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Digitized neural networks: long-term
stability from forgetful neurons

Alexandre Pouget and Peter Latham

Understanding how realistic networks integrate input signals over many seconds has eluded
neuroscientists for decades. Koulakov and colleagues now propose a computational model to
explain how bistable neurons might allow a network to integrate incoming signals.

Temporal integration is relatively sim-
ple—it is nothing more than the accu-
mulation (or sum) over time of some
signal. This simple process, however,
turns out to be a powerful form of com-
putation that is believed to underlie a
large variety of seemingly unrelated
behaviors and cognitive functions,
including eye movement!, navigation®3,
short-term memory of continuous vari-
ables®3 and mental rotation®. It might
even be critical in the ability of neural
circuits to perform statistical infer-
ences’, which is remarkable, consider-
ing that statistical inference represents
one of the most promising computa-
tional theories of higher brain func-
tions, such as perception, decision
making, motor control and high-level
reasoning®10. Simple or not, under-
standing how the nervous system per-
forms integration has been one of the
most frustrating problems in computa-
tional neuroscience. In this issue,
Koulakov et al.'! propose a new theo-
retical model to explain how neural net-
works might integrate signals.

A classic example of a neural integra-
tor is a circuit contained in the post-
subiculum of the rat. Neurons in this
circuit encode the direction of the rat’s
head in world-centered coordinates, act-
ing much like an internal compass?. This
compass is updated after each movement
of the head, even when the animal is being
moved by the experimenter in complete
darkness. This is particularly remarkable
because, in darkness, the main source of
information regarding head movements
is the discharge of neurons in the semi-
circular canals of the inner ear, which
respond to head acceleration, not head
direction. Head direction, however, can
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be recovered in two steps. First, head
velocity can be computed by summing
(that is, integrating) head acceleration
over time. Then, head direction is
obtained by repeating this operation, but,
this time, on head velocity. This double
integration is believed to be implement-
ed by the circuitry linking the vestibular
system to the postsubiculum.

As these examples illustrate, integration
is emerging as a basic computational oper-
ation used by the brain, much like the
switching of transistors is a basic computa-
tional operation used by digital computers.
Unfortunately, despite numerous experi-
mental and theoretical studies, its neural
basis is still very poorly understood. But
what is so complicated about it? After all, it
is particularly easy to design an algorithm
that integrates a signal over (discrete) time:
on each time step, simply add the value of
the input signal to the accumulated value,
the latter being stored in memory (such
integrators can easily be built from com-
ponents bought for a few dollars at any elec-
tronics store). Two operations are required
for this: addition and memory. The diffi-
culty for the brain lies in the memory oper-
ation: ‘remembering’ the summed value is
difficult to model in realistic neurons
because such neurons integrate signals over
a short time period (milliseconds), where-
as biologically relevant signals occur over a
longer period (seconds). In other words,
neurons tend to forget what happened to
them only 10 ms ago; given this intrinsic
forgetfulness, it has been difficult to under-
stand how networks of neurons remember
things that happened seconds ago.

One solution that has been proposed
by theorists is to build networks of neurons
that have plenty of internal feedback!12.
This internal feedback allows the network
to maintain a particular firing rate, even in
the absence of input—much the same way
a group of very forgetful people could
remember a phone number by continual-
ly repeating it to each other. Such networks
act as integrators in the following way: exci-
tatory external input causes an increase in
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firing rate, inhibitory input causes a
decrease, and, most importantly, without
input, the firing rate of the network stays
constant. This last fact is most important,
because it allows the network to remem-
ber the accumulated input signal.

The problem with this approach is that it
requires incredible fine-tuning of parame-
ters. Trying to maintain a particular firing
rate in a neural network is like trying to get
amarble to sit still on a table (Fig. 1a). If the
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Fig. 1. Storing values with a marble on a table.
(a) The location of the marble can be used to
store any analog value (1.5 in this example).
Moreover, if there is enough drag on the sur-
face that the marble stops quickly in the
absence of any external force, the position of
the marble codes for the integral of the force
acting on it, that is, it acts as an integrator of
force. (b) If the table is not flat, the marble will
roll toward a local minimum, effectively forget-
ting the initial position of the marble, that is,
the initial stored value. The characteristic time
it takes to approach the minimum is the ‘for-
getting’ time. For neurons, the forgetting time
is around 10 ms, much too short to integrate
input signals over seconds. Building a network
with a long forgetting time—a nearly flat sur-
face—out of such forgetful neurons is hard;
this is the ‘fine tuning’ problem. (c) The solu-
tion proposed by Koulakov et al. is to put pits
in the surface, so the marble does not roll
even if the surface is slightly warped.
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table is perfectly flat, the marble can
‘remember’ any value for arbitrarily long
times—if you want it to remember the
number ‘1.5, for example, simply put the
marble at position 1.5 (Fig. 1a). The slight-
est slope will cause the marble to drift, how-
ever, and thus forget its stored value
(Fig. 1b), and even if the table is perfectly
flat, the system is still sensitive to noise, as
the slightest tremor will cause the marble to
wander aimlessly. (With a little more work,
the marble can be turned into an integra-
tor. But to do this, there needs to be enough
drag on the marble so that it stops quickly
in the absence of external forces. In the high-
drag regime, the marble does more than
simply remember where you put it: it inte-
grates the forces that act on it. Again, how-
ever, the table needs to be perfectly flat, or
the marble will drift; it also needs to be noise
free, or the marble will wander.)

In digital computers, these problems—
fine tuning of parameters and sensitivity to
noise—are avoided thanks to two tricks.
First, all numbers are discretized; they are
represented as binary strings (for instance,
64 bits). Although this discretization pre-
vents computers from integrating analog
values, 64-bit strings are sufficiently long
for most practical purposes. Second, each
bit is in a very stable state, that is, its value
cannot change because of the internal noise
in the computer. This is because the volt-
age difference between the 0 and 1 that
make up the binary code is much larger
than the voltage fluctuations due to the
electronic noise, and much larger than any
applied forces, like those caused by stray
electric fields. Once a bit is set, it does not
change unless the CPU tells it to change.
Integration, then, becomes trivial: simply
add or subtract numbers from a counter.
Because neither noise nor external forces
cause bits to spontaneously flip, we are
guaranteed that the counter will faithfully
accumulate all additions and subtractions.

Applied to our table example, this
approach would be equivalent to carving
pits on the surface of the table (Fig. 1c).
Provided the pits are deep enough, there is
no need for fine tuning; the table could be
slightly tilted without dire consequences.
Furthermore, the sensitivity to noise would
be greatly reduced: the marble would be
unlikely to jump from one position to the
next when the table shakes. Granted, the
marble could only store a finite number of
values, but this is not a problem if we make
the pits closely spaced—just as it isn’t a
problem in digital computers that repre-
sent numbers using 64 bits.

In essence, this is the solution proposed
by Koulakov et al.'1, but applied to a recur-
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rent network of spiking neurons. It is easy
to build a recurrent network that is stable
at any one particular firing rate, but stabil-
ity at a single rate does not solve the prob-
lem of integration. Koulakov et al., however,
took advantage of an important fact: the
stable firing rate in a recurrent network
depends on the number of neurons in the
network. This is because the drive to each
neuron depends on the number of neurons
presynaptic to it. More neurons means
more drive and a higher firing rate; fewer
neurons means less drive and a lower firing
rate. Importantly, for a fixed number of
neurons, the network is stable. This leads
to the following key observation: a network
can have many stable firing rates if neurons
can be effectively removed or added, and it
takes a certain activation energy to do so.
Koulakov et al. accomplished this by build-
ing a network out of interconnected bistable
neurons. If external input is applied to such
a network, it can change the relative num-
bers of quiet and active neurons: excitato-
ry input switches some quiet neurons to the
active state, increasing the effective number
of neurons and thus increasing the average
firing rate; inhibitory input switches some
active neurons to the quiet state, decreas-
ing the effective number of neurons and the
rate; and no input does nothing to the effec-
tive number of neurons and thus nothing
to the rate. The resulting network is a neur-
al integrator that needs little fine tuning—
in models, at least, network operation is
robust to parameter changes of as much as
+20%. Just as important, it is stable with
respect to noise, as it takes large fluctuations
to cause the bistable neurons to switch
states. This stability is consistent with pre-
vious models in which bistable neurons
were used in models of working memory®.

Bistability is a key aspect of the
Koulakov et al. modelll, so it is natural to
ask how it might come about in real neu-
rons. It is easy to imagine in principle: all
one needs is a voltage-dependent inward
current that is activated when a neuron is
firing and inactivated when the neuron is
silent. The existence of bistable neurons in
cortex is more speculative, although such
neurons have been observed in motor
neurons in anesthetized rats'>. In any case,
Koulakov et al. use two models for bista-
bility: one in which the voltage-dependent
inward current is supplied by NMDA
channels, the other in which there is an
activity-dependent drive that is supplied
by small groups of garden-variety neurons.

Whether or not their model applies to
real neural integrators, however, is still far
from decided. From a theoretical point of
view, the model must be made more real-

istic in at least four ways if it is to describe
integrators in mammalian networks. First,
inhibitory neurons need to be included.
So far, the model contains only excitatory
neurons, which forces it to operate in an
unrealistically weakly coupled regime (all-
excitatory networks with realistic coupling
are unstable, in the sense that they can
only fire at high rates'?). Second, a more
realistic ratio of AMPA to NMDA recep-
tors needs to be incorporated. Two con-
ductance ratios were used in their models,
5 and infinity—both significantly higher
than the experimentally observed ratio of
0.5-1 (ref. 14). Finally, the size of the net-
work needs to be scaled up: in mammalian
networks, each neuron receives [15000
inputs, much larger than the 100-300
inputs used in the Koulakov et al. model.
All of these effects increase the effective
noise, which would make it more likely for
the bistable neurons to spontaneously
switch states and thus wreak havoc with
stability. Whether or not the model is
robust to these more realistic features
needs to be investigated numerically.
Experimentally, the proposed model
makes a very strong prediction: in areas
where neural integrators exist, neurons
should be bistable. Besides being a clever
solution to a hard problem, the falsifiabili-
ty of the model is one of its best features.
We look forward to future experiments that
either confirm or deny bistability as the
mechanism underlying neural integrators.
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