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It has been known for >30 years that neuronal spike trains exhibit
correlations, that is, the occurrence of a spike at one time is not
independent of the occurrence of spikes at other times, both within
spike trains from single neurons and across spike trains from
multiple neurons. The presence of these correlations has led to the
proposal that they might form a key element of the neural code.
Specifically, they might act as an extra channel for information,
carrying messages about events in the outside world that are not
carried by other aspects of the spike trains, such as firing rate.
Currently, there is no general consensus about whether this pro-
posal applies to real spike trains in the nervous system. This is
largely because it has been hard to separate information carried in
correlations from that not carried in correlations. Here we propose
a framework for performing this separation. Specifically, we derive
an information-theoretic cost function that measures how much
harder it is to decode neuronal responses when correlations are
ignored than when they are taken into account. This cost function
can be readily applied to real neuronal data.

Ever since Adrian and Zotterman observed that the firing rate
of peripheral touch receptors coded for the pressure applied

to a patch of skin (1), neuroscientists have been trying to crack
the neural code, that is, to understand the relationship between
neuronal activity and events in the outside world. For much of
that time, the working hypothesis was that information is carried
by firing rate. More recently it has been proposed that firing rate
is not the whole story: Information might also be carried in spike
patterns, both within spike trains from single neurons (2–6) and
across spike trains from multiple neurons (7–9).

One aspect of this proposal, an aspect that has led to a great
deal of debate, is that correlations in spike patterns may be of
particular importance (7–10, 12). It has been known for many
years that spike trains contain correlations; that is, the presence
of a spike at one time is not independent of the presence of spikes
at other times. These correlations exist not just within spike
trains but across them as well, with the most common example
being synchronous spikes across pairs of cells (13–16). What has
led to the debate is the suggestion that these correlations might
form a key aspect of the code. The idea is that they might serve
as an extra information channel, conveying messages not carried
elsewhere in the spike trains.

How might the correlations do this? An example, using
synchronous spikes, is shown in Fig. 1a. In this example there are
two stimuli, A and B, and two neurons. When stimulus A is
presented, the two neurons produce five spikes on average.
When stimulus B is presented, they also produce five spikes on
average. What is different, though, is the correlational structure
of the responses: When stimulus A is presented, the two neurons
tend to produce few synchronous spikes, whereas when stimulus
B is presented, they produce many. Thus, the difference in the
degree of synchrony is essential; one cannot tell the stimuli apart
without it.

The alternative is that the correlations do not carry extra
information but instead carry only information that is redundant
to what is carried elsewhere in the spike trains (e.g., in the spike
count). An example of this, in which the number of synchronous

spikes depends on spike count but not directly on the stimulus,
is shown Fig. 1b. As in Fig. 1a, there are two stimuli, A and B,
and two neurons. When stimulus A is presented, the two neurons
produce five spikes on average. When stimulus B is presented,
they produce many more spikes, 10 on average. The number of
synchronous spikes is also higher with stimulus B, but here it is
just a consequence of the larger spike count. Thus, although one
could use the difference in the number of synchronous spikes to
tell the stimuli apart, one does not have to. One could just use
the difference in the number of spikes.

Why has the debate about whether correlations are important
been hard to resolve? The main reason is that real data are rarely
as unambiguous as they are in these two cases. In more realistic
situations, there are a large number of stimuli, the correlations
are often more complicated than those associated with synchro-
nous spikes (4, 6), and both firing rate and correlations vary with
time. Consequently, information in correlations is often tied to
information not in correlations in subtle, hard-to-disentangle
ways.

Here we describe an approach for assessing the role of
correlations. The approach is to ignore them (by treating, for
example, two cells in a pair as independent, a notion that will be
made explicit below) and ask how much this affects our ability
to determine what the stimulus is. The approach is general
enough that it can be used for correlations of arbitrary com-
plexity, both across spike trains and within spike trains, thus it
goes beyond simply assessing the role of correlations found in
synchronous spikes. Moreover, it can be applied to neuronal data
in a straightforward manner.

The General Problem of Decoding
We address the question of whether correlations are important
in the context of decoding. By ‘‘decoding’’ we mean building a
dictionary that translates responses into stimuli. To build this
dictionary, we use a general probabilistic approach: We first
determine the stimulus-to-response relationship and then use
that, via Bayes’ theorem, to find the inverse, the response-to-
stimulus relationship. Experimentally, we present stimuli over
and over and obtain a histogram of responses for each stimulus.
We then use these histograms to estimate the probability that a
particular response occurred given that a particular stimulus
occurred. This quantity is denoted p(rus), where r [ (r1, r2, . . . ,
rn) is a set of n neuronal responses, and s is the stimulus. (Here
the different ri could be responses from different neurons, from
the same neuron in different time bins, or some combination
of the two.) Once we know p(rus), we apply Bayes’ theorem to
derive the inverse, the probability that a particular stimulus
occurred given that a particular response occurred. This quantity
is denoted p(sur) and is given by

p~sur! 5
p~rus!p~s!

p~r!
, [1]
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where p(s) is the probability that stimulus s occurred, and p(r) [
(s p(rus)p(s) is the probability that response r occurred. The
quantity p(sur) is our dictionary. A simple example showing the
construction of such a dictionary for two stimuli and one neuron
is shown in Fig. 2.

Defining ‘‘Correlated’’
There are two types of correlations in the literature. One is called
‘‘noise correlation’’ (17) and is defined as follows: neuronal
responses are noise-correlated if and only if

p~r1, r2, . . . , rnus! Þ P
i51

n

p~rius!. [2]

The second type is called ‘‘signal correlation’’ (17) and differs
from noise correlation in that it incorporates an average over
stimuli. Specifically, responses are signal-correlated if and only
if

p~r1, r2,. . ., rn! Þ P
i51

n

p~ri!.

The following example illustrates the difference. Suppose we
present a flash of light while recording from two ON-type retinal
ganglion cells that lie far apart on the retina (far enough that
their receptive fields do not overlap). Because the cells are both
ON-type, they will both fire when the light is f lashed on. This
similarity in their response is an example of signal correlations,
and its role in neural coding is obvious and undisputed. If, on the
other hand, the two ON-type cells are close enough to receive
common input from presynaptic cells (e.g., common photore-
ceptors, amacrine cells, etc.), then they would exhibit correla-
tions above the signal correlations. These extra correlations are
noise correlations, the ones whose function have become the
subject of debate. It is these that we focus on in this article. Thus,
for the remainder of this article, when we refer to ‘‘correlated’’
we mean ‘‘noise-correlated.’’

A General Approach for Assessing the Importance of
Correlations for Decoding
Our approach to assessing the importance of correlations is to
ignore them and determine how this affects our ability to decode
responses. We ignore them by treating the responses as though
they were independent; formally, we replace p(rus) with the
independent distribution, )i p(rius), the latter denoted pind(rus).

Fig. 1. Two scenarios: one in which correlations are critical for determining what the stimulus is, and one in which they are not. Shown are the results of a
hypothetical experiment in which two stimuli, A and B, are presented several times, and the responses of two neurons are recorded. Synchronous spikes are
marked in red and linked by a dashed gray line. (a) Both stimuli produce five spikes on average, but the number of synchronous spikes is higher for stimulus B
than for A. Thus, knowledge of the difference in the degree of synchrony is needed to distinguish the stimuli. (b) Stimulus B produces, on average, more spikes
than stimulus A (10 versus 5). The number of synchronous spikes is also higher for stimulus B but only because it is a function of spike count. Here, knowledge
of the difference in the degree of synchrony is not needed to distinguish the stimuli; one can just use the difference in the spike count.

Fig. 2. Determining p(sur), the probability that a particular stimulus occurred
given that a particular response occurred. Here the response, r, is the spike
count of one neuron. (a) Outcome of six presentations for stimuli A (Left) and
B (Right). (b) Histogram showing the probability that a particular response
occurred given that a particular stimulus occurred. (c) Probability that each of
the two stimuli occurred given that a particular response occurred, con-
structed using Eq. 1. Response is given on the horizontal axis; the lengths of
the green and red bars are the probabilities that stimuli A and B occurred,
respectively, given a response.
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By definition, making such a replacement eliminates all corre-
lations (see Eq. 2). To see whether this replacement affects our
ability to determine stimuli from responses, we insert pind(rus)
into Bayes’ theorem, Eq. 1. This gives us the ‘‘independent’’
estimate of the probability of stimuli given responses, denoted
pind(sur),

pind~sur! 5
pind~rus!p~s!

pind~r!
, [3]

where pind(r) [ (s pind(rus)p(s) is the independent total response
distribution.

This is the main idea behind our approach: We approximate
p(sur), the true distribution of stimuli given responses, with
pind(sur), the distribution one would derive in the absence of
knowledge of correlations, and ask whether it matters. If
pind(sur) 5 p(sur), then we know that correlations are not
important for decoding. If pind(sur) Þ p(sur), then we know that
they are; there will be a cost associated with ignoring them. Our
aim now is to determine what that cost is.

Quantifying the Cost of Ignoring Correlations
Ideally, one would like to determine the behaviorally relevant
cost of ignoring correlations, that is, the cost to an animal of
using pind(sur) rather than p(sur) to decode responses. However,
such a cost is hard to derive experimentally. Moreover, in many
cases it does not exist in an absolute sense, because cost is almost
always context-dependent. For example, when approaching an
intersection in a car, the behaviorally relevant quantity is the
color of the traffic lights, whereas when reading a digital clock,
the relevant quantity is the shape of the lights.

For these reasons, we used an information-theoretic approach.
The advantage is that it is general and context-independent; the
disadvantage is that it may misestimate the behavioral relevance
of some stimuli. The idea behind this approach is as follows:
Neuronal responses provide information about the stimuli that
produce them. To extract all the information they carry, one
must have knowledge of the true distribution of stimuli given
responses, p(sur). Knowledge of only the independent distribu-
tion, pind(sur), leads to a reduction in the amount of information
one can extract. Thus, there is an information-theoretic cost to
ignoring correlations.

To quantify the cost, we begin with the expression for mutual
information, that is, the information the responses provide about
the stimuli (18),

I~s; r! 5 2O
s

p~s!log2 p~s! 1 O
s,r

p~s, r!log2 p~sur!, [4]

where p(s, r) is the joint stimulus–response distribution.
Classically, information theory is a theory about true proba-

bility distributions. To understand how to incorporate approx-
imate distributions, in particular pind(sur), into an information-
theoretic framework, we recast mutual information using the
yes/no-question formulation given by Cover and Thomas (19).
With this formulation, mutual information is described in the
context of a guessing game in which stimuli are drawn from a
distribution, and one has to determine what they are by asking
yes/no questions. In this context, the first term in Eq. 4 is the
average number of yes/no questions one would have to ask to
determine the stimuli without the benefit of observing neuronal
responses, and the second term is the average number of yes/no
questions one would have to ask to determine the stimuli with the
benefit of observing neuronal responses. For both terms, the
assumption is that the optimal question-asking strategy is used.

For example, consider a stimulus set containing 16 items, all
of which occur with equal probability. A stimulus is drawn, and
we must determine what it is. Taking the optimal question-asking

strategy, the number of yes/no questions we would have to ask
is four. This is because the optimal strategy is to divide the
possibilities in half with each question. Thus, our first question
would be ‘‘is it stimulus 1–8?’’ If the answer is no, we then would
ask ‘‘is it stimulus 9–12?’’ etc., until we arrive at the correct
answer. Because we use this strategy of dividing the possibilities
in half or, stated more generally, of dividing the total stimulus
probability in half, the number of yes/no questions needed to
determine a stimulus with probability p(s) is [2log2 p(s)].† If the
game is played repeatedly, then the number of yes/no questions
needed to determine the stimuli on average is 2(s p(s)log2 p(s).

Now consider the situation where we have the benefit of
observing neuronal responses, which changes the probability of
stimuli from p(s) to p(sur). Consequently, the number of yes/no
questions needed to determine the stimulus changes from
[2log2 p(s)] to [2log2 p(sur)]. For example, if a response told us
that the stimulus was not stimulus 1–8, then the number of yes/no
questions we would have to ask would change from four to three.
On average, then, we have

^number of yes/no questionsuresponses&

5 2O
s,r

p~s, r!log2 p~sur!. [5]

The key idea to be extracted from this yes/no-question for-
mulation is that the stimulus probabilities induce a question-
asking strategy. When we know what the stimulus probabilities
are, as was the case above, we are able to take the optimal
question-asking strategy and solve the guessing game with the
fewest possible questions. If, however, we do not know the
stimulus probabilities, then we are left to take a suboptimal
strategy (see Fig. 3 for an example).

This is the situation that arises when we approximate p(sur)
with pind(sur). When we make this approximation, we have to
construct our question-asking strategy in a suboptimal manner
and thus will likely need to ask more questions. Specifically,
when we use pind(sur), the number of yes/no questions we need
to ask to guess a stimulus given a response is [2log2 pind(sur)].
The average number is thus

^number of yes/no questionsuresponses&ind

5 2O
s,r

p~s, r!log2 pind~sur!, [6]

where the subscript ‘‘ind’’ on the left-hand side indicates that the
independent distribution is being used rather than the true one.
Note that to derive Eq. 6 we averaged over the true distribution,
p(s, r), rather than the independent one, pind(s, r) [
pind(sur)pind(r). This is because the question-asking strategy one
uses has no effect on the probability of a particular stimulus–
response pair occurring.

We now arrive at our cost function, the cost of using pind(sur)
rather than p(sur). The cost is the extra number of yes/no
questions we would have to ask to determine the stimuli; it is just
the difference between the right-hand sides of Eqs. 5 and 6.
Denoting this difference DI, we find that

DI 5 O
s,r

p~s, r!log2

p~sur!

pind~sur!
. [7]

Note that DI is the conditional relative entropy, or average
Kullback–Leibler distance, between p(sur) and pind(sur) (19). It is
not itself a mutual information, but it is measured in bits (19)

†For completeness, the number of yes/no questions should be [2log2 p(s)] rounded up to
the nearest integer. However, as shown in ref. 19, the effect of rounding is negligible.
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(which are essentially synonymous with yes/no questions) and so
can be compared directly to the mutual information, I, between
stimuli and responses. Thus, we interpret DI/I as the relative cost
of ignoring correlations.

It can be shown that DI is nonnegative (19), and that it reaches
its minimum, zero, only when pind(sur) 5 p(sur), that is, only when
correlations are not important. It can also be shown that DI
reduces to a standard measure for comparing neural codes (DI
is the difference in mutual information between, for example,
codes with large bins and codes with small bins). The latter
property is demonstrated in The Information Difference Between
Two Codes Is Equal to DI, which is published as supporting
information on the PNAS web site, www.pnas.org.

The expression for DI given in Eq. 7 was first derived by
Nirenberg et al. (20). More recently, Pola et al. (21) derived an
identical expression based on slightly different considerations;
they called it Icor2dep rather than DI.

Note that DI 5 0 can mean one of two things: Either
correlations do not exist, and thus are obviously not important
for decoding, or they do exist but are not needed for the
decoding process. The latter is a key point: pind(sur) can equal
p(sur) even though pind(rus) Þ p(rus). This can happen if corre-
lations are not stimulus-dependent, as in Fig. 1b (see also
Existence Versus Importance of Correlations, which is published as
supporting information on the PNAS web site). Consequently,
cost functions that simply measure the strength of correlations,
for example, cost functions that measure the distance between

pind(rzs) and p(rus), tell us whether correlations exist but not
whether they are important for decoding.

Other Measures of the Importance of Correlations
Historically, the primary method for assessing the importance of
correlations has been to look for stimulus-dependent changes in
cross-correlograms (22–26). There are, however, two problems
with this approach. First, firing rate can have a large effect on the
shape of a cross-correlogram, making it difficult to separate
information carried in firing rate from information carried in
correlations. Second, methods based on cross-correlograms are
sensitive to only one kind of correlational structure, synchronous
or near-synchronous spikes, and may miss others. In particular,
they cannot be used to evaluate the role of correlations within
spike trains of single neurons, nor can they be used for corre-
lations among complex spike patterns across multiple neurons.

In principle, both of these problems, lack of quantifiability and
lack of sensitivity to complex patterns, can be overcome by using
information-theoretic measures. Developing such measures,
however, has been harder than expected. In particular, two that
have appeared in the literature, shuffled information (27, 28)
and synergy/redundancy (6, 29), seem intuitive but, in fact, turn
out to be confounded when used to assess the role of correlations
for decoding. Below we review them briefly.

The idea of shuffling neuronal responses to test a broad range
of correlational structures was proposed in general by us (30) and
later refined by Panzeri et al. (27, 28). The idea is as follows:
present a set of stimuli while recording simultaneously from two
neurons and estimate the information between stimuli and
responses; then, remove the correlations by shuffling the re-
sponses such that the neurons see the same stimuli but at
different times, and again estimate the information between
stimuli and (the now-uncorrelated) responses. With this method,
the quantity used to assess the importance of correlations is
the difference between these two informations. The difference,
denoted DIshuffled, is given by

DIshuff led 5 I~s; r! 2 Ishuff led~s; r!,

where I(s;r) is the mutual information between the stimulus and
the correlated responses (Eq. 4), and Ishuffled(s; r) is the mutual
information between the stimulus and the uncorrelated re-
sponses. The latter quantity is defined by

Ishuff led~s; r! : 2O
s

p~s!log2 p~s! 1 O
s,r

pind~s, r!log2 pind~sur!.

Because shuffling removes correlations, one might expect that
if correlations are not important for decoding, DIshuffled will be
zero, whereas if they are, DIshuffled will be nonzero. This,
however, turns out not to be the case. The reason is that
correlations can either increase or decrease information (31), so
it is possible for some parts of the stimulus–response space to
exhibit correlations that increase DIshuffled while other parts
exhibit correlations that decrease it (e.g., for a given pair of cells,
DIshuffled might increase for moving stimuli but decrease for
colored stimuli). Notably, the increase and decrease can exactly
cancel, making DIshuffled zero in cases where correlations actually
are important for decoding. Less obviously, DIshuffled can be
nonzero when correlations are not important. As a result, no
reliable relationship exists between DIshuffled and the importance
of correlations. Specifically, we show in Evaluation of Other
Measures for Decoding, which is published as supporting infor-
mation on the PNAS web site (see especially Fig. 5 and Table 1,
which are also published as supporting information on the PNAS
web site), that DIshuffled can be positive, negative, or zero both
when correlations are not important for decoding (when ignor-

Fig. 3. The stimulus distribution induces an optimal question-asking strat-
egy. (a) Consider a distribution with four stimuli, numbered 1–4, and occur-
ring with probabilities 1/2, 1/4, 1/8, and 1/8, respectively. A stimulus is drawn
repeatedly from this distribution, and each time we must ask yes/no questions
to determine what it is. The optimal question-asking strategy is to divide the
probability in half with each question. Thus for this distribution, our first
question is ‘‘is it stimulus 1?’’ If the answer is ‘‘no,’’ we then ask ‘‘is it stimulus
2?’’, etc., until we arrive at the correct answer. With this strategy, stimulus 1
is guessed in one question, stimulus 2 in two, and stimuli 3 and 4 in three. On
average, the number of questions we will ask to determine the stimuli is (1/2)1
1 (1/4)2 1 (1/8)3 1 (1/8)3 5 1 3/4. (b) In this case, we do not know the stimulus
probabilities and so make the assumption that they occur with equal proba-
bility. This wrong assumption would cause us to use a suboptimal question-
asking strategy. Our first question would be ‘‘is it stimulus 1 or 2?’’ because
that question would divide the assumed probabilities in half. However, that
question does not divide the true probabilities in half. Continuing with this
strategy, we see that all stimuli are guessed in two questions. The average
number of questions is thus (1/2)2 1 (1/4)2 1 (1/8)2 1 (1/8)2 5 2, which is
greater than the average number shown in a.
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ing them has no effect on our estimate of the stimulus) and when
they are important (when ignoring them does have an effect).

These conclusions are not strictly theoretical; an example in
which DIshuffled is large even though correlations are not impor-
tant for decoding has been seen in real data. Panzeri et al. (32)
examined the information from pairs of neurons in rat barrel
cortex and found that, averaged over 39 cell pairs, DIshuffled/I was
'20%, even though essentially no information was lost by
ignoring correlations (DI/I , 2%). This means, as pointed out by
the authors, that a decoder could completely ignore correlations
and still recover almost all the information in the spike trains.

Although DIshuffled cannot be used to assess directly the role of
correlations in decoding information, it can be used to provide
information about how correlations affect the transformation
from stimulus to response (21, 31, 33). In particular, the quantity
DIshuffled 2 DI is especially useful for understanding the relation
between signal and noise correlations (21).

A second information-theoretic measure aimed at quantifying
the role of correlations is synergy/redundancy. This measure is
the total information that neuronal responses provide about a set
of stimuli minus the information provided by the individual
responses taken separately. Specifically, if, as above, r 5 (r1,
r2, . . . , rn) where the ri are responses from individual neurons or
individual time bins, then the synergy/redundancy measure,
denoted DIsynergy, is given (6) by

DIsynergy 5 I~s; r! 2 O
i

I~s; ri!.

For DIsynergy to be positive, there needs to be some cooperative
coding among the responses. Such coding is exhibited by, for
example, two neurons whose responses to two stimuli are the
following: the neurons produce identical responses when one of
the stimuli is present and different responses when the other is
present, and separately are uncorrelated with the stimuli. Nei-
ther response alone tells us anything at all about the stimuli, so
I(s; r1) 5 I(s; r2) 5 0. However, if both responses are observed
simultaneously, the stimulus can be uniquely decoded, which
means that I(s; r1, r2) 5 1 (assuming the stimuli appear with equal
probability). Thus, DIsynergy 5 1. Here, correlations are critical
for decoding the responses; this is reflected in DI, which is also
equal to 1.

The idea that cooperative coding (another name for coding
with correlations) is necessary for DIsynergy to be positive has led
to the view that the converse is true, that if DIsynergy is positive,
then correlations are important for decoding. However, like
DIshuffled, DIsynergy can be positive when correlations are not
important, i.e., when pind(sur) 5 p(sur). In addition, DIsynergy has
the same potential for cancellation effects as DIshuffled: It is
possible for some parts of the stimulus–response space to exhibit
correlations that increase DIsynergy, while other parts exhibit
correlations that decrease it. This makes values of DIsynergy near
zero hard to interpret. Consequently, although DIsynergy may be
useful for evaluating some aspects of the neural code [see, for
example, Brenner et al. (6)], it cannot by itself be used to evaluate
the importance of correlations for decoding. Specifically, we
show in Evaluation of Other Measures for Decoding (see especially
Fig. 6 and Table 1, which are published as supporting informa-
tion on the PNAS web site) that DIsynergy can be positive,
negative, or zero both when correlations are not important for
decoding (when ignoring them has no effect on our estimate of
the stimulus) and when they are important (when ignoring them
does have an effect).

Other information-theoretic measures have been more suc-
cessful at assessing the importance of correlations. Dan et al. (34)
and Oram et al. (35) assessed the importance of synchronous
spikes by computing mutual information with and without them.
They did this by dividing responses from two neurons into time

bins and either counting or not counting the number of syn-
chronous spikes in each bin when computing mutual information
(Fig. 4, which is published as supporting information on the
PNAS web site). Interestingly, the difference in information
computed in this way turns out to equal DI for their specific code
(see The Information Difference Between Two Codes Is Equal
to DI).

This method is ideally suited for assessing the role of synchro-
nous spikes, provided the responses change slowly enough that
reasonably large bins can be used (it cannot be used in the limit
of very small bins, because the difference in information vanishes
in this limit). A limitation of the method, though, is that it, like
the cross-correlogram method, captures the effects of only one
kind of correlations, synchronous spikes across multiple neurons.

Panzeri and colleagues (36–38) took a different approach.
They computed mutual information in the limit of small time
bins and found that it broke naturally into four terms. Two of
those terms depend on correlations, in the sense that they vanish
when correlations are absent. Nonzero values for those two
correlation-dependent terms thus were interpreted to imply that
correlations are important for transmitting information (36–38).

Their method has now been made general in the sense that it
no longer requires small time bins (21). This generalized method
also yields two terms that depend on correlations, which are
called Icor2ind and Icor2dep. The latter, Icor2dep, is identical to DI,
whereas the sum of the two, Icor2ind 1 Icor2dep, is equal to
DIshuffled.

The difference between our work and that of Panzeri and
colleagues is that we used a top-down rather than a bottom-up
approach: We started with general arguments about the role of
correlations in decoding neuronal responses and derived a cost
function guaranteed to measure the importance of correlations;
Panzeri et al. started with the expression for mutual information
and separated out the terms that depended on correlations. The
top-down approach allowed Icor2dep but not Icor2ind to be inter-
preted as measuring the importance of correlations for decoding.

Finally, Wu and colleagues (39, 40) used an approach similar
to ours to investigate theoretically the role of correlations in
large population codes. They also ignored correlations and asked
how much that affected one’s ability to determine the stimuli
from the responses. There were, however, two main differences
between their work and ours. First, they considered, theoreti-
cally, a population of neurons coding for a single variable and
assumed that the conditional response distribution was multi-
variate Gaussian with known covariance matrix. Second, they
used Fisher information, which is related to the minimum
variance of a deterministic decoder rather than DI to assess the
importance of correlations. They asked, for two particular
covariance matrices, how much the Fisher information changed
if one ignored correlations, that is, how much it changed if one
ignored the off-diagonal terms in the covariance matrix. Inter-
estingly, for the covariance matrices they considered, the changes
were small, meaning correlations were not very important.

Discussion
We have developed an approach for assessing the importance of
correlations in decoding neuronal responses. The cost function
that measures their importance, DI, is the extra number of yes/no
questions it would take to determine a set of stimuli given
responses, assuming that one had access only to the independent
distribution, )i p(rius), and not the true one, p(rus). It is also the
Kullback–Leibler distance between p(sur), the stimulus distribu-
tion built with knowledge of the correlations, and pind(sur), the
distribution built without such knowledge. Although other cost
functions may be more appropriate for specific problems (39,
40), this one has three advantages. First, if DI is zero, then
ignoring correlations will have absolutely no effect on our ability
to decode responses; that is, if we were to build a decoder using
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the independent distribution, it would translate responses iden-
tically to a decoder built from the true distribution. This is
because DI 5 0 means pind(sur) 5 p(sur). Second, the cost function
is general enough to pick up all effects of correlations (not just
synchrony). Finally, the cost function can be compared directly
to the mutual information, I, between stimuli and responses. This
last statement allows us to interpret the ratio DI/I as the relative
cost of ignoring correlations.

Why was it necessary to develop this framework, that is, why was
it not possible to just compare the information in neuronal re-
sponses with and without correlations taken into account? The
latter approach has been used successfully for comparing many
different coding schemes including temporal versus rate coding
(41), small versus large time bins (42–44), and labeled line versus
population averages (45). The reason this does not work for
correlations, however, is that assessing the importance of correla-
tions is fundamentally different from comparing codes: In the
latter, information about the responses is thrown away, and in the
former, information about the response distribution is thrown away.
This qualitative difference required us to make a comparison in a
more general way by looking at the cost, in yes/no questions, of
ignoring correlations. This cost turned out to equal the information
difference when comparing two codes (see The Information Differ-
ence Between Two Codes Is Equal to DI), thus in more standard
situations it reduces to the appropriate measure.

Determining the role of correlations has important practical
implications. If correlations are not important, then the problem

of building a decoder is greatly simplified, because one needs to
measure only single-neuron or single time-bin response distri-
butions; if correlations are important, then one must measure
the full correlational structure. The latter can be extremely
difficult, because it requires exponentially large amounts of data.

We should emphasize that even if correlations across multiple
neurons turn out not to be important, simultaneous multineuron
recording is still required for decoding the activity of populations
of neurons. This is because it is essential to decode the true
(correlated) responses, as these are the ones seen by the brain.
Moreover, whether correlations are important for decoding or
not, they may be important for other functions. For example,
they may make postsynaptic neurons more likely to fire (11,
46–48).

Correlations are one of the major obstacles to cracking the
neural code, as codes based on correlations can be tremendously
complicated, whereas those based on independent responses are
relatively simple. A method for assessing the role of correlations
is thus a key step in understanding how stimuli are encoded in
neuronal responses.

We acknowledge Stefano Panzeri for many useful discussions and Barry
Richmond and Matt Wiener for helpful comments on the paper. This
work was supported by National Eye Institute Grant R01 EY12978 and
the Beckman Foundation (to S.N.) and National Institute of Mental
Health Grant R01 MH62447 (to P.E.L.).

1. Adrian, E. D. & Zotterman, Y. (1926) J. Physiol. (London) 61, 465–483.
2. Richmond, B. J., Optican, L. M., Podell, M. & Spitzer, H. (1987) J. Neuro-

physiol. 57, 132–146.
3. Optican, L. M. & Richmond, B. J. (1987) J. Neurophysiol. 57, 162–178.
4. de Ruyter van Stevinick, R. R. & Bialek, W. (1988) Proc. R. Soc. London Ser.

B 234, 379–414.
5. Victor, J. D. & Purpura, K. P. (1996) J. Neurophysiol. 76, 1310–1326.
6. Brenner, N., Strong, S. P., Koberle, R., Bialek, W. & de Ruyter van Steveninck,

R. R. (2000) Neural Comput. 12, 1531–1552.
7. Milner, P. M. (1974) Psychol. Rev. 81, 521–535.
8. von der Malsburg, C. (1981) MPI Biophysical Chemistry: Internal Report 81-2;

reprinted in Domany, E., van Hemmen, J. L. & Schulten, K., eds. (1994) Models
of Neural Networks II (Springer, Berlin).

9. von der Malsburg, C. (1985) Ber. Bunsenges. Phys. Chem. 89, 703–710.
10. Gray, C. M. (1999) Neuron 24, 31–47.
11. Reyes, A. (2001) Annu. Rev. Neurosci. 24, 653–675.
12. Shadlen, M. N. & Movshon, J. A. (1999) Neuron 24, 67–77.
13. Rodieck, R. W. (1967) J. Neurophysiol. 30, 1043–1071.
14. Mastronarde, D. N. (1983) J. Neurophysiol. 49, 303–324.
15. Mastronarde, D. N. (1983) J. Neurophysiol. 49, 325–349.
16. DeVries, S. H. (1999) J. Neurophysiol. 81, 908–920.
17. Gawne, T. J. & Richmond, B. J. (1993) J. Neurosci. 13, 2758–2771.
18. Shannon, C. E. & Weaver, W. (1949) The Mathematical Theory of Communi-

cation (Univ. of Illinois Press, Urbana).
19. Cover, T. M. & Thomas, J. A. (1991) Elements of Information Theory (Wiley,

New York).
20. Nirenberg, S., Carcieri, S. M., Jacobs, A. L. & Latham, P. E. (2001) Nature 411,

698–701.
21. Pola, G., Thiele, A., Hoffmann, K.-P. & Panzeri, S. (2003) Network Comput.

Neural Syst. 14, 35–60.
22. Eckhorn, R., Bauer, R., Jordan, W., Brosch, M., Kruse, W., Munk, M. &

Reitboeck, H. J. (1988) Biol. Cybern. 60, 121–130.
23. Gray, C. M. & Singer, W. (1989) Proc. Natl. Acad. Sci. USA 86, 1698–1702.
24. Gray, C. M., Konig, P., Engel, A. K. & Singer, W. (1989) Nature 338, 334–337.
25. Vaadia, E., Haalman, I., Abeles, M., Bergman, H., Prut, Y., Slovin, H. &

Aertsen, A. (1995) Nature 373, 515–518.

26. deCharms, R. C. & Merzenich, M. M. (1996) Nature 381, 610–613.
27. Panzeri, S., Golledge, H. D. R., Zheng, F., Tovée, M. J. & Young, M. P. (2001)

Vis. Cognit. 8, 531–547.
28. Panzeri, S., Golledge, H. D. R., Zheng, F., Pola, G., Blanche, T. J., Tovée, M. J.

& Young, M. P. (2002) Neurocomputing 44–46, 579–584.
29. Liu, R. C., Tzonev, S., Rebrik, S. & Miller, K. D. (2001) J. Neurophysiol. 86,

2789–2806.
30. Nirenberg, S. & Latham, P. E. (1998) Curr. Opin. Neurobiol. 8, 488–493.
31. Oram, M. W., Foldiak, P., Perrett, D. I. & Sengpiel, F. (1998) Trends Neurosci.

21, 259–265.
32. Panzeri, S., Pola, G., Petroni, F., Young, M. P. & Petersen, R. S. (2002)

BioSystems 67, 177–185.
33. Petersen, R. S., Panzeri, S. & Diamond, M. E. (2001) Neuron 32, 503–514.
34. Dan, Y., Alonso, J. M., Usrey, W. M. & Reid, R. C. (1998) Nat. Neurosci. 1,

501–507.
35. Oram, M. W., Hatsopoulos, N. G., Richmond, B. J. & Donoghue, J. P. (2001)

J. Neurophysiol. 86, 1700–1716.
36. Panzeri, S., Schultz, S. R., Treves, A. & Rolls, E. T. (1999) Proc. R. Soc. London

Ser. B 266, 1001–1012.
37. Panzeri, S., Treves, A., Schultz, S. & Rolls, E. T. (1999) Neural Comput. 11,

1553–1577.
38. Panzeri, S. & Schultz, S. R. (2001) Neural Comput. 13, 1311–1349.
39. Wu, S., Nakahara, H., Murata, N. & Amari, S. (2000) Adv. Neural Inf. Process.

Syst. 11, 167–173.
40. Wu, S., Nakahara, H. & Amari, S. (2001) Neural Comput. 13, 775–797.
41. Heller, J., Hertz, J. A., Kjaer, T. W. & Richmond, B. J. (1995) J. Comput.

Neurosci. 2, 175–193.
42. Rieke, F., Bodnar, D. A. & Bialek, W. (1995) Proc. R. Soc. London Ser. B 262,

259–265.
43. Strong, S. P., Koberle, R., de Ruyter van Stevinick, R. R. & Bialek, W. (1998)

Phys. Rev. Lett. 80, 197–200.
44. Reinagel, P. & Reid, R. C. (2000) J. Neurosci. 20, 5392–5400.
45. Reich, D. S., Mechler, F. & Victor, J. D. (2001) Science 294, 2566–2568.
46. Usrey, W. M., Reppas, J. B. & Reid, R. C. (1998) Nature 395, 384–387.
47. Usrey, W. M., Alonso, J. M. & Reid, R. C. (2000) J. Neurosci. 20, 5461–5467.
48. Nettleton, J. S. & Spain, W. J. (2000) J. Neurophysiol. 83, 3310–3322.

Nirenberg and Latham PNAS u June 10, 2003 u vol. 100 u no. 12 u 7353

N
EU

RO
SC

IE
N

CE


