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Many computations performed by the brain involve nonlinear
transformations, cue integration or both. For instance, reach-
ing for a target requires a transformation from the eye-cen-
tered coordinates of the target into joint coordinates, the set
of joint angles of the arm that would bring the hand to the tar-
get. This transformation, like most sensory–motor transfor-
mations, is nonlinear1. Likewise, recognizing an object requires
a nonlinear transformation from its retinal image to its iden-
tity2. Often, multiple cues are available to perform these trans-
formations. When reaching for an object that can be seen and
heard, for example, the brain combines visual and auditory
information to refine the reaching motor command. Similarly,
when estimating the three-dimensional structure of an object,
the visual cortex integrates several cues such as stereopsis,
structure from motion, and perspective.

In the cortex, these computations require manipulating vari-
ables encoded in the activity (the firing rate, or number of spikes
per second) of populations of neurons. Typically, population
codes involve neurons with bell-shaped tuning curves3. An exam-
ple of tuning curves for the eye-centered position of an object,
denoted xr, is illustrated in Fig. 1a. These curves are idealizations;
from trial to trial, real neurons vary in their response to an iden-
tical stimulus. As a result of this noise, the pattern of activity cor-
responding to a particular value of xr, for example, xr = –20°,
forms an a noisy hill (Fig. 1b).

Understanding how cortical circuits perform nonlinear trans-
formations and cue integration is difficult because of the dis-
tributed nature of population codes and the presence of neuronal
noise. In the case of cue integration, additional complications
arise because the reliability of a cue can change rapidly. For
instance, a high-contrast image of an object can unexpectedly
become low in contrast, making it a less reliable cue. Therefore,
the challenge is to understand whether the cortex can perform
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The brain represents sensory and motor variables through the activity of large populations of
neurons. It is not understood how the nervous system computes with these population codes, given
that individual neurons are noisy and thus unreliable. We focus here on two general types of compu-
tation, function approximation and cue integration, as these are powerful enough to handle a range
of tasks, including sensorimotor transformations, feature extraction in sensory systems and
multisensory integration. We demonstrate that a particular class of neural networks, basis function
networks with multidimensional attractors, can perform both types of computation optimally with
noisy neurons. Moreover, neurons in the intermediate layers of our model show response properties
similar to those observed in several multimodal cortical areas. Thus, basis function networks with
multidimensional attractors may be used by the brain to compute efficiently with population codes.

optimal cue integration even when the reliability of cues changes
from one trial to the next.

Previous models using population codes have typically
focused on limited cases, such as noise clean-up4,5 or nonlinear
transformations with noiseless units2. Here, we suggest a neur-
al solution to the general case. More specifically, we demon-
strate that a particular type of neural network, a basis function
network with a multi-dimensional attractor, can provide a
generic architecture for efficiently implementing nonlinear
transformations and cue integration with noisy neurons.  By
“efficiently,” we mean that the network can perform these com-
putations as reliably as possible given the neuronal noise. The
type of network we consider here performs efficiently if two
conditions are met: neurons exhibit lateral and feedback con-
nections, and they compute basis functions of their inputs.
Both conditions exist in the cortex, raising the possibility that
cortical circuits approximate basis function networks with
multi-dimensional attractors.

Here we first show how function approximation and cue inte-
gration can be formalized within the framework of maximum
likelihood estimation. Next, we describe a neural architecture
implementing a maximum likelihood estimator. The network is
obtained by turning a basis function network into a 
multidimensional attractor network. The former is a well-known
architecture for performing nonlinear mappings2,6; the latter is
an architecture for performing optimal noise clean-up5. We found
that the network is indeed a close approximation to a maximum
likelihood estimator for function approximation and cue inte-
gration. In particular, the network remains optimal even when
the reliability of cues changes from trial to trial. Finally, we found
that the intermediate units of the network (the basis function
units) exhibit partially shifting receptive fields, a type of response
observed in several parietal and premotor areas.
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RESULTS
Maximum likelihood computation
We consider computations involving variables coding for the eye-
centered position of an object, xr, the head-centered position of
the same object, xa, and the eye position, xe. These three variables
are related by xa = xr + xe (ref. 7). Although this example is lin-
ear, and we are interested in general transformations, especially
nonlinear ones, it is nonlinear when implemented with population
codes2,6. Indeed, implementing this transformation is conceptu-
ally no different than implementing a nonlinear one, xa = f(xr, xe);
the network could be modified to implement a nonlinear trans-
formation simply by changing the network connectivity. (See sup-
plementary information, available on the Nature Neuroscience web
site, http://neurosci.nature.com/web_specials.) Thus, our results
apply to nonlinear as well as linear transformations. Further moti-

vation for focusing on xa = xr + xe is that the response properties
of the neurons involved have been extensively studied8,9, which
allows us to compare our results to experiments.

There are at least two types of computations that could be
done with noisy population codes. In the first, called function
approximation2, the brain is given noisy hills for the variables
xr and xe, and it must recover a third variable, xa. For example,
this is the computation required to predict the location of a
sound source given its visual location. In the second, called cue
integration10, a noisy population code for xa is given in addi-
tion to noisy population codes for xr and xe, and the brain must
refine its estimates of all three variables by combining infor-
mation from the three noisy hills. This situation occurs, for
instance, when localizing an object through the integration of
the image and sound it generates.

Fig. 1. A network that performs function approximation and cue integration optimally in the presence of noise. (a) Population of neurons with
bell-shaped tuning curves for the eye-centered position of visual stimuli. (b) Noisy pattern of activity across the neuronal population shown in
(a) in response to an object located at –20°. The activity of each neuron is plotted at the location of its preferred eye-centered position. 
(c) Same as (b), but without neuronal noise. The peak of the smooth hill can be thought as a code for an estimate of eye-centered position, x̂r.
(d) Network architecture. Left, initial conditions of the network (t = 0); right, the network after it evolved to its stable state (t = ∞). The two
input layers at the bottom encode the eye-centered position of an object and the position of the eyes. Similarly, the top layer contains a popula-
tion code for the head-centered position of objects. Two initial conditions are shown in the upper left. Green, function approximation; red, cue
integration. The intermediate layer forms a two-dimensional map of basis function units (blue units) and is connected reciprocally to all three
input layers (Fig. 2). In the simulations, each of the input layers contained 40 units, and the intermediate layer contained 20 × 20 units. The activ-
ity of each unit was obtained at each iteration by computing first the weighted sum of its input followed by a divisive normalization within each
layer. (See supplementary information for details.) Right, result of a numerical simulation of cue integration after three iterations (subsequent
iterations do not introduce significant changes in this pattern). Middle right, activity in the intermediate (basis function) layer; surrounding plots
show the activity in the input layers. Whether the network is initialized with two noisy hills (function approximation) or three noisy hills (cue
integration), the activity in the three input layers relaxes onto three smooth hills of which the positions are used as estimates of eye-centered,
eye and head-centered positions (x̂r

RN, x̂e
RN, x̂a

RN). These estimates are very close to the maximum likelihood estimates.
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a maximum likelihood estimator? To be biologically plausible,
the network should recover population codes for x̂r

ML, x̂e
ML and

x̂a
ML, as opposed to scalar values for these variables. Indeed, neu-

rophysiological recordings indicate that population codes are
used everywhere in the cortex; that is, there is no stage at which
population codes are decoded into scalar values. One way to
recover population codes is to build a network that, when ini-
tialized with the noisy patterns of activity Rr, Re and Ra, converges
onto smooth hills peaking at the locations x̂r

ML, x̂e
ML and x̂a

ML

(example, Fig. 1c). Such a network performs function approxi-
mation when two of the three input patterns (Rr and Re) are noisy
hills and the third, Ra, is simply a flat pattern of activity, and it
performs cue integration when all three input patterns (Rr, Re
and Ra) are noisy hills (Fig. 1d).

Implementing function approximation with a network using
population codes is a well-known problem, as long as the neu-
rons are noiseless (for review, see ref. 1). Specifically, given noise-
less patterns of activity for eye-centered position and eye positions
peaking at xr and xe, respectively, it is known how to construct a
neural network that produces as its output a noiseless hill peak-
ing at xa = xr + xe. Neurons coding for eye-centered position and
eye position connect to an intermediate layer of units known as
basis function units2,6. This layer is two-dimensional, and the
projections are chosen so that one-dimensional hills located at
xr and xe produce a two-dimensional hill at position (xr, xe) 
(Fig. 1d). Suitable projections from this two-dimensional hill to
an output layer can then generate a hill of activity peaking at loca-
tion xa = xr + xe. Indeed, the intermediate basis function units
can be used to implement a wide range of nonlinear functions
of xr and xe (ref. 2), not just the addition considered here. The
appropriate weights can be found with standard linear regres-
sion techniques or a learning procedure such as the delta rule1,15.

We show here that this basis function architecture is not lim-
ited to function approximation with noiseless units, but can be
extended to deal optimally with function approximation and cue
integration even when the neurons are noisy. The key is to add
feedback connections from the head-centered layer to the inter-
mediate layer, as if one were building a basis function network
to extract eye-centered position from head-centered and eye posi-

Because neurons are noisy, we cannot perform these compu-
tations with absolute certainty; the best we can do, for both func-
tion approximation or cue integration, is to provide estimates of
the encoded variables. In both cases, we are given noisy patterns
of activity for eye-centered position, eye position and head-cen-
tered position, and we seek estimates of these quantities. The only
difference between the two tasks lies in the profile of the patterns
of activity. For function approximation, two of the patterns are
noisy hills and the third is just a flat pattern of activity (Fig. 1d,
left, green data points); for cue combination, all three patterns
are noisy hills of activity.

Various statistical methods can be used to compute the esti-
mates of xr, xe and xa, denoted x̂r, x̂eand x̂a, from patterns of activ-
ity. For the tasks proposed here, however, the optimal method is
maximum likelihood11–13. We denote the patterns of activity
across the populations of neurons as Rr, Re and Ra; all three are
activity vectors. (For example, if the eye-centered neuronal pop-
ulation contains 64 neurons, then Rr is a 64-dimensional vector
storing the activity of all the neurons.) The maximum likelihood
estimates are the values of xr, xe and xa that maximize the likeli-
hood function P(Rr,Re,Ra|xr,xe,xa), in which the likelihood func-
tion is the probability distribution of the neuronal activity for
fixed inputs14. Denoting these values x̂r

ML, x̂e
ML and x̂a

ML, we have
the following equation.

(1)

When there are a large number of neurons, the maximum
likelihood estimator is optimal. First, it produces estimates that
are correct on average; the value of x̂r

ML, averaged over many tri-
als, is equal to xr, the true value, and similarly for the other two
variables, xe and xa. Second, it produces estimates that have the
smallest possible variance of any estimator11.

Network architecture
Can a biologically plausible neuronal network perform function
approximation and cue integration optimally, that is, as well as
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Fig. 2. Network connections. A representative set of weights from and
to one particular basis function unit (red). All other weights are trans-
lated copies of these weights. The red basis function unit receives three
sets of weights, one from each of the input layers. These connections
are bi-directional, that is, if the basis function receives a connection
from an input unit, it sends back a connection with the same weight.
These connections are set so that the basis function unit is character-
ized by a preferred eye-centered position, a preferred eye position and a
preferred head-centered position, denoted xr*, xe* and xa*. These posi-
tions correspond to the positions of the input units sending and receiv-
ing the largest weights in each of the input layers (green). Surrounding
units also send connections to the red basis function unit with weights
following a Gaussian profile centered on the preferred units (gray shad-
ing in the connections). If the strongest connections come from position
xr* in the eye-centered layer, xe* in the eye position layer and xa* in the
head-centered layer, then xr*, xe* and xa* obey the relationship 
xa* = xr* + xe*. For example, if the red basis function unit gets its
strongest connections from xr* = –20° in the eye-centered layer and 
xe* = 0° in the eye position layer, then it must get its strongest connec-
tion from xa* = –20° in the head-centered layer. This constraint ensures
that the network computes the function xa = xr + xe, and all permuta-
tions thereof such as xr = xa – xe. In addition to these feedforward and
feedback weights, each layer also contains lateral weights implementing
a divisive normalization. (See supplementary information.)
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tions (that is, as if the network were doing the reverse computa-
tion xr = xa – xe). Feedback connections from the eye position to
the intermediate layer can similarly be added to compute 
xe = xa – xr. The result is three sets of mirror image connections
from the eye-centered location, eye position and head-centered
location to the intermediate layer and back (Fig. 2).

The feedback connections make the network recurrent, which
allows interactions among all three variables, eye, eye-centered
and head-centered positions. Because the activity of recurrent
networks evolves in time, stability is an issue. Thus, we use net-
works with weights set to ensure that activity patterns converge to
stable states. These stable states consist of smooth hills of activi-
ty with locations that depend on the position of the peaks of the
noisy input hills. Such networks are known as multi-dimension-
al attractor networks5. This means that when initialized with
noisy hills (noisy population codes), the network stabilizes onto
smooth hills of activity (noiseless population codes) in all layers
(Fig. 1d), and stays in that state unless reset to zero. This behav-
ior endows the network with the ability to act as an estimator;
the peaks of the smooth hills can be used as estimates of the
encoded variables whether the network is performing function
approximation or cue integration (Fig. 1d).

Simulations
The network performs as a maximum likelihood estimator only
if the smooth hills peak at locations close to the maximum like-
lihood estimates, x̂r

ML, x̂e
ML and x̂a

ML. To test whether this is
indeed the case, we simulated a basis function network with
recurrent connections, as described above (also see supplemen-
tary information). We performed 100,000 trials—each of which
involved only 3 iterations—and compared the mean and stan-
dard deviation of the network estimates to those obtained from
maximum likelihood. We used only three iterations because the
smooth hills of activity had already reached their stable positions
by the end of the third iteration. We found that in all simulations,
the network estimate was unbiased; the mean values of estimates,
x̂r, x̂e and x̂a, were equal to the true values, xr, xe and xa. Thus, the
quality of the network was measured by the standard deviation
of the estimated quantities. Because maximum likelihood has the
minimum standard deviation of all unbiased estimators, we
report our results in terms of percentage above the standard devi-
ation of the maximum likelihood estimator.

The results given below were obtained in networks in which
the weights were adjusted to optimize performance. More specif-
ically, the weights were adjusted to change the width of the stable
smooth hills until the estimates, x̂r, x̂e and x̂a, had minimum stan-
dard deviation in the cue integration task. Once the weights were
optimized, the same weights were used for all simulations.

For function approximation, the network was initialized with
two noisy hills coding for xr and xe, whereas the neurons coding
for xa were initialized to zero. We used a Poisson distribution for
the noise, a common approximation of actual neuronal noise14.
The network performed 2.1% worse than maximum likelihood
for eye-centered and eye positions and 3.3% worse than maxi-
mum likelihood for head-centered position.

In the case of cue integration, the network was initialized
with three noisy hills coding for xr, xe, and xa, chosen to satisfy 
xa = xr + xe. To be optimal, the network must integrate in each
layer the information from the local hills of activity with the
information provided by the other two hills. Once again, the
network performance was the same for all variables, and near
optimal—it was only 1.9% worse than maximum likelihood.
For comparison, we also computed the performance of a maxi-
mum likelihood estimator that used the activity of each hill indi-
vidually, with no integration of information. This non-optimal
strategy was 22% worse than maximum likelihood, much worse
than the network performance, indicating that each hill is used
to refine the estimate of the others.

In most situations, cues are not equally reliable. For instance,
in broad daylight, vision is more reliable than audition for local-
izing objects, whereas at night, audition is the more reliable cue.
Optimal estimators like maximum likelihood weight the contri-
bution of the cues based on their reliability10; for example, vision
should be assigned a greater weight in daylight than at night. We
explored whether the network could adapt to such changes in
reliability by performing simulations in which the height of the
head-centered hill was varied as the heights of the other hills were
kept constant. Because the noise followed a Poisson distribution,
the height of the hill of activity (that is, the gain of the corre-
sponding sensory input) controls the reliability of the cue16. For
example, a decrease in height by a factor of 2 decreases the sig-
nal-to-noise ratio by a factor of √2. We varied the height of the
hill coding for the head-centered position and found that the net-
work performed close to optimal for all heights from 0 (indicat-

Fig. 3. The eye-centered receptive field of the network units for three
positions of the eyes (xe). (a) For a typical unit in the eye-centered layer,
the eye-centered receptive field remains at the same location across eye
position. (b) For a typical head-centered unit, the eye-centered receptive
field shifts by an amount exactly opposite to the change in eye position.
(c) Same plot as in (a) and (b) but for an intermediate unit in a network
with feedforward connections only (from eye-centered and eye position
to head-centered position). The unit exhibits an eye-centered receptive
field with a position that does not vary with eye position. The height of
the tuning curve, however, is modulated by eye position. This is known as
a gain field, a common response pattern throughout the cortex. 
(d) Same as (c) but in a network with feedforward and feedback connec-
tions. The position and height of the eye-centered receptive field changes
with eye position. The shift is only half of what is predicted for a unit with
a head-centered receptive field; it has a partially shifting receptive field
(The three vertical dashed lines show the predicted peak positions for a
head-centered receptive field as in b.) This response pattern has been
reported in the parietal cortex, superior colliculus and premotor cortex.
The amplitude of the shift can be increased or decreased depending on
the ratio of feedforward connections from the eye-centered layer and
feedback connections from the head-centered layer.

–80 –40 0 40 80
0

5

10

15

-80 0 40 80
0

5

10

15

A
ct

iv
ity

Eye-centered position (degrees)

-80 –40 0 40 80
0

5

10

15

A
ct

iv
ity

–80 –40 0 40 80
0

5

10

15

A
ct

iv
ity

Eye-centered position (degrees)
–80 –40 0 40 80

0

5

10

15

A
ct

iv
ity

Eye-centered position (degrees)

xexe =  20o

xexe =  0o

xexe = –20o

Eye-centered position (degrees)

A
ct

iv
ity

a b

c d

©
20

01
 N

at
u

re
 P

u
b

lis
h

in
g

 G
ro

u
p

  
h

tt
p

:/
/n

eu
ro

sc
i.n

at
u

re
.c

o
m

© 2001 Nature Publishing Group  http://neurosci.nature.com



830 nature neuroscience  •  volume 4  no 8  •  august 2001

articles

ing a flat pattern of activity, implying that the network does func-
tion approximation) to 2 (indicating that the head-centered hill
was 2 times higher than the hills coding for retinal and eye posi-
tion and thus √2 times more reliable). For this range of heights,
the network estimate for head-centered position ranged from 5%
to 3% worse than maximum likelihood. These results were
obtained with weights optimized for a height of 1; no further
optimization was used. Thus, the network has the ability to adapt
to changes in reliability.

We also found that the performance of our network is robust
to changes in the width of the input tuning curves. For instance,
we tested our network for a range of widths extending from 45
to 75 degrees (full width at half maximum amplitude) while keep-
ing the weights constant. Performance for both function approx-
imation and cue integration was, at worst, 5.4% above maximum
likelihood in all layers.

The simulations described so far used the noisy input hills to
specify the initial state of the network, but do not maintain these
inputs thereafter. This assumption is not critical, as revealed by
the results of another set of simulations in which we clamped the
activity of the noisy hills onto the input units. We used a network
in which 20% of the activity of the input unit at each time step
depends on the clamped noisy hills and the remaining 80% comes
from the recurrent activity (a ratio consistent with cortical anato-
my17). Performance stayed near optimal at 3.5% for function
approximation and 4.5% for cue integration.

These numerical results indicate that basis function networks
with multi-dimensional attractors can provide estimates close to
those provided by maximum likelihood. These results are not
restricted to the particular function we used in the simulations.
We have found analytically that they are common to any non-
linear function that can be approximated with a basis function
representation. (Our proof is based on an extension of our pre-
vious work5, but the details of this proof are beyond the scope of
the present paper.)

It remains to be seen whether the cortex uses this architec-
ture. To address whether the units of our network model show
responses consistent with those reported in the cortex, we plotted
the response of a typical unit in the eye-centered layer (Fig. 3a).
The eye-centered receptive field of the unit is identical across all
three positions of the eyes. In contrast, the same plot for a typi-
cal unit in the head-centered layer reveals that its eye-centered
receptive field shifts by the same amount as the eyes (20°), but
in the opposite direction (Fig. 3b). This is as expected, because
the eye-centered location of a stimulus can be obtained from its
head-centered location by subtracting the position of the eyes.

For the intermediate (basis function) units, the results
depend on whether or not the network contains feedback con-
nections. We first considered a network without feedback con-
nections, that is, a network with feedforward connections only
from the eye-centered and eye position layers onto the head-
centered layer via the intermediate layer. We found that a typ-
ical intermediate unit has a receptive field with a position that
is invariant in eye-centered coordinates but with an amplitude
that is modulated by the position of the eye (Fig. 3c). This type
of response is sometimes known as a gain field, a very com-
mon response type observed in areas ranging from the prima-
ry cortices to the premotor cortex8,18–20.

In contrast, in a network with feedforward and feedback con-
nections (Figs. 1 and 2), the visual receptive fields of the inter-
mediate units showed both a gain modulation with eye position
and a shift in the peak position in eye-centered coordinates 
(Fig. 3d). Like the head-centered units shown in Fig. 3b, the shift

is in the direction opposite to the change in eye position, but
unlike that unit, the amplitude of the shift is only half the ampli-
tude of the change in eye position. The amplitude of the shift is
controlled by the amplitude ratio of the feedforward connections
from the eye-centered layer and the feedback connections from
the head-centered layer. Thus, if the amplitude of the feedback
connections is decreased, the shift in eye-centered coordinates
decreases accordingly. As a result, the receptive fields of the inter-
mediate units become increasingly more eye-centered (and vice
versa if these weights were to be increased).

Suppose we interpret the eye-centered map as a visual map
and the head-centered map as an auditory map. Then, in a net-
work with feedforward and feedback connections, the inter-
mediate units are visual-auditory, effectively bimodal (or even
trimodal, if one considers the eye position input). We could
therefore map the auditory receptive fields of these units. We
found that the auditory receptive fields are exactly lined up with
the visual receptive fields because, once the stable state of the
network is reached, the activity coming from the visual layer is
spatially consistent with the activity coming from the auditory
layer. These activities are spatially consistent in the sense that
the positions of three smooth hills in the three input layers fol-
low the relationship xa = xr + xe.

These results predict that some of the multimodal neurons
in the cortex should show partially shifting receptive fields in all
modalities with varying amount of shift depending on the
strength of their sensory inputs. Partially shifting receptive
fields have already been reported in the superior colliculus,
VIP and premotor cortex9,21,22, but their role has remained
obscure. Our work suggests that they could be providing basis
functions for reliable function approximation and cue inte-
gration in the presence of noise.

DISCUSSION
We have extended the findings of a previous study in which we
used a line attractor network to perform optimal noise clean-
up5. First, we showed that a network could compute in a near-
optimal manner with noisy population codes, not just clean
up noise. Second, we demonstrated that the new architecture
deals equally well with cue integration, even when the relia-
bility of the cue changes from trial to trial. These results indi-
cate that this architecture can be applied to a wide variety of
neural computations, including recovering depth from multi-
ple visual cues, multisensory integration in general, and any
sensorimotor transformation.

Our work also offers a new perspective on multimodal repre-
sentations. Most studies of multisensory integration assume that
sensory modalities are first remapped into a common frame of ref-
erence before being combined. For instance, it has been suggest-
ed that auditory inputs are remapped in eye-centered coordinates
in the superior colliculus where they are combined with visual
inputs21. We suggest that multisensory integration might also
involve basis function representations in which multiple frames of
reference are multiplexed within the same representation. The
implications of this representational scheme for our understanding
of phenomena such as multimodal hemineglect or motor control
toward multisensory targets remain to be explored.
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