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Neurophysiologists are often faced with the problem of evaluating the
quality of a code for a sensory or motor variable, either to relate it to the
performance of the animal in a simple discrimination task or to compare
the codes at various stages along the neuronal pathway. One common
belief that has emerged from such studies is that sharpening of tuning
curves improves the quality of the code, although only to a certain point;
sharpening beyond that is believed to be harmful. We show that this be-
lief relies on either problematic technical analysis or improper assump-
tions about the noise. We conclude that one cannot tell, in the general
case, whether narrow tuning curves are better than wide ones; the answer
depends critically on the covariance of the noise. The same conclusion
applies to other manipulations of the tuning curve pro�les such as gain
increase.

1 Introduction

It is widely assumed that sharpening tuning curves, up to a certain point,
can improve the quality of a coarse code. For instance, attention is believed
to improve the code for orientation by sharpening the tuning curves to ori-
entation in the visual area V4 (Spitzer, Desimone, & Moran, 1988). This belief
comes partly from a seminal paper by Hinton, McClelland, and Rumelhart
(1986), which showed that there exists an optimal width for which the ac-
curacy of a population code is maximized, suggesting that sharpening is
bene�cial when the tuning curves have a width larger than the optimal
one. This result, however, was derived for binary units and does not readily
generalize to continuous units.

A recent attempt to show experimentally that, for continuous tuning
curves, sharper is better relied on the center-of-mass estimator to evaluate
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the quality of the code (Fitzpatrick, Batra, Stanford, & Kuwada, 1997). These
authors measured the tuning curves of auditory neurons to interaural time
difference (ITD), a cue for localizing auditory stimuli. They argued that
narrow tuning curves are better than wide ones—in the range they observed
experimentally—in the sense that the minimum detectable change (MDC)
in ITD is smaller with narrow tuning curves when using a center-of-mass
estimator.

Their analysis, however, suffered from two problems: (1) they did not
consider a biologically plausible model of the noise, and (2) the MDC ob-
tained with a center of mass is not, in the general case, an objective measure
of the information content of a representation, because center of mass is not
an optimal readout method (Snippe, 1996).

A better way to proceed is to use Fisher information, the square root of
which is inversely proportional to the smallest achievable MDC indepen-
dent of the readout method (Paradiso, 1988; Seung & Sompolinsky, 1993;
Pouget, Zhang, Deneve, & Latham, 1998). (Shannon information would be
another natural choice, but it is simply, and monotonically, related to Fisher
information in the case of population coding with a large number of units;
see Brunel & Nadal, 1998. It thus yields identical results when comparing
codes.) To determine whether sharp tuning curves are indeed better than
wide ones, one can simply plot the MDC obtained from Fisher information
as a function of the width of the tuning curves. Fisher information is de�ned
as
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where P.A |µ/ is the distribution of the activity conditioned on the encoded
variable µ and E[¢] is the expected value over the distribution P.A |µ/.

As we show next, sharpening increases Fisher information when the
noise distribution is �xed, but sharpening can also have the opposite effect:
it can decrease information when the distribution of the noise changes with
the width. The latter case, which happens when sharpening is the result of
computation in a network, is the most relevant for neurophysiologists.

Consider �rst the case in which the noise distribution is �xed. For in-
stance, for a population of N neurons with gaussian tuning curves and
independent gaussian noise with variance ¾ 2, Fisher information reduces
to
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where fi.µ/ is the mean activity of unit i in response to the presentation
angle, µ , and f 0

i .µ / is its derivative with respect to µ . Therefore, as the width
of the tuning curve decreases, the derivative increases, resulting in an in-
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crease of information. This implies that the smallest achievable MDC goes
up with the width of tuning, as shown in Figure 1A, because the MDC is
inversely proportional to the square root of the Fisher information. This is
a case where narrow tuning curves are better than wide ones. Note, how-
ever, that the optimal tuning curve for Fisher information has zero width
(or, more precisely, a width on the order of 1=N, where N is the number of
neurons), unlike what Hinton et al. found for binary tuning curves. Note
also that for the same kind of noise, the MDC measured with center of mass
shows the opposite trend—wide is better—con�rming that the MDC ob-
tained with the center of mass does not re�ect the information content of the
representation.1

Consider now a case in which the noise distribution is no longer �xed,
such as in the two-layer network illustrated in Figure 1B. The network has
the same number of units in both layers, and the output layer contains lat-
eral connections, which sharpen the tuning curves. This case is particularly
relevant for neurophysiologists since this type of circuit is quite common in
the cortex. In fact, some evidence suggests that a similar network is involved
in tuning curve sharpening in the primary visual cortex for orientation se-
lectivity (Ringach, Hawken, & Shapley, 1997).

Do the output neurons contain more information than the input neurons
just because they have narrower tuning curves? The answer is no, regardless
of the details of the implementation, because processing and transmission
cannot increase information in a closed system (Shannon & Weaver, 1963).
Sharpening is done at the cost of introducing correlated noise among neu-
rons, and the loss of information in the output layer can be traced to those
correlations (Pouget & Zhang, 1996; Pouget et al., 1998). This is a case where
wide tuning curves (the ones in the input layer) are better than narrow ones
(the ones in the output layer).

That wide tuning curves contain more information than narrow ones in
this particular architecture can be easily missed if one assumes the wrong
noise distribution. Unfortunately, it is dif�cult to measure precisely the joint
distribution of the noise or even its covariance matrix. It is therefore often
assumed that the noise is independent among neurons when dealing with
real data. Let’s examine what happens if we assume independent noise for
the output units of the network depicted in Figure 1B. We consider the case
in which the output units are deterministic; the only source of noise is in the
input activities, and the output tuning curves have the same width as the
input tuning curves. We have shown (Pouget et al., 1998) that in this case,
the network performs a close approximation to maximum likelihood and
the noise in the output units is gaussian with variance f 0

i .µ /2=I1, where I1 is

1 Fitzpatrick et al. (1997) reported the opposite result. They found sharp tuning curves
to be better than wide ones when using a center-of-mass estimator. This is because the
noise model they used is different from ours and biologically implausible.
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Figure 1: (A) For a �xed noise distribution, the minimum detectable change
(MDC) obtained from Fisher information (solid line) increases with the width.
Therefore, in this case, narrow tuning curves are better, in the sense that they
transmit more information about the presentation angle. Note that using a
center-of-mass estimator (dashed line) tocompute the MDC leads to the opposite
conclusion: that wide tuning curves are better. This is a compelling demonstra-
tion that the center of mass is not a proper way to evaluate information content.
(B) A neural network with 10 input units and 10 output units, fully connected
with feedforward connections between layers and lateral connections in the out-
put layer. We show only one representative set of connections for each layer. The
lateral weights can be set in such a way that the tuning curves in the output layer
are narrower than in the input layer (see Pouget et al., 1998, for details). Because
the information in the output layer cannot be greater than the information in
the input layer, sharpening tuning curves in the output layer can only decrease
(or at best preserve) the information. Therefore, the wide tuning curves in the
input layer contain more information about the stimulus than the sharp tuning
curves in the output layer. In this case, wide tuning curves are better.

the Fisher information in the input layer. Using equation 2 for independent
gaussian noise we �nd that the information in the output layer, denoted I2,
is given by:

I2 D
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i .µ/2

f 0
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D
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I1 D NI1:

The independence assumption would therefore lead us to conclude that the
information in the output layer is much larger than in the input layer, which
is clearly wrong.
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These simple examples demonstrate that a proper characterization of the
information content of a representation must rely on an objective measure
of information, such as Fisher information, and detailed knowledge of the
noise distribution and its covariance matrix. (The number of variables being
encoded is also critical, as shown by Zhang and Sejnowski, 1999) Using
estimators such as the center of mass, or assuming independent noise, is not
guaranteed to lead to the right answer. Therefore, attention may sharpen
(Spitzer et al., 1988) tuning curves (and/or increase their gain; McAdams
& Maunsell, 1996), but whether this results in a better code is impossible
to tell without knowledge of the covariance of the noise across conditions.
The emergence of multielectrode recordings may soon make it possible to
measure these covariance matrices.
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