also operate in the dynamically
stabilized regime.

Conclusions


