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We calculate the �ring rate of the quadratic integrate-and-�re neuron in
response to a colored noise input current. Such an input current is a good
approximation to the noise due to the random bombardment of spikes,
with the correlation time of the noise corresponding to the decay time
of the synapses. The key parameter that determines the �ring rate is the
ratio of the correlation time of the colored noise, ¿s, to the neuronal time
constant, ¿m. We calculate the �ring rate exactly in two limits: when the
ratio, ¿s=¿m, goes to zero (white noise) and when it goes to in�nity. The
correction to the short correlation time limit is O.¿s=¿m/, which is qualita-
tively different from that of the leaky integrate-and-�re neuron, where the
correction is O.

p
¿s=¿m/. The difference is due to the different boundary

conditions of the probability density function of the membrane potential
of the neuron at �ring threshold. The correction to the long correlation
time limit is O.¿m=¿s/. By combining the short and long correlation time
limits, we derive an expression that provides a good approximation to the
�ring rate over the whole range of ¿s=¿m in the suprathreshold regime—
that is, in a regime in which the average current is suf�cient to make the
cell �re. In the subthreshold regime, the expression breaks down some-
what when ¿s becomes large compared to ¿m.

1 Introduction

A major challenge in computational neuroscience is to understand the be-
havior of large recurrent networks of spiking neurons. A �rst step in this
endeavor is to be able to compute the location and stability of a network’s
equilibria, given connectivity and single neuron properties. For networks
operating in the asynchronous regime, the equilibria can be determined by
solving a set of algebraic equations in which the �ring rate of each neuron
in the network is a function of the �ring rates of all the other neurons. To
solve these equations, which can be done using mean-�eld techniques, it is
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necessary to be able to compute the mapping from presynaptic �ring rates
to postsynaptic rates. For leaky integrate-and-�re neurons, the mapping is
known (Ricciardi, 1977; Tuckwell, 1988), and equilibria have been computed
for networks of irregularly �ring leaky integrate-and-�re neurons (Amit &
Brunel, 1997a, 1997b; Brunel, 2000). Here we compute this mapping for a
more realistic reduced neuron model, the quadratic integrate-and-�re neu-
ron (Ermentrout & Kopell, 1986).

Cortical neurons in vivo �re in an irregular fashion (Burns & Webb, 1976;
Softky & Koch, 1993), and intracellular recordings reveal large �uctuations
in the membrane potential (Destexhe & Paré, 1999; Anderson, Lampl, Gille-
spie, & Ferster, 2000). These experimental observations suggest that the
input to a neuron can be divided into two components, a mean current and
�uctuations around that mean, both of which depend on the �ring rates of
the presynaptic neurons. It is often reasonable to approximate the �uctu-
ations as colored noise with a correlation time proportional to the synap-
tic time constants (Amit & Tsodyks, 1991; Brunel & Sergi, 1998; Destexhe,
Rudolph, Fellous, & Sejnowski, 2001), and this is the approach we take here.
In addition, we assume that there is a unique synaptic decay time, ¿s, so that
the correlation time of the noise is equal to ¿s. With these assumptions, the
input of the neuron is fully described by three parameters: the mean current,
¹; the variance of the �uctuations, ¾ 2; and the correlation time constant, ¿s.

The �ring rate of the leaky integrate-and-�re neuron versus ¹ and ¾ was
calculated by Brunel and Sergi (1998; see also Fourcaud & Brunel, 2002),
in the limit ¿s ¿ ¿m where ¿m is the membrane time constant. Although
the leaky integrate-and-�re neuron is a popular model, it suffers from two
drawbacks: it cannot be derived from conductance-based models using a
rigorous reduction procedure, and its f -I curve in the absence of noise has
a pathological behavior close to threshold. For these reasons, it is useful
to consider another simpli�ed model neuron: the quadratic integrate-and-
�re neuron. This neuron, which is related by a change of variables to the
µ-neuron (Ermentrout, 1996; Gutkin & Ermentrout, 1998) represents the
normal form of a neuron with a type I bifurcation leading to spike generation
(Ermentrout & Kopell, 1986; Ermentrout, 1996). The quadratic integrate-
and-�re neuron is thus expected to describe the dynamics of any type I
neuron close to bifurcation, where �ring rates are low. In particular, its �ring
rate in the absence of noise scales as

p
I ¡ Ithr where Ithr is the threshold

current. This is the behavior exhibited by all type I neurons near threshold.
Here we compute the �ring rate of the quadratic integrate-and-�re neu-

ron in two limits: small and large ¿s=¿m. Interpolation between these limits
provides a good approximation to the �ring rate over the whole range of
¿s=¿m in the suprathreshold regime and a reasonable zeroth-order approx-
imation in the subthreshold regime. The �ring rate must be computed nu-
merically, but for applications such as mean-�eld analysis, where speed is
important, two lookup tables are suf�cient to characterize the �ring rate for
all values of ¹, ¾ , ¿m, and ¿s.
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2 Neuron Model and Analytical Methods

The quadratic integrate-and-�re neuron with synaptic noise obeys the dif-
ferential equations

¿m
dv
dt

D f .v/ C w (2.1a)

¿s
dw
dt

D ¡w C ¿
1=2
m ¾´.t/ (2.1b)

where ¿m is the neuronal time constant (hereafter called the membrane time
constant), v.t/ is a “voltage” variable (hereafter called the membrane poten-
tial),

f .v/ D v2 C ¹ (2.2)

with ¹ the mean input current �owing into the cell, w represents the stochas-
tic component in the synaptic currents, ¿s is the synaptic time constant, ´ is
white noise with h´.t/´.t0/i D ±.t ¡ t0/, and ¾ is the overall amplitude of the
noise.

In the noiseless version of the model, when the membrane potential
becomes positive, the quadratic term on the right-hand side of equation 2.1a
ensures that the membrane potential diverges to in�nity in �nite time. The
time at which the membrane potential reaches in�nity de�nes the time
a spike is emitted. Another way of de�ning the spike time would be to
set a threshold for �ring and then formally send this threshold to in�nity.
Immediately after �ring, the membrane potential is reset to ¡1. Again,
the quadratic term in the right-hand side of equation 2.1a ensures that the
membrane potential comes back to a �nite value in �nite time. To determine
the �ringrate from equation 2.1, we reformulate the problem using a Fokker-
Planck equation (Risken, 1984),

¿m@tP.v; w; t/ C @v[. f .v/ C w/P] C ¿m

¿s
@w[¡wP] D ¾ 2

2
¿ 2

m

¿ 2
s

@2
wP;

where P.v; w; t/ is the joint probability density function (pdf) of .v; w/ at
time t. Once P.v; w; t/ is known, the �ring rate is given by the total proba-
bility �ux at v D C1 (see equation 2.5 below). For other studies of the pdf
approach to neural modeling, mostly in the context of integrate-and-�re
neurons, see Treves (1993), Abbott and van Vreeswijk (1993), Brunel and
Hakim (1999), Brunel (2000), Knight, Omurtag, and Sirovich (2000), and
Nykamp and Tranchina (2000).

The Fokker-Planck equation can be rewritten as a continuity equation,

@tP.v; w; t/ C @vJv.v; w; t/ C @wJw.v; w; t/ D 0; (2.3)
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where Jv and Jw are probability �uxes,

Jv.v; w; t/ D
1

¿m
. f .v/ C w/P.v; w; t/ (2.4a)

Jw.v; w; t/ D
1
¿s

³
¡ ¿m

¿s

¾ 2

2
@wP.v; w; t/ ¡ wP.v; w; t/

´
: (2.4b)

The �ring rate, º.t/, is the total probability �ux at v D C1; it is given by

º.t/ D
Z C1

¡1
dw lim

v!1
Jv.v; w; t/: (2.5)

We are interested in computing the �ring rate in the limit t ! 1. In
this limit, the probability distribution becomes time independent. We thus
set @tP to zero in equation 2.3, resulting in a continuity equation involving
only v and w. That equation cannot be solved exactly, but it can be solved
as an expansion in the ratio of the synaptic to the membrane time constant
(or its inverse). To facilitate this expansion, we introduced a new variable,
z ´ kw=¾ , where k ´ .¿s=¿m/1=2. The advantage of using z rather than w
is that its variance remains O.1/ in both the large and small k limits, a
property not shared by w. With this change of variable and with @tP set to
zero, equation 2.3 may be written as

LP.v; z/ D k¾z@vP.v; z/ C k2@v[ f .v/P.v; z/] (2.6)

where

L¢ ´
1
2

@2
z ¢ C@z.z¢/:

In the next two sections, we solve this equation in the short and long corre-
lation time limits.

3 Short Correlation Time Limit

To solve equation 2.6 in the short correlation time limit (k ¿ 1), we expand
both the probability distribution and the �ring rate in powers of k,

P.v; z/ D
1X

iD0

kiPi.v; z/ (3.1a)

º D
1X

iD0

kiºiS; (3.1b)

where the subscript S on ºiS is to remind us that we are working in the short
correlation time limit. (Note that Pi should also have a subscript S; we do



Firing Rate of the Noisy Quadratic Integrate-and-Fire Neuron 2285

not include it for clarity. It should be clear from the context whether we are
referring to the short or long correlation time limit; the latter is discussed
in section 4.) Since P.v; z/ is a probability distribution, it must integrate to
one, independent of k. Consequently, we must have

Z
dv dz P0.v; z/ D 1 (3.2a)

Z
dv dz Pi.v; z/ D 0; for i ¸ 1: (3.2b)

To derive equations for the Pi, we insert equation 3.1a into equation 2.6
and match powers of k. This results in a coupled set of equations:

LP0.v; z/ D 0 (3.3a)

LP1.v; z/ D ¾ z@vP0.v; z/ (3.3b)

LPi.v; z/ D ¾ z@vPi¡1.v; z/ C @v[ f .v/Pi¡2.v; z/]; for i ¸ 2: (3.3c)

Using equations 2.4a, 2.5, and 3.1b, the �ring rate at order i is

ºiS D
1

¿m

Z C1

¡1
dz lim

v!1
[ f .v/Pi.v; z/ C ¾zPiC1.v; z/]

D
1

¿m

Z C1

¡1
dz lim

v!1
f .v/Pi.v; z/; (3.4)

where the last equality follows because P.v; z/ must vanish as v ! 1;
otherwise, it will not be normalizable.

3.1 Probability Distribution in the Short Correlation Time Limit. To com-
pute the probability distribution as an expansion in powers of k, we simply
solve equations 3.3a through 3.3c order by order. The zeroth-order solu-
tion, P0, corresponds to white noise; the next orders give corrections asso-
ciated with the �nite synaptic time constant. It turns out, as we will see,
that we have to go to the fourth order to determine the lowest nonvan-
ishing correction to the �ring rate. In this section, however, we sketch the
solutions to equations 3.3a through 3.3c only through second order; the
solutions through fourth order are derived in appendix A. We begin with
equation 3.3a.

Examining equation 3.3a, we see that the zeroth-order contribution to the
probability distribution, P0, can be written as a linear combination of two
functions: one even in z and the other odd. Those two functions, denoted
Á0 and Á1, are given by

Á0.z/ D ¼¡1=2 exp.¡z2/

Á1.z/ D exp.¡z2/

Z z

0
exp.u2/ du:
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The second of these, Á1.z/, scales as 1=z for large z. Consequently, it will
be negative when z approaches either C1 or ¡1, and large compared to
Á0. This violates the condition P.v; z/ ¸ 0 (recall that P.v; z/ is a probability
distribution). Thus, P0 must be proportional to Á0 only. The constant of
proportionality can be v-dependent, so we have

P0.v; z/ D Q0.v/Á0.z/: (3.5)

The function Q0.v/ is determined at higher order, as we will see shortly.
The �rst-order correctionto the probability distribution, P1.v; z/, is found

by combining equations 3.3b and 3.5:

P1.v; z/ D Q1.v/Á0.z/ C ¾@vQ0.v/L¡1zÁ0.z/: (3.6)

Because we explicitly included the homogeneous term in the above expres-
sion, L¡1 must pick out only inhomogeneous terms. This leads to

L¡1F.z/ D 2 exp.¡z2/

Z z

0
dz0 exp.z02/

Z z0

¡1
dz00 F.z00/; (3.7)

which is valid for any L1 function F.z/ that vanishes at §1. The lower limit
of ¡1 in the second integral ensures that L¡1F.z/ does not pick up a piece
proportional to Á1.z/, as we will see below.

The second-order correction, P2.v; z/, which comes from combining
equations 3.3c, 3.5, and 3.6, may be written, after a small amount of algebra,
as

P2.v; z/ D Q2.v/Á0.z/ C ¾@vQ1.v/L¡1zÁ0.z/

C ¾ 2@2
v Q0.v/L¡1zL¡1zÁ0.z/ C @v[ f .v/Q0.v/]L¡1Á0.z/: (3.8)

Using equation 3.7, it is straightforward to show that

L¡1zÁ0.z/ D ¡zÁ0.z/ and

.L¡1z/2Á0.z/ D .z2=2/Á0.z/ ¡ .1=2/L¡1Á0.z/:

With these relations, equation 3.8 becomes

P2.v; z/ D Q2.v/Á0.z/ ¡ ¾@vQ1.v/zÁ0.z/ C ¾ 2

2
@2

v Q0.v/z2Á0.z/

¡
µ

¾ 2

2
@2

vQ0.v/ ¡ @v[ f .v/Q0.v/]
¶

L¡1Á0.z/: (3.9)

Again using equation 3.7, we see that for large, positive z, L¡1Á0.z/ » 1=jzj.
This makes L¡1Á0.z/ nonnormalizable, which means that it cannot make
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any contribution to P2.v; z/. Thus, the solvability condition on equation 3.9
is

¾ 2

2
@2

vQ0.v/ ¡ @v[ f .v/Q0.v/] D 0: (3.10)

This solvability condition can also be derived by applying the Fredholm
alternative theorem (Reed & Simon, 1980).

To solve equation 3.10, we �rst integrate once with respect to v and mul-
tiply both sides by ¡1, yielding

f .v/Q0.v/ ¡ ¾ 2

2
@vQ0.v/ D ¿mº0S: (3.11)

In this equation, we chose a speci�c form for the constant of integration
(the term on the right-hand side). To see that this is the correct choice, note
that in the large v limit, @vQ0.v/ must approach zero to ensure that Q0 is
normalizable. Thus, in this limit, the only term that survives on the left-
hand side is f .v/Q0.v/. Multiplying both sides by ¿ ¡1

m Á0.z/, integrating over
z, and taking the limit v ! 1, equation 3.11 becomes equation 3.4 with
i D 0, indicating that ¿mº0S is the correct constant of integration.

Equation 3.11 has the solution

Q0.v/ D
2º0S¿m

¾ 2

Z 1

v
du exp[Ã.v/ ¡ Ã.u/] (3.12)

where

Ã.v/ ´
Z v

0

2 f .u/

¾ 2 du: (3.13)

The value of º0S is determined from the condition that Q0.v/ must be nor-
malized to 1 (see equation 3.2a and note that

R
dz Á0.z/ D 1), which implies

that

º0S D ¾ 2

2¿m

µZ 1

¡1
dv

Z 1

v
du exp[Ã.v/ ¡ Ã.u/]

¶¡1

: (3.14)

We will compute this integral explicitly in the next section.
To determine the next order correction to the �ring rate, we need to �nd

Q1.v/. This is done by deriving a solvability condition at third order. Simi-
larly, Q2.v/, which is needed for the second-order correction, is determined
by deriving a solvability condition at fourth order. Deriving these condi-
tions requires that we compute P3 and P4. This is conceptually no more
dif�cult than computing P1 and P2; the only real difference is that the al-
gebra is slightly more involved. We thus relegate those computations to



2288 N. Brunel and P. Latham

appendix A. There, we �nd that Q1.v/ D 0, which means that the �rst-order
correction to the �ring rate, º1S, vanishes, and that Q2.v/ is given by

Q2.v/ D º2S

º0S

Q0.v/ ¡ ¿mº0S

¾ 2

Z 1

v
du

£ exp[Ã.v/ ¡ Ã.u/][h.u/ ¡ h.v/ C 4 f 0.u/] (3.15)

where

h0.v/ ´ ¡3 f 00.v/ ¡ 4 f 0.v/Ã 0.v/: (3.16)

To calculate º2S, we use equation 3.2b, which tells us that
R

dvdz P2.v; z/ D 0,
and equation 3.9, along with the facts that the coef�cient in front of L¡1Á0
vanishes,

R 1
¡1 dv @2

vQ0.v/ D 0, and
R 1

¡1 dv @vQ0.v/ D 0, which tell us that
the only way for P2.v; z/ to integrate to zero is to have

R 1
¡1 dv Q2.v/ D 0.

Then, integrating both sides of equation 3.15 and using
R 1

¡1 dv Q0.v/ D 1,
we arrive at

º2S D º0S

¿mº0S

¾ 2

Z 1

¡1
dv

Z 1

v
du

£ exp[Ã.v/ ¡ Ã.u/][h.u/ ¡ h.v/ C 4 f 0.u/]: (3.17)

3.2 Firing Rate in the Short Correlation Time Limit. The zeroth-order con-
tribution to the �ring rate is given by equation 3.14, and the lowest nonva-
nishing correction, which enters at O.k2/, is given by equation 3.17. These
expressions involve double integrals and thus are not so easy to compute.
However, we show in appendix B that both can be reduced to a single inte-
gral, resulting in

º0S D
1

¼¿m

µZ 1

¡1

d»

¼ 1=2 exp[¡¹» 2 ¡ ¾ 4» 6=48]
¶¡1

(3.18a)

º2S D ¡º0S¼¾ 2 ¿mº0S

2

Z 1

¡1

d»

¼1=2 » 2 exp[¡¹» 2 ¡ ¾ 4» 6=48]: (3.18b)

The �ring rate through second order, which we denote ºS to indicate that
the expression is valid in the short correlation time limit, is then given by

ºS D º0S C k2º2S: (3.19)

In the absence of noise (¾ D 0), the
p

¹ behavior is recovered for the
zeroth-order contribution to the �ring rate,

º0S D ¹1=2

¼¿m
;
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Figure 1: Firing rate as a function of mean input current, ¹, for white noise with
¾ D 0 (solid line), 0.1 (dot-dashed line), 0.2 (dashed line), and 0.5 (dotted line).
¿m D 10 ms.

and in the absence of a mean current (¹ D 0), º0S increases with noise as
¾ 2=3,

º0S D
35=6¾ 2=3

22=3¼ 1=20.1=6/¿m
:

Plots of º0S versus ¹ are given in Figure 1 for several values of ¾ .
The second-order contribution to the �ring rate, º2S (the lowest nonvan-

ishing contribution), is negative. Thus, the �ring rate decreases linearly with
k2.D ¿s=¿m/ as the correlation time constant increases. This is inconvenient,
as the total �ring rate through second order, equation 3.19, can become neg-
ative at large k. It is possible to derive alternative expressions that coincide
up to second order in k with equation 3.19 but stay positive for any value
of k. One such alternative expression is

ºS D º0S

1 ¡ k2º2S=º0S

; (3.20)
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which, after a small amount of algebra, reduces to

ºS D
1

¼¿m

µZ 1

¡1

d»

¼1=2 exp[¡¹» 2 ¡ ¾ 4» 6=48].1 C k2¾ 2» 2=2/

¶¡1

: (3.21)

A second alternative expression can be derived by replacing 1 C k2¾ 2» 2=2
with exp.k2¾ 2» 2=2/ in equation 3.21, which leads to the expression

ºS D
1

¼¿m

µZ 1

¡1

d»

¼1=2 exp[¡.¹ ¡ k2¾ 2=2/» 2 ¡ ¾ 4z6=48]
¶¡1

: (3.22)

Both equations 3.20 and 3.22 have the same behavior at small k as equa-
tion 3.19. However, they have the advantage over equation 3.19 that the
�ring rate stays positive for any value of ¿s.

Equations 3.20 and 3.22 are plotted in Figure 2, along with the results of
numerical simulations of equation 2.1. Numerical simulations were done
using the theta model (Gutkin & Ermentrout, 1998), which is related to the
quadratic neuron by the change of variables v D tan.µ=2/. In the theta model,
spikes are identi�ed by passage of µ through ¼ . The equations were inte-
grated using a Euler scheme with dt D 0:001¿m. Note that the fact that noise
is colored avoids the complications associated with numerical integration
of the multiplicative white noise, where Ito or Stratonovich prescriptions
yield different results (Lindner, Longtin, & Bulsara, 2003).

Figure 2 shows the �ring rate as a function of the ratio ¿s=¿m for three dif-
ferent regimes: suprathreshold (¹ > 0), threshold (¹ D 0), and subthreshold
(¹ < 0). In the suprathreshold regime, the second-order expansion holds
only for small ¿s (roughly speaking, ¿s < 0:5¿m), and when ¿s becomes of
order ¿m or larger, both equations 3.20 and 3.22 underestimate the �ring
rate. When ¹ D 0, equation 3.20 gives a very good approximation to the
�ring rate in a large range of ¿s, at least up to ¿s D 2¿m. Equation 3.22,
on the other hand, strongly underestimates the �ring rate unless ¿s=¿m is
small. Finally, when ¹ is suf�ciently subthreshold, equation 3.22 gives a
good approximation to the �ring rate, while equation 3.20 overestimates it.

Although both equations 3.20 and 3.22 have advantages, in the remain-
der of this article, we focus on the former. This is because it more easily
merges with the long correlation time �ring rate (which we derive in the
next section), and can thus be used to provide an expression for the �ring
rate that is approximately valid for all synaptic time constants.

4 The Long Correlation Time Limit

In the suprathreshold regime, the short synaptic time expansion describes
the �ring rate only when ¿s is small compared to ¿m, that is, only when k
is small. This does not mean we cannot compute the �ring rate when k is
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Figure 2: Firing rate as a function of synaptic time constant for three different
input statistics (indicated at the top of each graph). In each graph, solid curve:
equation 3.20; dotted curve: equation 3.22; full circles: simulations (error bars
are smaller than symbol size in all cases); dashed horizontal curve in the upper
panel: �ring rate for ¾ D 0 or ¿s D 1. ¿m D 10 ms.
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large; it just means that we need to perform an expansion in powers of 1=k
rather than k. Analogous to equations 3.1a and 3.1b, we write

P.v; z/ D
1X

iD0

k¡iPi.v; z/ (4.1a)

º D
1X

iD0

k¡iºiL; (4.1b)

where the subscript L is to remind us that we are working in the long corre-
lation limit. As mentioned in section 3, the Pi in equation 4.1a are different
from the ones in equation 3.1a, but it should be clear what we mean from
the context. To ensure that P.v; z/ has the proper normalization, we demand
that the Pi obey the conditions given in equation 3.2.

To derive the equations for the Pi, we insert equation 4.1a into equation 2.6
and match powers of k. We �nd that the Pi obey the relations

@v f .v/P0.v; z/ D 0 (4.2a)

@v f .v/P1.v; z/ D ¡¾ z@vP0 (4.2b)

@v f .v/Pi.v; z/ D ¡¾ z@vPi¡1 C LPi¡2; for i ¸ 2: (4.2c)

In the next section, we solve these equations through second order, and
in the section after that, we compute the �ring rate, again through second
order (the lowest nonvanishing order).

4.1 Probability Distribution in the Long Correlation Time Limit. The
strategy for solving equations 4.2a through 4.2c is essentially identical to that
used for equations 3.3a through 3.3c: compute Pi at each order by inverting
a differential operator, express Pi in terms of a set of arbitrary functions, and
determine those functions by deriving solvability conditions at higher or-
der. The analysis is, however, considerably easier in the long than the short
correlation time limit, for two reasons. First, the operator @v[ f .v/¢], which
appears on the left-hand side of equations 4.2a through 4.2c, is much easier
to invert than L, the corresponding operator for equations 3.3a through 3.3c.
Second, we need solve for Pi only through third order rather than fourth.

We begin by writing down the solutions of equations 4.2a through 4.2c
through second order, which are easily found by inspection:

P0.v; z/ D p0.z/

f .v/
(4.3a)

P1.v; z/ D p1.z/

f .v/
¡ ¾zp0.z/

f 2.v/
(4.3b)

P2.v; z/ D p2.z/

f .v/
¡ ¾zp1.z/

f 2.v/
C ¾ 2z2p0.z/

f 3.v/
C Lp0.z/

f .v/

Z v du
f .u/

: (4.3c)
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The pi.z/ are constants of integration that arise from inverting the oper-
ator @v[ f .v/¢]; they are analogous to the Qi.v/ that appeared in the short
correlation time analysis.

Note that equations 4.3a through 4.3c are valid only for ¹ > 0. For ¹ < 0,
the distribution at zero order is a delta function at v D ¡

p
¡¹, and the �ring

rate is º0L D 0. Thus, in the following, we consider the case ¹ > 0; we will
come back to the subthreshold regime in section 5.

From equations 4.3a and 4.3b, we see that the probability�ux, f .v/Pi.v; z/,
is continuous at z D §1 when i D 0 or 1. However, this is not the case for
equation 4.3c, for which there is a jump discontinuity in the second-order
�ux,

f .v/P2.v; z/jvDC1 ¡ f .v/P2.v; z/jvD¡1 D Lp0.z/

Z 1

¡1

du
f .u/

:

To eliminate the discontinuity, we must have Lp0.z/ D 0. Using the same
reasoning that led to equation 3.5, this implies that

p0.z/ D ¹1=2

¼
Á0.z/: (4.4)

The factor ¹1=2=¼ was chosen to ensure that
R

dvdzP0.v; z/ D 1, which fol-
lows from

R
dzÁ0.z/ D 1 and

R
dv=f .v/ D ¼¹¡1=2. With Lp0.z/ D 0, P2.v; z/

is given by

P2.v; z/ D p2.z/

f .v/
¡ ¾zp1.z/

f 2.v/
C ¾ 2z2p0.z/

f 3.v/
: (4.5)

With the last term in equation 4.3c eliminated, we �nd, by combining
equations 4.2c, 4.3b, and 4.5, that P3.v; z/ is given by

P3.v; z/ D
3X

jD0

.¡¾z/ jp3¡j.z/

f jC1.v/

C Lp1.z/

f .v/

Z v du
f .u/

¡ ¾ Lzp0.z/

f .v/

Z v du
f 2.u/

: (4.6)

Again, there is a jump discontinuity in the probability �ux:

f .v/P3.v; z/jvDC1 ¡ f .v/P3.v; z/jvD¡1 D Lp1.z/

Z 1

¡1

du
f .u/

¡ ¾ Lzp0.z/

Z 1

¡1

du
f 2.u/

: (4.7)
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To determine how to choose p1.z/ to eliminate the discontinuity, we use

Z 1

¡1

dv
f n.v/

D .¡@¹/n¡1

.n ¡ 1/!

Z 1

¡1

dv
f .v/

D ¼

.n ¡ 1/!
.¡@¹/n¡1 1

p
¹

D ¼

¹1=2

.2n ¡ 3/!!
.2¹/n¡1.n ¡ 1/!

; (4.8)

where the �rst and second equalities follow from the fact that f .v/ D v2 C ¹

(see equation 2.2), and n!! is de�ned implicitly via n!! ´ n £ .n ¡ 2/!! and
.¡1/!! ´ 1. Then, using equation 4.8 to compute the integrals over u in
equation 4.7, we �nd that the discontinuity in the third-order �ux vanishes
when p1.z/ obeys the equation Lp1.z/ D .¾=2¹/Lzp0.z/. Consequently,

p1.z/ D ¾

2¹
[zp0.z/ C c1Á0.z/]; (4.9)

where c1 is an arbitrary constant. To determine the constant, we use the fact
that

Z
dv dzP1.v; z/ D 0;

which tells us that c1 D 0.
Knowledge of p1.z/ is, it turns out, suf�cient to calculate the lowest non-

vanishing correction to the �ring rate. We turn now to that calculation.

4.2 Firing Rate in the Long Correlation Time Limit. In the long correlation
time limit, the probability distribution at each order can be written as an
expansion in powers of 1=f .v/. In fact, it is not hard to show that

Pi.v; z/ D
iX

jD0

.¡¾ z/ jpi¡j.z/

f jC1.v/
;

which is a straightforward generalization of equation 4.6 with all terms
that produce jump discontinuities at §1 removed. Thus, since f .v/ » v2

for large v (see equation 2.2), the ith order probability �ux at v D C1 is
proportional to pi.z/. This in turn means, via equation 3.4, that the ith order
�ring rate is given by

ºiL D
1

¿m

Z 1

¡1
dz pi.z/: (4.10)

Thus, to compute the �ring rate at order i, we need to know only the integral
of the pi, which simpli�es the analysis somewhat.
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To compute º0L, we use equation 4.10 with i D 0 and equation 4.4 for
p0.z/, and we �nd that

º0L D ¹1=2

¼¿m
:

As stated above, º0L D 0 when ¹ < 0, which means that the long correlation
time limit affects only the suprathreshold regime. To compute º1L, we use
equation 4.10 with i D 1 and equation 4.9 for p1.z/. Performing the integral
in equation 4.10, we �nd that º1L D 0.

With º1L D 0, we need to go to second order to �nd a correction to º0L. At
this order, the situation changes slightly, since we do not have an explicit
expression for p2.z/. However, we can �nd the integral of p2.z/, which is
all we need for º2L, by integrating both sides of equation 4.5. Applying
equation 3.2b, which tells us that this integral is zero, and using equation 4.8
for the integrals over v, we arrive at

Z
dz p2.z/ D ¾

2¹

Z
dz zp1.z/ ¡

3¾ 2

8¹2

Z
dz z2p0.z/:

With equations 4.4 and 4.9 for p0.z/ and p1.z/, the integrals are elementary,
and we �nd, via equation 4.10, that

º2L D ¡ ¹1=2

¼¿m

¾ 2

16¹2 :

We will adopt the convention that º2L D 1 if ¹ · 0.
Thus, the �ring rate through second order in 1=k is given by

ºL D ¹1=2

¼¿m

³
1 ¡ ¾ 2

16¹2k2

´
: (4.11)

Interestingly, in the long correlation time limit, noise decreases the �ring
rate. This is the opposite of what we saw in the short correlation time
limit, where, even at zeroth order, noise increases the �ring rate (see equa-
tion 3.18a).

Equation 4.11 suffers from the same inconvenience as equation 3.19: it
becomes negative for small k. An alternative expression that is identical to
it through second order in 1=k is

ºL D ¹1=2

¼¿m

1
1 C ¾ 2=.16¹2k2/

: (4.12)

Figure 3 shows how equation 4.12 compares with simulations.
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Figure 3: Firing rateasa functionof synaptic time constant in the suprathreshold
regime. Filled circles: simulations (error bars are smaller than symbol size in all
cases). Thin solid lines: short synaptic time expansion (equation 3.20). Dotted
line: long synaptic time expansion (equation 4.12). Long-dashed line: �ring rate
for ¾ D 0 or ¿s D 1. Thick solid line: simple rational function that interpolates
between short and long synaptic time constants, equation 5.1.

5 Combining the Short and Long Correlation Time Limits

One might wonder if a simple function could interpolate between the short
and the long synaptic time expansions. The simplest function that repro-
duces the calculated asymptotics is a rational function of the form

º.k/ D º0S C ak2 C bº0Lk4

1 C ck2 C bk4 : (5.1)
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This function was chosen so that it asymptotes to º0S when k ! 0 and º0L

when k ! 1. The three parameters, a, b, and c, are chosen by requiring that

º.k/ »k!0 º0S C º2Sk2

º.k/ »k!1 º0L C º2Lk¡2:

Since there are only two conditions and three parameters, we have an
additional degree of freedom when choosing a; b, and c. We can break the
degeneracy associated with this degree of freedom by demanding that in
the subthreshold regime, where º0L D 0, º.k/ reduce exactly to equation 3.20.
This forces a to be zero, and we �nd that

º.k/ D º0S C .º2S=º0S/.º0L=º2L/º0Lk4

1 ¡ .º2S=º0S/k2 C .º2S=º0S/.º0L=º2L/k4 : (5.2)

Because both º2S and º2L are negative and º0S and º0L are positive, º.k/ is
never negative.

Figure 3 shows that equation 5.2 provides a good approximation to the
simulated data in the suprathreshold regime, even in the intermediate range
(around ¿s D ¿m) where both short and long time expansions fail. In the sub-
threshold regime, º0L=º2L is zero, and equation 5.2 reduces to equation 3.20.
Thus, we can evaluate how well º.k/ approximates the true �ring rate in the
subthreshold regime by examining the solid line in Figure 2. Although º.k/

slightly overestimates the �ring rate, the overestimation is small in absolute
terms, mainly because the �ring rate is small.

Interestingly, the synaptic time constant has different effects on the �ring
rate in the subthreshold and suprathreshold regimes. In the subthreshold
regime (see Figure 2), the �ring rate decreases monotonically with synap-
tic time constant. In the suprathreshold range (see Figure 3), however, the
dependence is nonmonotonic: �ring rate decreases with time constant for
small ¿s but increases with large ¿s, and in between there is a minimum.

The overall quality of the interpolation can be seen from the f -I curve,
which is plotted in Figure 4 for ¿s=¿m D 0:5 and ¿s=¿m D 2. This plot indicates
that equation 5.2 does a good approximation of the true �ring rate at all
values of ¹, both subthreshold and suprathreshold.

As can be seen from Figure 4, colored and white noise produce about
the same �ring rate in the suprathreshold regime. This is not surprising,
since noise has very little effect in the suprathreshold regime, whatever its
characteristics (all curves approach the dotted line when the input current
is large). In the subthreshold regime, however, the �ring rate with colored
noise is small compared to that with white noise. For example, when ¿s D 20
ms and ¿m D 10 ms (both reasonable values for real neurons), the ratio of
the colored noise �ring rate to the white noise �ring rate is 0.37 when the
input current is ¡0:25.
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Figure 4: Firing rate as a function of mean input current, ¹, when ¾ D 0:5,
¿m D 10 ms, and at several values of the synaptic time constant. Curves are
from equation 5.1, symbols are simulations. Dashed line: ¿s D 0 (white noise).
Circles/thick solid curve: ¿s D 5 ms (colored noise). Squares/thin solid curve:
¿s D 20 ms (colored noise). Dotted line: ¿s D 1 (no noise). Error bars for the
simulations are smaller than the symbol size in all cases.

A second difference between colored and white noise is the dependence
of the �ring rate on the amplitude of the noise, ¾ . For short correlation
times, ¿s ¿ ¿m, increasing the noise amplitude increases the �ring rate
(see equation 3.18a, from which it is easy to see that º0S is an increasing
function of ¾ ). For long correlation times, on the other hand, noise decreases
�ring rate (see equation 4.12). This difference is important for models that
propose noise as a mechanism of gain control (Chance, Abbott, & Reyes,
2002; Prescott & De Koninck, 2003).

To compute �ring rate via equation 5.2, there are two quantities that must
be determined numerically: º0S and º2S, the zeroth- and second-order �ring
rates in the short correlation time limit. Fortunately, both of these quantities
depend primarily on a single variable, ° D 481=3¹=¾ 4=3. Using equations
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3.18a and 3.18b, it is straightforward to show that

º0S D 1
¼¿m

³
¾ 4

48

´1=6 1
Ã0.° /

º2S D ¡¼
p

12¿mº2
0SÃ2.° /;

where

Ãp.° / ´
Z 1

¡1

d»

¼1=2 » p exp[¡° » 2 ¡ » 6]:

Thus, the �ring rate of the quadratic integrate-and-�re neuron in the pres-
ence of colored noise depends on two functions, Ã0.° / and Ã2.° /. This is
extremely convenient for applications in which rapid calculation of �ring
rates is important (such as mean-�eld calculations): Ã0.° / and Ã2.° / can
be computed for a range of values of ° and put into lookup tables, and the
�ring rates for all values of ¿s, ¿m, ¹, and ¾ can then be rapidly computed
using those tables.

6 Discussion

The �ring rate of the noisy quadratic integrate-and-�re (QIF) neuron was
computed using expansions in the ratio of the noise correlation time to the
neuronal time constant, ¿s=¿m. Our approach was to �rst write down the
Fokker-Planck equation for the time evolution of the voltage and synaptic
current, the two variables describing the neuron. We then expanded this
equation in either ¿s=¿m or ¿m=¿s. In both limits, small ¿s=¿m and small ¿m=¿s,
the Fokker-Planck equation reduced to an in�nite set of ordinary differential
equations (ODEs). These ODEs could be solved at successive orders by
recursion.

The calculation for short correlation times turned out to be much simpler
for the quadratic than for the more standard linear integrate-and-�re (LIF)
neuron (Brunel & Sergi, 1998; Fourcaud & Brunel, 2002). This is because the
main dif�culty with the LIF is that the voltage is reset from threshold to zero
in a rather unnatural way, which leads to complicated boundary conditions
for the Fokker-Planck equation. With the QIF, the boundary conditions are
much more natural (C1 is identi�ed with ¡1), which dramatically sim-
pli�es the calculation.

Because of the different boundary conditions, the �ring rate of the QIF
neuron is much less sensitive to temporal correlations in the noise than the
LIF neuron. Indeed, at small ¿s, the �ring rate for the QIF neuron decreases
as ¿s=¿m rather than

p
¿s=¿m, as it does for the LIF neuron. At large correlation

times and large input currents, on the other hand, the behavior of the QIF
and LIF neurons is qualitatively similar (Moreno, de la Rocha, Renart, &
Parga, 2002; Moreno & Parga, 2003).
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The problem we studied is a particular case of the calculation of the
mean �rst passage time of a dynamical system passing through a saddle-
point bifurcation. This problem has been studied extensively over the past
several decades. Sigeti and Horsthemke (1989), Colet, San Miguel, Casade-
munt, and Sancho (1989), and Lindner, Longtin, and Bulsara (2003) studied
the problem for white noise, and derived an expression analogous to our
equation 3.14. Ram ṍ rez-Piscina & Sancho (1991), using other methods, con-
sidered the weakly colored noise case and derived our equations 3.18a and
3.18b. These results have been extended here in three ways: we have pre-
sented an alternative computation of the mean �rst passage time in the short
correlation time limit, we have obtained the mean �rst passage time in the
long correlation time limit, and we showed how a simple analytical formula
can interpolate between the two limits and provide a good approximation
of the �ring rates for any correlation time.

These results extend our knowledge of the basic properties of the QIF
model. This model has seen increasing interest in recent years among theo-
reticians, primarily because the QIF neuron has the same properties as any
type I neuron whenever the �ring rate is low (Ermentrout & Kopell, 1986; Er-
mentrout, 1996). Among other studies, Roper, Bressloff, and Longtin (2000)
studied the critical slowing down and stochastic resonance/trapping ef-
fects that occur close to the saddle-node bifurcation. QIF neurons have also
been used in network studies: Latham, Richmond, Nelson, and Nirenberg
(2000) studied the equilibrium properties of the background state of large
networks, and Hansel and Mato (2001, 2003) studied the synchronization
properties of networks of QIF neurons in the absence of noise. In this con-
text, our results can be useful in at least two ways. First, they can be used
in the mean-�eld analysis of large networks of QIF neurons in the presence
of noise, as has been done with LIF neurons (Amit & Brunel, 1997a, 1997b;
Brunel, 2000). Second, they can be used to understand the trade-off between
noise and synaptic and membrane time constants in type I neurons. This is
important, as synaptic noise may be a mechanism for changing the gain of
neurons, and may even act as a form of gain control (Chance et al., 2002;
Prescott & De Koninck, 2003).

Appendix A: Correction to the Probability Distribution Through Fourth
Order in k in the Short Correlation Time Limit

In this appendix, we compute P3.v; z/ and P4.v; z/, which allows us to com-
pute the correction to the �ring rate through second order (the lowest non-
vanishing correction). To simplify the calculation, we de�ne the two linear
operators,

L1 ´ ¾L¡1z@v (A.1a)

L2 ´ L¡1@v f .v/ (A.1b)
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where L¡1 is given by equation 3.7 and both L¡1 and @v operate on every-
thing to their right—for example, L2g.v; z/ D L¡1@v[ f .v/g.v; z/]. With this
notation, the solution to equation 3.3c is

Pi.v; z/ D Qi.v/Á0.z/ C L1Pi¡1.v; z/ C L2Pi¡2.v; z/: (A.2)

Iterating equation A.2 several times with i D 3, it is straightforward to show
that

P3 D Q3Á0 C L1Q2Á0 C .L2
1 C L2/Q1Á0 C [L1.L2

1 C L2/ C L2L1]Q0Á0:

For clarity, we have suppressed the arguments; our convention is that Qi is
a function of v and Á0 is a function of z.

In what follows we will need to compute L¡1znÁ0 through n D 4; these
quantities are given, via equation 3.7, by

L¡1z Á0.z/ D ¡zÁ0.z/ (A.3a)

L¡1z2Á0.z/ D ¡.z2=2/Á0.z/ C .1=2/L¡1Á0.z/ (A.3b)

L¡1z3Á0.z/ D ¡.z3=3 C z/Á0.z/ (A.3c)

L¡1z4Á0.z/ D ¡.z4=4 C 3z2=4/Á0.z/ C .3=4/L¡1Á0.z/: (A.3d)

Using equations A.1 and A.3a through A.3c it is straightforward to show
that

P3 D
µ

Q3 ¡ ¾z@vQ2.v/ ¡ ¾ 3

2

³
z3

3
C z

´
@3

v Q0.v/ C ¾z@v[ f .v/@vQ0.v/]
¶

£ Á0.z/ C ¾ 2

2
@2

v Q1z2Á0 ¡
µ

¾ 2

2
@2

v Q1 ¡ @v f Q1

¶
L¡1Á0:

Since the coef�cient in front of L¡1Á0 must vanish, Q1.v/ obeys the same
differential equation as Q0.v/ (see equation 3.10). However, Q1.v/ differs
from Q0.v/ in that the former integrates to zero while the latter integrates
to 1 (see equations 3.2a and 3.2b). This can happen only if Q1 vanishes. In
fact, it is not hard to show in general that Qi vanishes for i odd. We will not
prove this here, but we will assume it in the remainder of this appendix.
Thus, both Q1.v/ and Q3.v/ are zero, and P3 is given by

P3 D
µ

¡¾ z@vQ2.v/ ¡ ¾ 3

2

³
z3

3
C z

´
@3

vQ0.v/ C ¾z@v[ f .v/@vQ0.v/]
¶

Á0.z/:

We now turn to P4. Iterating equation A.2 with both Q1 and Q3 zero, we
arrive at

P4 D Q4Á0 C .L2
1 C L2/Q2Á0 C [.L2

1 C L2/2 C L1L2L1]Q0Á0:
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Using equation A.1 for L1 and L2 and equation A.3 to invert L, we �nd after
straightforward, but tedious, algebra that

P4 D Q4Á0 C @v fQ2z2Á0 C ¾ 4

24
@4

v Q0z4Á0

C
µ

¾ 2

2
@2

v Q2 ¡ @v fQ2 C
3¾ 4

8
@4

v Q0 ¡ ¾ 2

2
@2

v f @vQ0 ¡ ¾ 2

4
@v f@2

v Q0

¶

£ .z2Á0 ¡ L¡1Á0/: (A.4)

The solvability condition on Q2 is thus

¾ 2

2
@2

v Q2 ¡ @v fQ2 D ¡ 3¾ 4

8
@4

v Q0 C ¾ 2

2
@2

v f @vQ0 C ¾ 2

4
@v f@2

v Q0: (A.5)

Inserting equation A.5 into A.4, we arrive at

P4 D Q4Á0 C @v fQ2z2Á0 C ¾ 4

24
@4

v Q0z4Á0:

To �nd Q2.v/, we �rst simplify the right-hand side of equation A.5. Using
equations 3.10 and 3.12, equation A.5 may be rewritten

¾ 2

2
@2

v Q2 ¡ @v fQ2 D ¡ ¾ 2

4
@v

µ
3 f 00Q0 C 4 f 0Ã 0Q0 ¡

8º0¿m

¾ 2 f 0
¶

;

where a prime denotes a derivative.
To solve this equation, we use the same method as with equation 3.10:

we integrate both sides with respect to v and multiply by ¡1. This produces

f .v/Q2.v/ ¡ ¾ 2

2
@vQ2.v/

D ¿mº2S ¡
µ

¾ 2

4
[¡3 f 00.v/ ¡ 4 f 0.v/Ã 0.v/]Q0.v/ C 2º0S¿m f 0

¶
: (A.6)

The constant of integration was set to ¿mº2S. To see why, note �rst of all
that we can combine equations 3.4 and 3.9 to write

¿mº2S D lim
v!1

µ
f .v/Q2.v/ C ¾ 2

4
f .v/@2

v Q0.v/

¶
D lim

v!1
f .v/Q2.v/; (A.7)

where the �rst equality follows from the facts that Q1.v/ D 0, the coef�-
cient in front of L¡1Á0 vanishes, and

R 1
¡1 z2Á0.z/ D 1=2. The second equality

follows because in the large v limit, Q0 » 1=f and f » v2. Consequently,
equation A.6 is correct if both @vQ2 and the term inbrackets on the right-hand
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side of that equation vanish as v ! 1. The �rst of these, @vQ2, must vanish
at large v to ensure normalizability. To verify that the term in brackets van-
ishes, use limv!1 Q0.v/ D º0S¿m=f .v/ (see equation 3.11 and the discussion
following it) to write

lim
v!1

µ
¾ 2

4
[¡3 f 00.v/ ¡ 4 f 0.v/Ã 0.v/]Q0.v/ C 2º0S¿m f 0

¶

D º0S¿m lim
v!1

µ
¡

3¾ 2 f 00

4 f
¡ ¾ 2 f 0Ã 0

f
C 2 f 0

¶
:

Using equation 3.13, which tells us that Ã 0 D 2 f=¾ 2, the last two terms on the
right-hand side cancel. This leaves us with f 00=f , which vanishes for large v.
Thus, equation A.6 in the large v limit really is equivalent to equation A.7,
and º2S is the correct constant of integration.

Equation A.6 has the solution

Q2.v/ D º2S

º0S

Q0.v/ ¡
Z 1

v
du exp[Ã.v/ ¡ Ã.u/]

£
µ

1
2

h0.u/Q0.u/ C
4º0S¿m

¾ 2 f 0.u/

¶
;

where h.v/ is given in equation 3.21. This can be simpli�ed by integrating
the �rst term in brackets by parts and using equation 3.12 for Q0.v/; the
resulting expression is given in equation 3.15.

Appendix B: Simplifying the Expressions for Firing Rate in the Short
Correlation Time Limit

The expressions for the zeroth- and second-order �ring rates in the short
correlation time limit, equations 3.14 and 3.17, consist of rather complicated
two-dimensional integrals. We can transform them into one-dimensional
integrals by making the change of variables,

v D x ¡ y (B.1a)

u D x C y; (B.1b)

and integrating over x.
With this change of variables, for which the Jacobian is 2, equation 3.14

becomes

º0S D ¾ 2

4¿m

µZ 1

¡1
dx

Z 1

0
dy exp[Ã.x ¡ y/ ¡ Ã.x C y/]

¶¡1

: (B.2)
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For the quadratic integrate-and-�re neuron, f .v/ D v2 C¹, equation 2.2, and
we have, via equation 3.13,

Ã.v/ D 2
¾ 2

µ
v3

3
C ¹v

¶
: (B.3)

Inserting equation B.3 into B.2 and performing the integral over x, we �nd
that

º0S D ¾

2¼¿m

µZ 1

0

dy
¼ 1=2 y¡1=2 exp[¡4¹y=¾ 2 ¡ 4y3=3¾ 2]

¶¡1

:

Finally, letting y D ¾ 2» 2=4, we arrive at equation 3.18a.
We now turn to the expression for the second-order contribution to the

�ring rate, º2S, equation 3.17. This equation is more dif�cult to reduce to
a one-dimensional integral because of the term h.u/ ¡ h.v/ C f40.u/ in the
integrand. Our �rst step, then, is to simplify this term. Integrating equation
3.16, we �nd that h.v/ D ¡2 f .v/Ã 0.v/ ¡ 3 f 0.v/, so that

h.u/ ¡ h.v/ C f 40.u/ D ¡2[ f .u/Ã 0.u/ ¡ f .v/Ã 0.v/] C f 0.u/ C 3 f 0.v/: (B.4)

The �rst term on the right-hand side can be further modi�ed by integrating
equation 3.17 by parts,

Z 1

¡1
dv

Z 1

v
du exp[Ã.v/ ¡ Ã.u/][ f .u/Ã 0.u/ ¡ f .v/Ã 0.v/]

D
Z 1

¡1
dv

µZ 1

v
du exp[Ã.v/ ¡ Ã.u/] f .u/Ã 0.u/

¡
Z v

¡1
du exp[Ã.u/ ¡ Ã.v/] f .u/Ã 0.u/

¶

D
Z 1

¡1
dv

Z 1

v
du exp[Ã.v/ ¡ Ã.u/][ f 0.u/ C f 0.v/]: (B.5)

The intermediate step is useful because it allows explicit cancellation of
in�nities that appear in the naive integration by parts. Using equation B.5,
we can replace equation B.4 with ¡ f 0.u/C f 0.v/, and equation 3.17 becomes

º2S D ¡º0S

¿mº0S

¾ 2

Z 1

¡1
dv

Z 1

v
du exp[Ã.v/ ¡ Ã.u/][ f 0.u/ ¡ f 0.v/]: (B.6)

Again making the change of variables given in equation B.1, using f .v/ D
v2 C ¹, and integrating over x, equation B.6 becomes

º2S D ¡4º0S

¿mº0S

¾ 2 .¼¾ 2/1=2
Z 1

0
dy y1=2 exp[¡4¹y=¾ 2 ¡ 4y3=3¾ 2]:

Finally, letting y D ¾ 2» 2=4, we arrive at equation 3.18b.
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