
Pouget et al., Efficient computation and cue integration ... 1

Supplementary Information

Network equations
The network we used consisted of three input layers and an intermediate layer. The three input

layers – an eye-centered layer, an eye position layer and a head-centered layer – are also output
layers; the final estimates of the network are read from these layers after relaxation. Below we
describe how that network was constructed and how it evolved in time. We also derive expressions
for the maximum likelihood variances, which are used to evaluate network performance.

The three input layers consist of three topographic layers of N units. The units are indexed by
their position, j, where j = 1 . . . N . Similarly, the hidden layer is a topographic 2D map of N

2 x
N
2

units indexed by their position l,m, where l = 2, 4, . . . , N and m = 2, 4, . . . , N . The intermediate
layer is sampled more coarsely than the input layers; this was done solely to increase simulation
speed.

The input units are symmetrically interconnected with the hidden layer, and the corresponding
matrices of connection weights are denoted W r, W e and W a for, respectively, the eye-centered, eye
position and head-centered layers. The (dimensionless) connection strengths between unit j in each
input layer and unit (l,m) in the intermediate layer are given by

W r
jlm = Kw exp

[
cos[(2π/N)(j − l)]− 1

σ2
w

]
(1)

W e
jlm = Kw exp

[
cos[(2π/N)(j −m)]− 1

σ2
w

]
(2)

W a
jlm = Kw exp

[
cos[(2π/N)(j − l −m)]− 1

σ2
w

]
. (3)

The variable σw represents lateral spread: units j and l are strongly connected if |j− l|/N <
∼ σw/2π.

As such, it has dimensions of radians.
Note that with these connection matrices, unit (l,m) in the intermediate layer is most strongly

interconnected with unit j = l in the eye-centered layer, j = m in the eye position layer and j = l+m
in the head-centered layer. Unit (l,m) is connected more weakly to neighboring units in each layer,
with the spatial extent of these connections is controlled by σw.

The evolution of the activities (chosen to be firing rates) in the recurrent network are described
by a set of coupled nonlinear equations. Denoting Alm(t) as the activity of unit (l,m) in the
intermediate layer at time t, and Rrj(t), Rej(t), and Raj(t) as the activity of unit j in the eye-
centered, eye-position and head-centered layer at time t, the evolution equations are written

Alm(t+ 1) =
Llm(t)2

S + µ
∑

l′m′ Ll′m′(t)2
(4)

Rrj(t+ 1) =

[∑
lm W r

jlmAlm(t+ 1)
]2

S + µ
∑

j

[∑
lm W r

jlmAlm(t+ 1)
]2 (5)

Rej(t+ 1) =

[∑
lm W e

jlmAlm(t+ 1)
]2

S + µ
∑

j

[∑
lm W e

jlmAlm(t+ 1)
]2 (6)

Raj(t+ 1) =

[∑
lm W a

jlmAlm(t+ 1)
]2

S + µ
∑

j

[∑
lm W a

jlmAlm(t+ 1)
]2 (7)

where Llm(t) represents a linear pooling of activities from the three input layers,

Pouget et al., Efficient computation and cue integration ... 2

Llm(t) =
∑

j

W r
jlmRrj(t) +

∑
j

W e
jlmRej(t) +

∑
j

W a
jlmRaj(t). (8)

The activation functions represented by Eqs. (4-8) implement a quadratic nonlinearity coupled with
a divisive normalization. This choice of activation function is consistent with neurophysiological
data [1, 2].

In all simulation, we used N = 40, corresponding to 40 units in the input layers and a 20×20
array of units for the intermediate layer.

Network initialization and parameters
Although activity is a continuous variable, for convenience we sampled the initial activity from

a discrete distribution. We used a Poisson distribution, for which calculation of the Fisher infor-
mation is especially straightforward (see Eq. (14) below). For eye-centered position, the probability
distribution for the initial activity, denoted Rrj(0), is given by

P (Rrj(0)|xr) =
fj(xr)Rrj(0)e−fj(xr)

Rrj(0)!
. (9)

The expressions for P (Rej(0)|xe) and P (Raj(0)|xa) are identical, except that r is replaced by e or
a. The activity in the intermediate layer, Alm(0), is initialized to 0: Alm(0) = 0 ∀l,m.

The input tuning curve for eye-centered position, fj(xr), which describes the mean response
to position xr in the input layer before relaxation, is taken to be a circular normal function with
spontaneous activity, ν,

fj(xr) = Cr

(
K exp

[
cos[xr − (2π/N)j]− 1

σ2

]
+ ν

)
. (10)

The expressions for fj(xa) and fj(xe) are identical, except that r is replaced by a or e. The tuning
curve, fj , is a dimensionless parameter (it has dimensions of firing rate times time). Since ν has
dimensions of firing rate, so does K; this forces Cr, Ce and Ca, the input gains for the eye-centered,
eye, and head-centered layers, respectively, to have dimensions of time. Like σw, σ has dimensions
of radians.

The parameters Kw and σw (Eqs. (1-3)), S and µ (Eqs. (4-7)), and K, σ and ν (Eq. (10)) were
fixed and identical in the three input layers. Cr and Ce were always fixed at 1 s; Ca was varied from
0 to 2 s. The remaining parameters were chosen as follows: K = 20 Hz, ν = 1 Hz, σ = 0.40 radians
(corresponding to a full width at half maximum of ∼55◦), Kw = 1, µ = 0.002 s, and S = 0.1 Hz. The
spatial extent of the weights, σw, was optimized with respect to the variance of the estimator (Eq.
(12)); the optimum value was σw = 0.37 radians (corresponding a lateral spread of ∼50◦, measured
as the full width at half maximum). σw was optimized for Cr = Ce = Ca = 1 s, and not re-optimized
when Ca was changed.

Network evolution
The network equations, (4-8), were initialized as described in the previous section, then iterated.

To get close to the attractor, the equations need to be iterated a large number of times although, for
this network, we found that “large” was three – the network estimates (Eq. (11)) and variance (Eq.
(12)) changed by less than 1% when the number of iterations increased from three to six. Thus, in
all simulations we iterated Eq. (4-8) three times.

Pouget et al., Efficient computation and cue integration ... 3

Network estimates and their errors
After iterating the network equations three times, we read out the position of each of the three

smooth hills using a complex estimator. For instance, the network estimate of eye-centered position,
denoted x̂r, was given by

x̂r = phase
(N∑

j=1

Rj(3)ei(2π/N)j

)
(11)

where i ≡ √−1. The network estimates of eye position and head-centered position, xe and xa,
respectively, are identical to Eq. (11) except that r is replaced by e or a.

To compute the variance of the network estimate of eye-centered position, we used the standard
formula

〈(xr − x̂)2〉network =
1

M − 1

M∑
k=1

(x̂kr − xr)2 (12)

where M is the number of trials (we used M = 100, 000) and x̂kr is the network estimate for
the kth trial, found using Eq. (11). The network estimates of the variance of eye position and
head-centered position are identical to Eq. (12) except that r is replaced by e or a.

To avoid edge effects, we used an architecture with periodic boundary conditions. Our approach,
however, is not limited to periodic functions: we can compute non-periodic functions by using arrays
of units with Gaussian tuning curves. This type of network also achieves maximum likelihood, so
long as the hills of activity are kept away from the edges of the neuronal arrays.

Maximum likelihood variance
To determine how well the network performed compared to how well it could perform in principle,

we compared the variances of the network estimates to the variances of the maximum likelihood
estimates. In the large N limit, the latter are given by the Cramér-Rao bound [3]. Here we compute
explicitly the Cramér-Rao bound for eye-centered position, xr, then use symmetry to write down
the bounds for xe and xa.

Because of the constraint xa = xe + xr, the conditional probability of observing a set of initial
conditions, Rr(0), Re(0) and Ra(0), given xr and xe, is written

P (Rr,Re,Ra|xr, xe) = P (Rr|xr)P (Re|xe)P (Ra|xr + xe) (13)

where we are assuming the noise is independent in each layer and Rr, Re and Ra are shorthand for
Rr(0), Re(0) and Ra(0), respectively. (The substitution xa = xr + xe is arbitrary; our answer does
not depend on whether we replace xa with xr + xe or xe with xa − xr.)

For the Cramér-Rao bound we use the diagonal elements of the inverse of the Fisher informa-
tion [6]. The Fisher information is given by

Iαβ =
〈
− ∂2

∂xα∂xβ
[logP (Rr|xr) + logP (Re|xe) + logP (Ra|xr + xe)]

〉

where α and β can take on the values e and r and the angle brackets indicate an average with
respect to the probability distribution given in Eq. (13). Performing the derivatives and taking the
averages, the latter with the aid of Eq. (9), we find that

I =
(

σ−2
r + σ−2

a σ−2
a

σ−2
a σ−2

e + σ−2
a

)
(14)

where

σ2
r =

[N∑
i=1

f ′
i
2(xr)

fi(xr)

]−1

=
〈
−∂2 logP (Rr|xr)

∂x2
r

〉−1

Pouget et al., Efficient computation and cue integration ... 4

is the Cramér-Rao bound for the variance of eye-position taken alone (this is the standard Cramér-
Rao bound for Poisson statistics; see [4, 5]). Analogous expressions apply for for σ2

e and σ2
a.

Inverting the Fisher information, Eq. (14), yields

I−1 =
1

(σ−2
r + σ−2

a)(σ−2
e + σ−2

a)− σ−4
a

(
σ−2

e + σ−2
a −σ−2

a

−σ−2
a σ−2

r + σ−2
a

)

=
1

σ2
r + σ2

e + σ2
a

(
σ2

r(σ
2
e + σ2

a) σ2
r + σ2

e

σ2
r + σ2

e σ2
e(σ

2
e + σ2

a)

)
. (15)

The Cramér-Rao bounds for σML
r

2 and σML
e

2 can be read off the diagonal elements of I−1, Eq. (15).
A similar calculation (or a simple permutation of indices) yields an expression for σML

a
2. The results

are

σML
r

2
=

σ2
r(σ

2
a + σ2

e)
σ2

r + σ2
a + σ2

e

σML
e

2
=

σ2
e(σ

2
r + σ2

a)
σ2

r + σ2
a + σ2

e

σML
a

2
=

σ2
a(σ

2
e + σ2

r)
σ2

r + σ2
a + σ2

e

.

References

[1] J. Anderson, I. Lampl, D. Gillespie, and D. Ferster. The contribution of noise to contrast
invariance of orientation tuning in cat visual cortex. Science, 290:1908–9, 2000.

[2] D. Heeger. Normalization of cell responses in cat striate cortex. Visual Neuroscience, 9:181–197,
1992.

[3] A. Papoulis. Probability, random variables, and stochastic process. McGraw-Hill, inc., 1991.

[4] M. Paradiso. A theory of the use of visual orientation information which exploits the columnar
structure of striate cortex. Biological Cybernetics, 58:35–49, 1988.

[5] H. Seung and H. Sompolinsky. Simple model for reading neuronal population codes. Proceedings
of National Academy of Sciences. USA., 90:10749–10753, 1993.

[6] K. Zhang and T. Sejnowski. Neuronal tuning: to sharpen or broaden? Neural Computation,
11:75–84, 1999.

