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Supporting Text

This document is divided into three sections. In the first, we show that the cost function used
by Dan et al. (1) and Oram et al. (2) to assess the importance of synchronous spikes is the
extra number of yes/no questions associated with ignoring synchronous spikes; therefore, it
is equal to AT for a specific code. In the second, we show that correlations can exist without
being important for decoding. In the third, we show that there isn’t a reliable relation

between the importance of correlations and either Al ymeq 0F Algynergy-

The Information Difference Between Two Codes is Equal to AJ

The correlations that are most often proposed to carry extra information are those contained
in synchronous spikes across pairs of neurons (3), where “synchronous” typically refers to
spikes that occur within 1 — 10 ms of each other. One way to test this proposal is to divide
responses into finite time bins and compare two codes: one in which the neuronal responses
are taken to be the number of spikes in each bin and another in which the neuronal responses
are taken to be the number of spikes in each bin plus the number of synchronous spikes across
each pair of bins (Fig. 4). This code comparison is typically done by computing information
for the two cases (1, 2). Note that this approach is not completely general: first, synchronous
spikes may not represent the sole source of correlations; second, if the bins are too large,
information is lost to averaging, whereas if they’re too small, the number of synchronous
spikes is predicted by the number of spikes in each bin, and the difference in information
vanishes. Nevertheless, it is a good starting point.

Let us denote the difference in information computed in this way as AJlgynchronouss

AIsynchronous = I(S, I, Iy, rs) - I(S, ry, 1'2)

where r; and r, are vectors of spike counts for neurons 1 and 2, ry is a vector of synchronous
spikes across the two neurons and s is the stimulus. The components of the vectors corre-
spond to different time bins (see Fig. 4).

How does Algynchronous compare to AI?7 It turns out that Algynchronous s the extra num-

ber of yes/no questions one would have to ask to guess the stimulus if one did not take
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Figure 4: The method used by Dan et al. (1) and Oram et al. (2) to asses the importance
of synchronous spikes. Spike trains from two neurons (top two rows) are binned at finite
resolution. A third “pseudo-neuron” (third row) is constructed from coincident spikes (the
red spikes in the first two rows). In experiments, spikes are considered coincident if their
arrival times differ by some small amount, typically 1 —10 ms. Information is then computed
for two codes: one consisting of spike counts from the two individual neurons (r; and r,,
fourth and fifth rows) and one consisting of these two spike counts plus the number of
coincident spikes (r, last row).

synchronous spikes into account. Thus, Al nchronous = A1 when both are calculated using
the above neural code. Rather than proving this for the specific case of synchronous spikes,
we derive a more general result: We show that the difference in information computed using
two neural codes is the extra number of yes/no questions it would take to guess the stimuli
using one rather than the other.

When we say “code,” we mean a choice for the neural response. For example, if we use
a spike count code, the choice of response is the number of spikes in some interval; if we use
a spike timing code, the choice of response is the arrival time of each spike. Letting r’ and
r” refer to two distinct codes, the difference in information they convey about the stimuli,

denoted AT, is given by

p(r') 5 p(r")

AT = Isix) = 1(537") = X pls) T o) logs 21 = 57 p(s) 3 pta”]s) o, 2500

Using Bayes’ theorem, this expression may be rewritten as



Aj:Zp Zp s) log, p(s|r) Zpl‘| ) log, p(s|t”)| . (A1)

r!!

We would like to compare A to the extra number of yes/no questions it would take to
guess the stimulus if one observed r’ instead of r”. This difference, which we denote Al ,
can be found from the individual penalties, in yes/no questions, one pays for using r’ and r”

versus the true code, r,

s|r s|r
= Y56 (el o, KR = 37 p(s) Yoptels tog, B
Because r is the true code, both r' and r” must be functions of it, so in this expression
r' = f'(r) and r"” = f’(r). Canceling the term log, p(s|r) that appears in both expressions
and making it explicit that ' and r” depend on r, we have

AI=3"p(s) | D plrls) 251? — f'(r)) log, p(s|r') Zp s) > o(r" —£"(r)) log, p(sr") | .

r/l

Here § is a Kronecker d-like object: 6(r' — f'(r)) = 1 if v’ = f'(r) and 0 otherwise, and
similarly for §(r” —£"(r)). Had we been using continuous distributions, the sums would have
been integrals and we would have replaced the Kronecker ¢ with the Dirac J-function.

Interchanging the order of summation and rearranging terms slightly, we find that

Aszp Zlong s|r’) Z5I'—f' ZIOgQP s[r”) Z(S — £"(r))p(r|s)

(A2)

This equation may be simplified by using the standard expression for transforming proba-

bility distributions: if, for any function g(r), z = g(r), then

=>_p(r[s)i(z - g(r)).

Using this expression, we see that Eq. A2 is identical to Eq. A1. Thus, the difference in
information using two codes is identical in the difference in the number of yes/no questions

it would take to guess the stimulus using one code rather than the other.
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Existence Versus Importance of Correlations

If neurons are not correlated, meaning pinq(r|s) = p(r|s), then AI = 0. The converse,
however, is not true: AI = 0 # pinqa(r|s) = p(r|s). In other words, it is possible for neurons
to be correlated, meaning ping(r|s) # p(r|s), and still have AT = 0. To see why, we use Eqs.

1 and 3 of the main text to write

Pind(5|T)  Ppina(r|s) p(r)
p(s|lr)  p(rls) pial(r)’ (B1)

If AI = 0, so that pia(slr) = p(s|r), Eq. Bl tells us only is that pipqa(r|s)/p(r|s) =
Pina(r)/p(r); it does not tell us that png(r|s) = p(r|s). Thus, AI = 0 does not imply
that correlations do not exist.

Of course, Eq. B1 does not tell us whether a distribution exists that is both correlated
and has Al = 0. However, it is not hard to find one. Consider an example like the one
in Fig. 4, in which the neural code consists of three quantities: the number of spikes from
neurons 1 and 2, denoted 7 and 79, respectively, and the number of synchronous spikes from
the two neurons, denoted r,;. For definiteness, consider a single time bin, so 71, o and r, are
scalars. For this restricted code, the true distribution, p(r|s), is simply p(ri, 79, 7s|s). It is

convenient to write this in the form
p(r|s) = p(rs|ri, ra, s)p(r1,72|s) , (B2)

which follows immediately from Bayes’ theorem. The independent distribution, pi,q(r|s), is
the distribution derived without any knowledge of the correlations between the two neurons;

it is thus given by
Pind(T[8) = Pina (75|71, m2)p(r1|8)p(T2]5) (B3)

where pina(rs|ri,2) is the probability of observing ry synchronous spikes given that the

neurons produced, independently, 7 and ry spikes.



There is at least one case in which piq(r|s) # p(r|s) even though piq(sr) = p(s|r).
That is the case in which the following two conditions hold: the number of synchronous
spikes depends on 71 and ry but not directly on s, meaning p(rs|r1, 79, s) = p(rs|r1,r2), and
the spike counts are independent, meaning p(ri,r2|s) = p(ri|s)p(re|s). Combining these

conditions with Eq. B2, we see that

p(rls) = p(rs|ry, r2)p(ri]s)p(rals) - (B4)

To determine whether the neurons are correlated, we use Eqs. B3 and B4 to write

pind(r‘s) _ pind(rs‘rla 7“2)
p(r|s) p(rslre, m2)

As long as the synchronous spikes occur above chance, so that ping(7s|r1, r2) # p(rs|ri,rs),
then the neurons are correlated. However, the degree to which they are correlated is stimulus-
independent, which implies, via Eq. B1 and a small amount of algebra, that pi,q(s|r) =
p(s|r), which in turn implies that AT = 0. Thus, in this case, even though correlations exist,

they are not important for decoding.

Evaluation of Other Measures for Decoding

In this section we show by construction that Algymeq and Algynergy can be positive, negative,
or zero both when AI is zero and when it is positive. This implies that neither Al meq nOT
Algynergy are reliable indicators of the importance of correlations for decoding.

Our program is to simply write down a probability distribution and compute the relevant
information theoretic quantities. The probability distribution we use is given in Table 1, and
the relevant information theoretic quantities are I, A, Aljymed and Algynergy-

A feature of the distribution in Table 1 is that the stimuli and responses fall into disjoint
classes: stimuli s; and sy produce responses between 0 and 2 but never above 2; stimuli
s3 — s5 produce responses between 3 and 5 but never below 3. Consequently, we can write

this distribution as

p(s,r) = ppi(s,1) + (1 = p)pa(s, 1)



Table 1. Probability distribution used to show that Algymeq and Algnergy are not directly
related to AI. This distribution depends on three quantities, «, 3, and p; the range of all

of them is from 0 to 1.

stim | 71 | 72 p(s) p(r1,72[s) Pind (71, 2|5) p(s|r1,72) Pind(8[7r1,72)
010 af2 1/4 1 1
$1 011 p/2 (1-a)/2 1/4 1 1
110 (1-a)/2 1/4 1 1
11 a2 1/4 a/(a+B) 1/2
1)1 p/2 1/4 B/(a+b) 1/2
s, |12 p/2 (1-p3)/2 1/4 1 1
2 | 1 (1-5)/2 1/4 1 1
2|2 B8/2 1/4 1 1
S3 4|5 (1-p)/3 1/2 1/4 1 1
5 | 4 1/2 1/4 1 1
S4 o |3 (1—p)/3 1/2 1/4 1 1
319 1/2 1/4 1 1
S5 3|4 (1-p)/3 1/2 1/4 1 1
413 1/2 1/4 1 1

where p is the probability of observing stimuli s; — so and responses 0 — 2, 1 — p is the

probability of observing stimuli s3 — s5 and responses 3 — 5, and both p;(s,r) and ps(s,r)

are normalized to 1. For distributions of this form, it’s not hard to show that

1
Al

Al shuffled

AIsynelrgy

where Algnergy ik, Alg, and I,

= pli+ (1—p)2+ h(p)
= pAL+(1—-p)AlL
= pAIshufﬂed,l + (1 - p)AIshufﬂed,Q

= pAIsynergy,l + (1 - p)AIsynergy,Q - h(ﬂ)

are computed using pi(s,r) (k= 1,2), and

h(p) = —plogy p — (1 — p)logy(1 — p)

is the entropy of a binary variable with probability p.

Using Eq. C1, it is straightforward (although somewhat tedious) to show that



[(0.8.p) = p4+alog2a+ﬂlog2ﬁ4— (a + B)logy(a + f) (C2a)

+ (1 —p)logy 3+ h(p)
a+ 3+ alog, a+ Blog, f — (a+ ) logy(a + )

Al(a,B,p) = p 1 (C2b)
A-Ishuﬁied(aa /B, p) = 1+ alOgQ o+ /Blog2 ﬂ4_ (CY + ﬂ) IOgQ(OZ + /6) + 1 ; P (CZC)
AIsynergy(a, ﬂ, p) = p OZ]OgQ o+ ﬁlOgQ ﬂ —4(0& + /6) 10g2(a + ﬁ) (C2d)

+ (1= p)logy(4/3) — h(p).

We now look at several special cases.

Case 1: Algumea can be positive, negative, or zero when Al = 0. Let « = f and p = 1. The

quantities in Eq. C2 then simplify to

2—«

Ia,a,1) = 5 (C3a)
Allo,a,1) = 0 (C3b)
Ao, o, 1) = > _420‘ . (C3c)

Because the range of « is from 0 to 1, Algumeq can range from —1/4 to 1/4. In Fig. 5a we

plot Algufea/I versus a.

Case 2: Algumeq can be positive, negative, or zero when Al > 0. Let =1 and p=1. The
quantities in Eq. C2 then simplify to

4+ alogy,a— (14 a)logy (1 + «)

I(a,1,1) = 1 (C4a)
1 1 —1 log, (1
Al(a,1,1) = —Tatalosa 4( +a) log,(1 + @) (C4b)
1+al 1 log, (1
A]shuf'ﬁed(afa 1; 1) = e 082 & ( 4+ a) Og2( + a) . (C4C)
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Figure 5: Algumeq isn’t reliably related to AI. (a) Case 1: Alghufea/I versus a with 8 = «
and p = 1, for which AT = 0. (b) Case 2: Algumea/I versus AI/I as « ranges from 0 to 1
with 8 =p=1.

From these expressions, we see that when « ranges from 0 to 1, Algumeq ranges from 1/4 to
—1/4, AT ranges from 1/4 to 0, and I ranges from 1 to 1/2. In Fig. 5b we plot Alghyfiea/!
against AI/I versus « for o between 0 and 1. This plot shows that when AT > 0, Algyfied

can be positive, negative, or zero.

Case 3: Algnergy can be positive, negative, or zero when Al = 0. Let « = § = 1. The

quantities in Eq. C2 then simplify to

I(1,1,0) = £+ (1= p)logy3+ hp) (C5a)
AI(1,1,p) = 0 (C5b)
Alynergs(1,1,0) = =5+ (1= p)logy(4/3) — h(p) . (Csc)

When p = 0, Alyynergy = l0g,(4/3) & 0.42, whereas when p = 1/2, ALynergy = logy(4/3)/2 —
5/4 ~ —1.0; for the corresponding values of p, I = log, 3 ~ 1.58 and (log, 3)/2+5/4 ~ 2.04,
respectively. In Fig. 6a we plot Algynergy/I versus p for p between 0 and 1/2.

Case 4: Algynergy can be positive, negative, or zero when Al > 0. Let o =1 and 8 = 0. The

quantities in Eq. C2 then simplify to
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Figure 6: Algneg, isn’t reliably related to AI. (a) Case 3: Algynergy/I versus p with
a = 3 =1, for which AI = 0. (b) Case 4: Alsynergy/I versus AI/I as p runs from 0 to 1
with o =0 and § = 1.

1(0,1,p) = p+(1—p)logy3+ h(p) (C6a)
AI(0,1,p) = fz) (C6b)
Algynergy(0,1,0) = (1 — p)logy(4/3) — h(p) - (Céc)

From these expressions, we see that when p ranges from 0 to 1, Alynergy ranges (non-
monotonically) from log,(4/3) to 0, AI ranges from 0 to 1/4, and I ranges from log, 3 to 1.
In Fig. 6b we plot Algnergy/I against AI/I versus « for o between 0 and 1. This plot shows
that when AT > 0, Alyergy can be positive, negative, or zero.

Taken together, Figs. 5 and 6 show that both Alpumeq and Algpegy can be positive,

negative, or zero when Al = 0 and when A7l > 0.
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