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Gershon, Ethan D., Matthew C. Wiener, Peter E. Latham, and One difficulty in applying information theory to neuronal
Barry J. Richmond. Coding strategies in monkey V1 and inferior systems is determining what to call a response, i.e., what
temporal cortices. J. Neurophysiol. 79: 1135–1144, 1998. We coding scheme to use. Two extremes are the number of
would like to know whether the statistics of neuronal responses spikes in a fairly wide time window and the spike arrival
vary across cortical areas. We examined stimulus-elicited spike times measured with high resolution. In general, one lookscount response distributions in V1 and inferior temporal (IT) corti-

for the simplest coding scheme that conveys the most infor-ces of awake monkeys. In both areas, the distribution of spike
mation—conflicting constraints the relative importance ofcounts for each stimulus was well described by a Gaussian distribu-
which must be decided on a case-by-case basis. Here wetion, with the log of the variance in the spike count linearly related
have the additional problem that we want to compare brainto the log of the mean spike count. Two significant differences in

response characteristics were found: both the range of spike counts regions that may use different coding schemes. Fortunately,
and the slope of the log(variance) versus log(mean) regression for V1 and IT, the areas we consider here, it has been shown
were larger in V1 than in IT. However, neurons in the two areas that spike count in a window Ç300 ms wide carries most
transmitted approximately the same amount of information about of the stimulus-related information—about 80% (Heller et
the stimuli and had about the same channel capacity (the maximum al. 1995). The remaining 20% of the information is carried
possible transmitted information given noise in the responses) . in spike timing with an accuracy of Ç30 ms in V1 and 60These results suggest that neurons in V1 use more variable signals

ms in IT (Heller et al. 1995). Because neurons in V1 fireover a larger dynamic range than IT neurons, which use less vari-
at about twice the rate of those in IT (see RESULTS), theable signals over a smaller dynamic range. The two coding strate-
spike timing accuracy relative to the mean interspike intervalgies are approximately as effective in transmitting information.
is about the same in the two areas. Thus in this paper, we
use the spike count as our neural code. This assumption

I N T R O D U C T I O N greatly simplifies our calculations, although in principle ev-
erything we do here could be applied to coding schemes that

Neurons in different regions of the visual system encode include temporal variations.
different aspects of visual stimuli. For example, neurons in Because we are using a spike count code, the number of
V1 cortex respond strongly to an oriented bar, whereas those distinguishable responses is the range of spike counts a neu-
in inferior temporal (IT) cortex often require a more com- ron is capable of producing in response to all stimuli; we
plex stimulus. We would like to know whether the differ- refer to this as the dynamic range. Any single stimulus also
ences in what is encoded are reflected in differences in the elicits a range of spike counts. This variability in the re-
neuronal response as this may shed light on strategies for sponse to a single stimulus is captured in the conditional
cortical processing. Specifically, we ask two questions. First, probability of observing n spikes given stimulus s , P(nÉs) .
in what way does the statistical structure of responses differ Therefore, we can compare responses in the two regions
across areas? Second, how do the differences, if any, affect by examining only the dynamic range and the conditional
information transmission? probabilities. In practice, this means we need a stimulus set

The first question can be answered by looking at the statis- only large enough to provide accurate estimates of these two
tics of neuronal responses. Depending on the nature of those quantities. This is a weaker constraint on the stimulus set
responses, the relevant statistics may be as simple as mean than is required by other information theoretic analyses,
firing rate or as complicated as high order correlations in which depend on the frequencies with which stimuli are
spike arrival times. The second question requires a precise presented (Cover and Thomas 1991).
definition of information, which is provided by information Determining the dynamic range of a neuron is relatively
theory. Information theory tells us that the ability of a neuron straightforward; the difficult part of the analysis is determin-
to distinguish among members of a set of stimuli depends ing the conditional probability distribution, P(nÉs) . Here
on two things. The first is the number of distinguishable we follow previous work, in which it has been shown that
responses: the more distinguishable responses, the larger the the logarithm of the variance of the stimulus-elicited spike
information. The second is the variability in the response to count is related linearly to the logarithm of the mean spike
each stimulus. Variability (which is reflected in the probabi- count in both cat and monkey V1 cortex (Dean 1981; Tol-
listic transformation from stimulus to response) clearly de- hurst et al. 1981, 1983; van Kan et al. 1985; Vogels et al.
grades information transmission. If each stimulus produces 1989). We confirm the mean-variance relation in monkey
a very broad range of responses, the information in each V1, and we observe a similar relation in monkey IT cortex.
response may be very small no matter how many distinguish- We then go on to show that P(nÉs) is well approximated

by a modified Gaussian distribution (the main modificationable responses there are.
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was truncation at 0; see METHODS for details) with mean, m,
that depends on the stimulus, s, and variance that depends
only on the mean.

What the mean-variance relation gives us is the condi-
tional probability, P(nÉm) , of observing n spikes given a
mean spike count m. While P(nÉm) is not quite the same as
the probability of observing n spikes given the stimulus, it
is in some ways more valuable. For example, given the
mean-variance relation, and thus P(nÉm) , in V1 and IT, it
is relatively easy to compare the two areas: simply examine
which area has a larger variance for a given mean spike
count, which has a larger dynamic range, and investigate
how the differences affect information transmission. When
we carry out this exercise, we find that both the spike count
variance and the dynamic range are significantly larger in
V1 than in IT. For information transmission, these two trends
work in opposite directions: a large dynamic range increases
information transmission (more distinguishable responses) ,
whereas a large variance reduces information transmission
(more variability) . For V1 and IT, the two effects approxi-
mately cancel: the maximum amount of information that
could be transmitted is about the same in the two areas—
assuming a spike count code is used, and the observed dy-
namic range and mean-variance relations apply. Thus al-
though neurons in V1 and IT implement different coding
strategies, as reflected in the significantly larger variability
and range of responses in V1 than in IT, neurons in the two
areas are capable of transmitting about the same amount of FIG. 1. Walsh patterns. For V1 set 1, the 64 stimuli (A) and the corre-
information using a spike count code. sponding contrast-reversed set were presented on the receptive fields while

the monkey fixated. Stimuli were 2.57 on a side (covering the excitatoryAn abstract of these results has appeared (Gershon et al.
receptive field and some of the surround). For V1 set 2, the 8 stimuli (B)1996).
and the corresponding contrast-reversed set were presented on the receptive
field while the monkey fixated. For inferior temporal (IT), the 4 1 4 set
(16 stimuli) in the lower left corner of A and the corresponding contrast-M E T H O D S
reversed set were used as the monkey performed a nonmatch-to-sample
task. The stimuli were 47 on a side and were centered at the point of fixation.Data set

We performed new analyses using previously published data.
randomized order. Different neurons received different numbers ofThe data came from two studies of supragranular V1 complex
presentations. The number of stimulus presentations was betweencells, each study using two rhesus monkeys performing a simple
3 and 34 in V1 set 1, between 18 and 231 in V1 set 2, and betweenfixation task (Kjaer et al. 1997; Richmond et al. 1990), and from
21 and 51 in IT. The timing of events, including spikes, wasone study of neurons in area TE of IT cortex in two other monkeys
recorded with 1-ms resolution.performing a simple sequential nonmatch-to-sample task

(Eskandar et al. 1992). The stimuli were centered on V1 neuronal
receptive fields, which were located in the lower contralateral vi- Relationship between mean spike count and its variance
sual field 1–37 from the fovea. The IT visual receptive fields were

For each cell, each stimulus produces a sample mean spike count,large and bilateral and included the fovea. Standard extracellular
mi , and a sample variance in spike count, s2

i , where the subscript irecording methods were used throughout.
labels stimulus. We use linear regression to fit the curve log s2 ÅIn the three experimental studies considered here, the visual
b / m log m to the set of points (mi , s2

i ). This results in a slope, m,stimuli were two-dimensional black-and-white patterns based on
and intercept, b, for each cell.the Walsh functions (Fig. 1) . For V1 set 1 (Richmond et al. 1990),

Estimates of log (m) and log (s 2) obtained by taking the loga-128 stimuli were used: a set of 64 8 1 8 pixel patterns and their
rithm of the sample mean and variance are biased and result incontrast-reversed counterparts. For V1 set 2 (Kjaer et al. 1997),
underestimation of the variance of response distributions and over-16 stimuli were used: a set of 8 16 1 16 pixel patterns and their
estimation of transmitted information. We corrected for the biascontrast-reversed counterparts. In both sets, the patterns covered
using a Taylor series expansion; only a few terms are needed forthe excitatory receptive field. At 37 eccentricity, the stimuli were
good results. See Kendall and Stuart (1961), p. 4–6.Ç2.57 on a side. For the IT experiments, 32 stimuli were used: 16

4 1 4 pixel patterns and their contrast-reversed counterparts. These
patterns were 47 square and centered on the fixation point. Fitting analytic distributions to the data

The stimulus was on for 320 ms in V1 and 352 ms in IT. To
account for latencies and to avoid contamination from off-re- We seek a model for the conditional probability, P(nÉs) , of

observing n spikes in response to stimulus s. We examined twosponses, spikes were counted during the interval from 30 to 300
ms after stimulus onset for the V1 neurons and 50 to 350 ms after widely used probability distributions—the Poisson distribution and

a modified Gaussian distribution. The Gaussian distribution wasstimulus onset for the IT neurons. For every neuron, each stimulus
was presented approximately the same number of times ({2) in modified by truncation to eliminate the negative portion followed
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by normalization. Such distributions have been considered for neu- the mean spike count they produce. The next step is to replace
P(nÉs √ [m, m / Dm]) with P(nÉm) . This also would be exact inral data before (Foldiak 1993). The probability of seeing n spikes

was taken to be the integral of this density function between n 0 the limit Dm r 0 if the distribution of spike counts depended only
on the mean. We show in the results that it is a good approximation1/2 and n / 1/2 (0 and 1/2 for n Å 0). A x 2 test was used to compare

each of the analytic distributions to the histogram of experimentally to assume that the distribution of spike counts does depend only
on the mean; in particular, it provides an estimate of the transmittedobserved spike counts. To have enough data for this analysis, only

the responses to stimuli that had been presented ¢12 times to a information that is consistent with estimates reached by other ac-
cepted methods. Thus we will adopt that approximation here.given cell were considered.

As an alternative to integrating the Gaussian between n 0 1/2 Before replacing P(nÉs √ [m, m / Dm]) with P(nÉm) , we need
to express P(m) in terms of P(s) . This can be done by noting thatand n / 1/2, we took the probability of observing n spikes, P(nÉs) ,

to be proportional to the Gaussian density evaluated at n . The P(s) induces a probability distribution P(m)
constant of proportionality was chosen to ensure that the total

P(m)Dm Å ∑
s√[m,m/Dm]

P(s) (3)probability summed to one. This alternative method resulted in
negligible differences in all quantities we calculated.

Then ignoring the error associated with the approximation P(nÉs √
[m, m / Dm]) É P(nÉm) , we write the probability of observingInformation measures
spike count n , averaged over all mean spike counts, as

The information carried in a neuron’s response about which
member of a set of stimuli is present is defined as (Cover and P(n) Å * dmP(nÉm)P(m) (4)
Thomas 1991)

where we replaced the sum over m that appeared in Eq. 2 with an
I(S ; R) Å ∑

s,r

P(s)P(rÉs) log2
P(rÉs)
P(r)

(1)
integral, valid in the limit of small Dm. Finally, we can rewrite
Eq. 2 for I(S; R) in terms of probability distributions over n

where S is the set of stimuli s, R is the set of responses r , P(rÉs) and m
is the conditional probability of response r given stimulus s, P(s)
is the probability that stimulus s occurred, and P(r) Å I(S ; R) Å * dmP(m) ∑

n

P(nÉm) log2
P(nÉm)
P(n)

(5)
S
s

P(rÉs)P(s) is the probability of response r . Equation 1 is gen-

eral, but here we confine ourselves to the case where the response with P(m) and P(n) given in Eqs. 3 and 4, respectively. Again we
r is taken to be the number of spikes elicited by the stimulus. Thus use an integral over m rather than a sum.
in what follows, we replace P(rÉs) with P(nÉs) and P(r) with We show in the results that P(nÉm) is well approximated by a
P(n) where n is the number of spikes. modified Gaussian distribution the variance of which is a function

The transmitted information, I(S; R) , given in Eq. 1 is a function of mean spike count. Using this modified Gaussian, we can deter-
of the stimulus probability distribution, P(s) . The channel capacity mine channel capacity by finding the distribution of mean spike
is the maximum value of I(S; R) with respect to the probability counts, P(m) , that maximizes transmitted information, Eq. 5. That
distribution P(s) . Here we take S to contain all visual stimuli. distribution must be found numerically, and the numerical imple-
Clearly channel capacity depends on what we take for the response, mentation requires that we discretize the continuous space of mean
i.e., what we choose for the neural code. However, once we choose responses. We denote these discretized probabilities by PV (m) Å
a code and a stimulus set, the channel capacity is well defined, *m/Dm

m
dmP(m) .and it represents a lower bound on the maximum amount of infor-

The search for the maximizing set of probabilities is subjectmation that could be transmitted. In this analysis, we use a spike
to three constraints: the probabilities must be nonnegative, thecount code. Such a code has been shown to carry Ç80% of the
probabilities must sum to one, and the range of means must bestimulus-related information (Heller et al. 1995), so we suspect
finite. The first two constraints arise from intrinsic properties ofthat the lower bound we compute will not be far from the true
probability distributions. If the third constraint is violated, themaximum transmitted information.
transmitted information can be infinite and the problem of max-Because the channel capacity is independent of the frequencies
imizing transmitted information is ill-posed.with which stimuli are presented in any single experiment, it is a

The first constraint is implemented by restricting the searchrobust measure that can be used to compare information transmis-
space such that 0 ° PV (m) for all m. The second constraint ission rates across brain regions. However, it is more difficult to
implemented by requiring thatcompute than transmitted information for purely experimental rea-

sons: we can measure the conditional probability distribution, ∑
m

PU (m) Å 1 (6)
P(nÉs) , for a relatively small number of stimuli, s, but to accurately
estimate the channel capacity, we need to know P(nÉs) for all

The third constraint is implemented by requiring that the distribu-stimuli. We can get around this problem by first constructing
tion of spike counts be consistent with the observed data; that is,P(nÉm) from P(nÉs) , where P(nÉm) is the probability of observing
the distribution of means must not lead to a distribution of spikespike count n given the mean spike count m, and second, developing
counts with many counts outside the observed range. Specifically,an analytic model for P(nÉm) .
if nmin and nmax are the minimum and maximum observed spikeThe expression for transmitted information must be rewritten in
counts over all stimuli for a particular cell, then we demand thatterms of P(nÉm) . We start by writing the transmitted information,

I(S; R) , in the form
∑

núnmax

C/(n 0 nmax)P(n) / ∑
nõnmin

C0(nmin 0 n)P(n) Å e (7)

I(S ; R) Å ∑
m

∑
s√[m,m/Dm] ,n

P(s)P(nÉs) log2
P(nÉs)
P(n)

(2)

where P(n) is defined in Eq. 4, both C/(n) and C0(n) are nonde-
creasing functions of n , and e is small. Equation 7 ensures thatwhere the notation s √ [m, m / Dm] means restrict s to only those

stimuli that produce a response the mean spike count of which lies P(n) falls off rapidly for spike counts outside the observed range.
To implement the optimization procedure, we need to translate thisbetween m and m / Dm and the sum over m runs in increments of

Dm. Equation 2 is exact; all we have done is order stimuli by into a constraint on PV (m) because the search for the maximum
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value of the transmitted information occurs in PV (m) space. Defining R E S U L T S
the function

We performed new analyses using previously published
C(m) å ∑

núnmax

C/(n 0 nmax)P(nÉm) / ∑
nõnmin

C0(nmin 0 n)P(nÉm) (8)
data from 42 V1 complex cells from two separate data sets
(13 from V1 set 1 and 28 from V1 set 2) and 19 IT neurons

and combining Eqs. 4 and 7, we arrive at (Eskandar et al. 1992; Kjaer et al. 1997; Richmond et al.
1990).∑

m

C(m)PU (m) ° e (9)

Equation 9 represents our third constraint. In practice, because Log(variance) is linearly related to log(mean)
expanding the range of spike counts increases transmitted informa-
tion, we do not have to worry about our range being too small, Various researchers have demonstrated a linear relation
only too large. Therefore, in Eq. 9, only the equality constraint is between the logarithm of the mean stimulus-elicited spike
important. count and the logarithm of its variance in V1 neurons (Dean

In our numerical calculations we use 1981; Tolhurst et al. 1981, 1983; van Kan et al. 1985; Vogels
C/(n) Å C0(n) Å n 2 et al. 1989). Using linear regression, we find such a relation

for both our V1 complex cells and IT neurons (see Fig. 2) .e Å 0.1
The slopes of all 13 regressions for neurons in V1 set 1 ,

To find the channel capacity, we minimize the function in 27 of 28 neurons in V1 set 2, and in 17 of 19 of the IT
neurons were significant (Põ 0.01). The minimum, median,F[PU (m)] Å 0I(R ; S) / h1(∑

m

PU (m) 0 1)2

and maximum values of r 2 were 0.14, 0.61, and 0.83 in V1
set 1, 0.11, 0.86, and 0.97 in V1 set 2, and 0.02, 0.59,/ h2[∑

m

C(m)PU (m) 0 e]2 (10)
and 0.82 in IT, respectively. The median slopes from the
regressions were 1.43 (range 0.91–2.67, 12/13 slopes ú1)where h1 and h2 are large constants. (h1 Å 1012 and h2 Å 1015 in
and 1.18 (range 0.38–1.74, 18/28 slopes ú1) for neuronsthe calculations presented here. Other large values for the constants
in V1 set 1 and V1 set 2, respectively, and 0.82 (rangegive similar results.) The second and third terms of this expression

are penalty functions that increase the value of F[PV (m)] when the 0.41–1.53, 14/19 slopes õ1) for IT neurons. The median
second and third constraints are not met. intercepts from the regressions were 0.26 (range 02.42–

Any standard minimization algorithm can be used. We per- 1.45, 3/13 constants õ0) and 0.60 (range 00.79–2.10,
formed the minimization using the Splus (v. 3.4, Mathsoft, Seattle 5/28 õ0) in V1 set 1 and V1 set 2, respectively, and 0.31
WA) gradient-descent function nlminb. (range 01.03–1.82, 5/13 õ0) in IT.

A minimum may be either global or local. However, in our Data arising from a process having equal mean and vari-problem, the minimum is global. This is guaranteed because the
ance (for example, a Poisson process) , would give rise tospace we are searching [PV (m) ¢ 0 combined with two linear con-
a regression intercept and slope statistically indistinguishablestraints] is convex, and transmitted information is a concave func-
from 0 and 1, respectively. The regressions from all 13 cellstion with respect to PV (m) (Cover and Thomas 1991, p. 31). There-
in V1 set 1, 24 of 28 cells in V1 set 2, and 14 of 19 IT cellsfore, we are guaranteed a single global minimum, and the gradient

descent method must converge to that minimum. had either an intercept significantly different from 0 (P õ

FIG. 2. Log(mean) vs. log(variance) re-
gression. There were 128 stimuli for the V1
set 1 neuron (s) , 16 stimuli for the V1 set 2
neuron (h) , and 32 stimuli for the IT cell (n) .
Least-squares regression line for each data set
is shown. This example shows the cell with
the median slope from each data set.
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variance, for the Gaussian) that minimized x 2 , by using the
observed mean and (for the Gaussian) the variance predicted
by the mean-variance regression, and by using the observed
mean and (for the Gaussian) variance. The third method
gave such poor results that we dropped it from consideration.
The variance of responses to any given stimulus is a sample
variance, and therefore is itself a random variable. The re-
gression model uses the variances in response to all stimuli
to estimate the variance of response to each stimulus. We
believe this explains why the second method is so much
more effective than the third method.

Figure 4 shows that the Poisson distribution could be re-
jected (P õ 0.05) much more frequently than the modified
Gaussian distribution, even when the best-fit parameters
were used for the Poisson, and the parameters from the
Gaussian were estimated using the data and the mean-vari-
ance relation (described in the following text) . The differ-
ence was even greater when the best-fit parameters were
used for the Gaussian as well.

The fact that a x 2 test based on the observed mean and
predicted variance for the Gaussian fails more often than
5% of the time at P Å 0.05 (6, 25, and 8% in V1 set 1 , V1
set 2, and IT, respectively) suggests that factors other than
those identified in this paper may influence the variance of
the distributions.

Information estimates using a modified Gaussian
distribution

Because a modified Gaussian distribution modeled the
FIG. 3. Sample fits using Poisson and modified Gaussian distributions.

data better than a Poisson distribution in all three data sets,A : cell from IT. B : cell from V1. Each row shows the histogram of responses
we used the modified Gaussian to describe the conditionalto 1 of 32 (IT) or 128 (V1) stimuli, along with the best-fit modified

Gaussian ( left ) and Poisson (right) distributions. Modified Gaussian pro- probabilities P(nÉs) needed to compute transmitted informa-
vides a better fit, especially when the mean firing rate is large. Stimuli tion. We chose the mean and variance of the modified
presented here were selected to show responses with a range of mean spike Gaussian in three ways: by using the observed mean togethercounts for each cell. Note that the scales for the 2 sets of graphs are

with the variance predicted by the mean-variance relation,different.

0.05) or a slope significantly different from 1 (P õ 0.05)
or both. These results provide evidence that the Poisson
distribution does not provide a good model of the data.

Modified Gaussian fits spike count data better than
Poisson

We fit modified Gaussian distributions (as described in
METHODS) and Poisson distributions to the empirical distri-
bution of responses elicited by each stimulus. Sample fits
are shown in Fig. 3. A x 2 test was used to evaluate the fits.
The requirement that each response distribution analyzed be
based on ¢12 presentations of the given stimulus excluded
7 of 13 of the neurons from V1 set 1. Three of 13 cells had
enough presentations per stimulus for all stimuli, and three
others had enough presentations for a few stimuli each, for
a total of 433 response distributions. All cells from V1 set
2, and all cells from the IT set, had enough presentations FIG. 4. Chi-squared test of response distributions. Each bar shows the

percent of response distributions for which the hypothesis that the datafor all stimuli.
came from the Poisson or modified Gaussian distribution can be rejectedThe Poisson distribution requires only a single parameter,
(P Å 0.05). Modified Gaussian distribution using the best-fit parametersthe mean spike count, whereas the modified Gaussian re- is rejected less often than the distribution using the observed mean and

quires both the mean and variance of spike count. Parameters variance calculated using the log(variance) vs. log(mean) regression, indi-
cating that other factors probably influence the variance.were computed in three ways: by choosing the mean (and
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by calculating the mean and variance directly from the data,
and by using the mean and variance obtained from the fitting
procedure. For comparison we also computed the informa-
tion using an artificial neural network (Golomb et al. 1997;
Heller et al. 1995; Kjaer et al. 1994).

The estimates obtained using the first method—the re-
gression method—and the network method are nearly equal
(Fig. 5) . The second method always calculates higher values
for transmitted information than the first method [mean dif-
ference Å 0.047 { 0.063 (SD) bits] , and the third method
calculates even higher values (mean difference Å 0.072 {
0.036 bits) . These represented median percent differences
of 8 and 20%, respectively.

As a check, we also calculated the transmitted information
on the assumption that the responses were distributed ac-
cording to the Poisson distribution. As expected, given that
the Poisson distribution fit the data poorly, the information
estimates showed large deviations from the network esti- FIG. 6. Transmitted information as a function of the counting window

size. The x axis shows the time from stimulus presentation. IT starts latermates. The information calculated using the Poisson distribu-
than V1 because it has a longer latency. The y axis shows the transmittedtion was higher than the information calculated using the
information accumulated from stimulus presentation (time 0) to the timemodified Gaussian regression method in 51 of 60 cells (mean
indicated on the x axis. Information accumulates significantly more quickly

difference Å 0.23 { 0.25 bits) . in neurons from V1 than in neurons from IT.
The transmitted information depends on the width of the

counting window. We examined windows ranging from 30
stimuli elicit spikes earlier than others, and in small windowsto 270 ms in V1 set 1, from 30 to 320 ms in V1 set 2, and
this produces information. Because we are using a spikefrom 50 to 350 ms in IT. The log(mean) versus log(vari-
count code, information is reduced as more of the stimuliance) regression was calculated using the spike count distri-
elicit spikes. Information rises again as different spike countsbutions in each window. The mean information in the largest
become distinguishable. This is evidence that latency carriestime window was 0.33 { 0.16 bits (n Å 13) for V1 set 1,
stimulus-related information in IT neuronal responses. La-0.40 { 0.25 bits (n Å 28) for V1 set 2, and 0.41 { 0.38
tency has been shown to carry stimulus-related informationbits (n Å 19) for IT. Information rose quickly in the two
in V1 (Gawne et al. 1996).V1 data sets—most information accumulated in just 50 ms

(Fig. 6) . Information in IT rose much more slowly, begin-
Channel capacity is approximately the same in V1 and ITning to level off after Ç150 ms. The early dip in transmitted

information in cells in IT is due to latency effects: some
We can compute the channel capacity (assuming a spike

count code) by finding the distribution of mean spike counts

FIG. 7. Channel capacity as a function of the counting window size.
The x axis shows the time from stimulus presentation. IT starts later thanFIG. 5. Two methods for estimating transmitted information. The x axis

shows the mean value calculated using the neural network (Kjaer et al. V1 because it has a longer latency. The y axis shows the channel capacity
accumulated from stimulus presentation ( time 0) to the time indicated on1994); the y axis shows the value calculated using the method described

in the text. Values calculated using the 2 methods are nearly identical. All the x axis. Channel capacity rises more quickly in V1 than in IT, although
the difference is not as pronounced as for transmitted information.cells with enough data to allow analysis (60) are represented.
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channel capacity by ú5% for any of the examples we consid-
ered. In addition, numerical implementation of the gradient
descent requires that we discretize the probability distribution
of the mean spike count. In our simulations, we used a bin
size of one spike count so the means took on integer values.
Again, to test robustness, in several cases, we decreased the
bin size by a factor of 2 and saw little change.

Figure 8 shows a typical example of the probabilities with
which various means should occur to achieve channel capacity.
In every neuron, mean zero (that is, no spikes) occurs most
frequently. A small group of means occurs somewhat less fre-
quently, and the rest of the means occur with extremely low
probability. The bumps appear for different non-zero means
for different cells; we do not present an average distribution
because averaging obscures the fact that each distribution con-
sists of discrete bumps. If the dynamic range of the cell is
larger, then additional ‘‘ripples’’ may appear, indicating further
means that occur with significant probability.FIG. 8. Distribution of mean responses (each corresponding to a stimu-

lus equivalence class) that maximizes transmitted information. The x axis
shows the means. The y axis shows the probability with which the means D I S C U S S I O N
should occur to achieve channel capacity. Distribution here was calculated

In the INTRODUCTION, we posed two questions: in whatusing integer means. As noted in the text, using a finer grid does not
materially affect the results. way does the statistical structure of responses differ across

areas and how do the differences, if any, affect information
transmission? We found that the responses of neurons inthat yields the highest transmitted information (see METH-
V1 and IT cortex do indeed have different structures. The

ODS). This requires knowing the minimum and maximum
maximum spike count observed in V1 cortex neurons isobserved spike counts for each cell and the variability in
generally much higher than that in IT cortex neurons. Inspike count at each mean. The minimum and maximum
addition, responses in V1 are much more variable than thosecome directly from the data; for the variability, we assumed
in IT.that the probability of observing a particular spike count,

Despite the differences in response structure, neurons inP(nÉm) , was given by a modified Gaussian distribution with
V1 and IT cortex carried approximately the same amount ofmean m, and with a variance predicted by a linear relation
information about the stimulus set used in these experiments.between log(variance) and log(mean).
However, transmitted information depends both on the stim-In the longest windows available, the minimum spike
uli chosen and on the relative frequencies with which theycount for all but six cells was 0; that is, at least one stimulus
are presented. With a different stimulus set, we might wellelicited no spikes. There were two exceptions in each of the
have measured a different amount of information. ThisV1 data sets ( in both, the minimum count was 1 spike) and
makes comparison of transmitted information across areasfour exceptions in the IT data set ( the minima were 1, 2, 2,
and generalization to other stimuli difficult.and 4). The maximum spikes elicited by any stimulus were

To overcome this limitation, we estimated the channelfairly evenly spread over a range of 30–75 in V1 set 1, 15–
capacity of the neurons. The channel capacity is the maxi-45 (with 2 outliers with maxima of 58 and 73) in V1 set
mum information that a neuron can transmit using a given2, and 10–30 (with 2 outliers with maxima of 43 and 55)
code, given the constraints of noise in the channel and lim-in IT. The median spike count maxima were 54, 31, and 24,
ited range of responses. The channel capacities were alsorespectively.
approximately equal in the two areas. This suggests that, inThe average channel capacity was 1.26 { 0.21 bits in V1
the course of visual processing, variability is traded offset 1, 1.12 { 0.28 bits in V1 set 2, and 1.13 { 0.47 bits in
against dynamic range.IT. The median channel capacities were 1.28, 1.02, and 1.23

The observed differences in spike count and variabilitybits, respectively.
are easy both to visualize and to quantify. Transmitted infor-As can be seen in Fig. 7, channel capacity also rose more
mation and channel capacity, on the other hand, are morequickly as a function of time in neurons from the two V1
abstract quantities, and their computation requires a numberdata sets than in neurons from IT, although the difference
of assumptions. These assumptions include that spike countis not as pronounced as for transmitted information.
is the neural code, that the observed dynamic range is a goodAllowing a larger range of responses increases the amount estimate of the true dynamic range of the cell, and that theof information that can be transmitted. Therefore, the channel mean-variance relations derived from our data hold for allcapacity calculated here depends on the constraints imposed visual stimuli. We now discuss these and other assumptionson the dynamic range. To test the robustness of our numerical and how they influenced our conclusions.results, in a few cases we decreased e (which controls how

many responses can lie outside the observed dynamic range; Transmitted informationsee METHODS) by a factor of 10 or used a constant instead of
a quadratic weighting function [C/(n) Å C0(n) Å constant; Computation of the transmitted information between neu-

ral responses and a stimulus set requires that we choose asee METHODS]. This did not change the resulting value of the
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neural code. Here we chose the number of spikes in a win- information capacity is the information present in the signal
itself, subject to a model of the noise.dow °330 ms wide. In the two areas we examined, V1 and

IT, such a spike count code has been shown to carry Ç80%
of the information contained in the full neuronal response Calculating channel capacity
(Heller et al. 1995). Thus the true transmitted information
is Ç25% higher than the values we report. Because we are To calculate transmitted information, we need an estimate

for the response distribution for each stimulus presented incomparing areas in which the downward bias caused by
using an incomplete code is about the same, this bias should an experiment. These distributions can be estimated directly

from the data. Calculating channel capacity is more difficult,have virtually no effect on our conclusion that the two areas
transmit about the same amount of information. because it requires knowing the response distribution for all

stimuli, not only those presented in a particular experiment.The primary effect of choosing a spike count code was that
it allowed us to formulate a simple model for the response This problem can be overcome by sorting stimuli into groups

based on the response distribution each evokes. Here wedistributions. Those distributions turned out to be well ap-
proximated by a modified Gaussian (see METHODS for a will call each such group of stimuli an equivalence class.

The neuron cannot distinguish members of an equivalenceprecise definition of modified). The existence of a model
for the response distribution allowed analyses that would class from one another. For example, otherwise identical

stimuli of different colors produce the same response distri-have been impossible otherwise. Although in principle it is
possible to construct a model for more complicated codes, bution in a cell insensitive to color. Therefore, rather than

considering each stimulus separately, we work with theit is more difficult and larger data sets may be required.
equivalence classes.

There are likely to be equivalence classes we do not ob-Channel capacity
serve experimentally. However, if we can describe the set
of equivalence classes with a model involving a small num-An intrinsic drawback of transmitted information is that

it depends on the frequencies with which stimuli are pre- ber of parameters, and if we can show (as we have in RE-

SULTS) that the model adequately describes the distributionssented. This makes the value of the transmitted information
somewhat arbitrary—it almost always can be made either at parameter values observed experimentally, then we can

assume that the model also describes the distributions forlarger or smaller simply by changing the probabilities with
which stimuli are presented. One could imagine adjusting unobserved parameter values. This overcomes the major ob-

stacle to calculating channel capacity.stimulus probabilities to maximize the transmitted informa-
tion. Shannon and Weaver (1949) defined the resulting max- We found that a modified Gaussian distribution provides

a good model of the response distributions in our experi-imum value as the channel capacity. It is a function only of
the conditional probability distribution P(rÉs) . ments. We compared transmitted information values ob-

tained using the modified Gaussian to the values obtainedThe use of the term channel capacity to represent the
maximum amount of information that can be transmitted by a previously validated method using a neural network

(Golomb et al. 1997; Heller et al. 1995; Kjaer et al. 1994);using a given code (or ‘‘alphabet’’, in Shannon’s original
terminology) in the presence of noise is well established the values obtained by the two methods are indistinguish-

able. Thus although there may be a distribution that fits(Cover and Thomas 1991; Shannon and Weaver 1949).
Channel capacity, like transmitted information, depends on these data better than the modified Gaussian, the modified

Gaussian is a good model for the calculations we want tohow we choose to interpret the cell’s response, that is, on
our assumption about the neural code. However, once we perform. A Poisson distribution, although often used to

model responses, fit our experimental data poorly. Otherschoose a code, the channel capacity is well defined. Because
it is always possible that some other code would allow the have reached the same conclusion (Softky and Koch 1993;

Victor and Purpura 1996).cell to transmit more information than the code under exami-
nation, the channel capacity based on any given code is a The modified Gaussian distribution is fully specified by

two parameters: the mean and variance. This distributionlower bound on the amount of information that the cell can
transmit. Because the spike-count code has been shown to provides a sufficiently simple model of the neuronal re-

sponses to allow calculation of the channel capacity. It turnscarry Ç80% of the stimulus-related information (Heller et
al. 1995), it provides a reasonable first approximation. out that we can simplify the problem by estimating the vari-

ance of each distribution based on the mean. This simplifica-The actual code used by neurons is likely to include some
temporal aspects of the response. Although temporal modu- tion is achieved using the linear relation between log(mean)

and log(variance) (Dean 1981; Tolhurst et al. 1981, 1983;lation could provide many degrees of freedom, studies of
V1 neurons have shown that only a few degrees of freedom van Kan et al. 1985; Vogels et al. 1989). If we know the

mean of a response, we can calculate its variance. Therefore,are used to carry stimulus-related information (Heller et al.
1995; Richmond et al. 1990; Victor and Purpura 1996). We any response distribution can be characterized by its mean.

With this model, the equivalence classes are labeled bypredict that the increase in channel capacity when temporal
modulation is taken into account will be proportional to the the mean response. Two stimuli that produce the same mean

response also produce identical response distributions. Theseincrease in transmitted information. If this is true, then the
actual channel capacities will be Ç25% larger than the val- stimuli will be indistinguishable based on the responses of

the cell and need not be considered separately. Note thatues we calculated.
Channel capacity should not be confused with information every stimulus produces some mean spike count, even if it

is zero, and therefore is accounted for in this model.capacity of the signal (MacKay and McCulloch 1952). The
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We now invoke our main assumption: that mean responses bits /s with moving stimuli. de Ruyter van Steveninck et al.
(1997) estimated that the responses of the H1 neuron of thenot observed in our experiments could be observed given

appropriate stimuli. Then the channel capacity can be calcu- fly contain 2.43 bits /30 ms (Ç80 bits /s) . Here we examine
factors that may account for the differences in our results.lated by finding the distribution of mean spike counts that

maximizes transmitted information. Both MT cortex and the fly H1 neuron analyze motion. In
the experiments noted earlier, monkeys or flies were shownIt is, of course, necessary to restrict the range of spike

counts. There are both biophysical and mathematical reasons stepped motions of coherent patterns of bars. Analysis was
carried out to determine the information transmitted by thefor this. Biophysically, we know that all cells have a maxi-

mum firing rate. Mathematically, if we allow an infinite neurons about the direction of motion of the (unchanging)
coherent pattern. Motion analysis (especially in only 1 or 2number of spikes, the channel capacity would be infinite.

We restricted the range of spike counts to be consistent with dimensions) is an easier problem than pattern recognition.
We expect that it requires less computation than patternobserved data. Briefly, we required that the spike count fall

primarily within the experimentally observed minimum and recognition, resulting in increased information transmission
rate per neuron.maximum (see METHODS). The maximum experimentally

observed spike count may be an underestimate of the true For the neurons in our experiments, almost all of the
stimulus-related information that is available in the spikemaximum, as we may not have used stimuli that elicited the

highest firing rates. However, the peak firing rates that we count is available in the first 50 ms of information transmis-
sion (after a 30-ms latency period) in V1 cortex and in thesaw in V1 and IT are similar to those seen by others (Perrett

et al. 1984; Rolls 1984; Rolls et al. 1982; Tolhurst et al. first 200 ms of information transmission (after a 50-ms la-
tency period) in IT cortex. If these peak information rates1981, 1983; Vogels et al. 1989). If new evidence does show

that the dynamic range is larger than we observed, the chan- were maintained, the V1 and IT neurons would be able to
transmit Ç20 and 5 bits /s, respectively. These rates are stillnel capacity can be recalculated. The effects, however, are

modest. We calculated the increase in channel capacity as- smaller than those reported in the motion studies, although
20 bits /s approaches the rates seen by Buracas et al. (1996)suming that the maximum firing rate for each cell was 25%

greater than the measured values. The median increase in in MT.
Given that, in V1, most information that will ever bechannel capacity was 8.5% (range 0.8–20.9%).

To ensure that the estimate of channel capacity is reason- available is available within 50 ms of the beginning of a
response, why flash stimuli on a screen for 300 ms? Duringable, it is important to know that the log(mean) versus

log(variance) regression is reliable. For all but 3 of 60 neu- normal primate vision, a new image appears on each re-
ceptive field one to three times per second due to saccadicrons the regressions were significant. It is possible that the

regression could change for different stimuli, or, for exam- eye movement, after which the image is kept nearly still on
the retina (compared with saccade velocities) . Therefore, tople, in different attentional states. A change in the regression

would provide powerful evidence for a state change at a study the processes underlying pattern recognition, flashing
stimuli onto the visual field at relatively slow rates seemsfundamental level of neural function. Such changes have

been reported for fly H1 cell (de Ruyter van Steveninck et an appropriate paradigm. It remains to be seen whether more
rapid presentation of the images would allow consistent peakal. 1997). de Ruyter van Steveninck et al. (1997) found less

variance, and more information, in the responses of fly H1 information transmission or whether the images would inter-
fere with one another.cell to a moving coherent stimulus when the stimulus moved

along a ‘‘presumably more naturalistic’’ two-dimensional In both of the analyses of motion, temporal aspects of
neural response were taken into consideration. In our analy-trajectory than when the stimulus moved in one direction at

constant speed. However, at least one study that looked for sis, they were not. Previous analyses (Heller et al. 1995)
found that spike count transmitted Ç80% of the informationsuch differences in one monkey visual cortical area (MT)

failed to find them (McAdams and Maunsell 1996). available in the full response. Therefore, if we accounted
for temporal aspects of the signal, we could expect a 25%When we calculated the channel capacity, we found that,

on average, it is about the same in V1 and IT, and in both rise in transmitted information.
areas it is about two to four times the transmitted informa-
tion. This lends support to the notion that the smaller dy-

Questions raisednamic range found in IT (as compared with V1), which
would tend to decrease the information that can be transmit- Presumably neurons in these two regions operate ac-
ted, is balanced by less variable neuronal responses, which cording to the same biophysical principles. How is it that
tend to increase information transmission. the variance is lower in IT neurons than in V1 neurons?

Does the larger dynamic range with larger variance offer
Comparison with other studies some advantage that offsets the energy cost of higher firing

rates? Finally, why don’t all neurons use a large dynamic
In this study, the information transmitted by the spike range with low variability?

count averaged Ç1 bit /300 ms (3 bits /s) . The channel ca-
pacity, although typically two to four times larger in any

The authors thank Drs. Mike W. Oram and Karen D. Pettigrew for helpfulcell, is also not very large. Other investigators have reported
discussion and comments on the manuscript.significantly higher transmission rates. A recent preliminary Present addresses: E. D. Gershon, New York University School of Medi-
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