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Supplementary Information

This Supplementary Information contains two sections. Section 1 provides an example
in which correlations are important and Al # 0, and Section 2 provides technical details
regarding Meister and Hosoya’s second comment, the one concerning linear reconstruction.

1. Calculating Al when correlations are important

In Meister and Hosoya’s two examples, correlations are not important and Al = 0. Here
we show an example in which correlations are important and Al correctly detects this — by
being nonzero. Along the way, we demonstrate that A/ is nonzero whenever correlations are
important (see comments following Eq. (1)).

The example we show is very similar to Meister and Hosoya’s case a; the only difference
is that we change just one of the entries (see Table I below). Before getting to that example,
we outline our approach for calculating AI. In our paper' we give two formulas for this
quantity: one in Eq. (2) and one in Methods. The latter is far easier to use, at least in this
example, so we reproduce it here,

AI = D(P(slri,r2)||Pivp(slri,m2)) = 3 P(ri,m2) 3 P(s|r1,72) log,

1,72 S

(1)

where P(s|rq,72) is the probability that stimulus s occurred given that responses r; and 7y
were observed, and Pryp(s|ri,r2) is the same thing, except that the responses are assumed
to be independent (see Eq. (2b) below)).

The sum over s in Eq. (1) is the Kullback-Leibler divergence?, which is nonzero unless
P(s|ri,r2) = Prnp(s|ri,r2) for all stimulus/response triplets (s,71,72). Thus, whenever
Prnp(s|ry, o) differs from P(s|rq,72) for at least one stimulus/response triplet, Al is nonzero.
This means if the translation of responses using the independent dictionary is at all different
from the translation of responses using the correlated dictionary for any observed responses
and stimuli, then AT is nonzero.

The distributions P(s|ry, 72) and Pryp(s|r1, r2) come from P(rq,re|s) and P(ry|s)P(rs|s),
respectively, via Bayes’ theorem. Specifically,

P(r1,72]8)P(s)
P(ry,79)

P(ri]s)P(ra|s)P(s)
PIND(T1,7“2)

P(ri,m) = ZP(T‘l,T2|S)P(S) (2¢)

PIND(Tl,T'Q) = ZP(T’l‘S)P(T’Q‘S)P(s) (Qd)

P(s|ry, )

PIND(S|T1,7“2)



Nirenberg, Carcieri, Jacobs, and Latham August 9, 2001 2

P(r|s) = ZP(rl,T2|s) (2e)
P(rals) = > P(ri,rals). (2f)

Here P(s) is the probability of observing stimulus s, taken to be 1/2 for both stimuli.

If we were given P(s|ri,re) and Pryp(s|ri,r2), it would be easy to calculate Al from
Eq. (1). However, this is rarely the information we have — more typically (and certainly
in Meister and Hosoya’s examples), we are given P(ri,rs|s) and P(s) and have to grind
through the formulas in Eq. (2) before we can get to Eq. (1). So that’s what we do now:
grind through those formulas for an example in which correlations are important.

The example we choose is a perturbation to Meister and Hosoya’s case a, in which we
change (0,0) to (0,1) but otherwise do not change the probabilities. The resulting response
distribution, P(r1,72|s), is shown in Table 1. For this and all tables, only responses that
have a nonzero probability are shown.

Table I
[s [ ri[ra ][ Plrirals) |
0011 1/2
of1]1 1/2
10111 1/2
101212 1/2

The reason that we expect correlations to be important in this example is that the two
stimuli have different correlational structures; that is, the degree of correlation depends on
the stimuli.

Comparing Egs. (1) and (2), we see that there are several quantities that need to be
calculated before we can get to P(s|ry,r9) and Pryp(s|r1,72). These are P(r|s), P(rs|s),
P(ry,73), and Pryp(ri,r2). The first two are given in Table II.

Table 11
‘ s H 71 OT T H P(r]s) H P(ryls) ‘
0] 0 1/2 0
o 1 1/2 1
1] 1 1/2 172
T 2 1/2 1/2

Because we’ll need P(r1|s)P(rs|s) for Egs. (2b) and (2d), we compute it and reproduce it in
Table III.
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Table I1I
[s [ i [r2 [ P(ra|s)P(rs) |
offo 1 1/2
o171 1/2
111 1/4
112 1/4
121 1/4
1] 272 1/4

Using Tables I and III, Egs. (2c-2f), and the fact that P(s = 0) = P(s = 1) = 1/2, we
can now construct P(ry,73) and Pryp(r1,72); these are given in Table IV.

Table IV
‘ 1 ‘ T2 H P(r1,79) H Pryp(r1,72) ‘
01 1/4 1/4
111 1/2 3/8
112 0 1/8
2|1 0 1/8
2|2 1/4 1/8

Finally, we can use Egs. (2a) and (2b) to compute P(s|ry,r2) and Pryp(s|ry, r2); the result
is in Table V.

Table V
| | 2 || P(fry,7a) || Peivp(1]ry,72) |
01 0 0
11 172 1/3
1] 2 - 1
2 |1 - 1
2 [ 2 1 1

When the cells are correlated, responses 1 and 2 never occur together. Thus, P(1|1,2) and
P(1]2,1) are not evaluateable; for these entries in Table V we just put a dash.

From the last table, we see that Pryp(1]1,1) is not equal to P(1]1,1); this means the
correlated and uncorrelated dictionaries are different, and correlations are important for
decoding. We can now readily calculate A, since it contains only two terms,

P(11,1) P(0]1,1)
Povo (1L, 1)] + P(1,1)P(0[1,1) log, [PIND(O‘la 1)] )
Plugging in numbers and using P(0|ry,73) = 1—P(1|ry,72), we find that AT = (1/4) log,(9/8)
~ 0.042.

As discussed above, AT is nonzero whenever correlations are important, where “impor-
tant” means Pryp(s|ry,m2) # P(s|r1,r9). Thus, it is a striking finding' that for the 498 pairs
examined in the mouse retina, many of which were highly correlated, Al was always close
to zero — within 11% of the full information.

AI = P(1,1)P(1|1,1) log, l
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2. Technical comments regarding linear reconstruction

Meister and Hosoya’s second comment concerns our use of linear reconstruction to assess
the role of correlations. We believe that their main point is that linear reconstruction, as we
use it, is not able to detect whether correlations are important. They state that:

“To test whether spike pairs that are synchronous on the millisecond scale carry special
visual messages, one should use a decoder that can recognize such spike pairs. The
method used by the authors, namely linear filtering of the individual spike trains?,
cannot do that. The filter functions are necessarily broad (probably 0.1 s) such that

millisecond shifts of individual spikes cannot be interpreted.”

The above statement seems to assume that we construct one set of filters and then
use those filters to reconstruct the stimulus from correlated and uncorrelated spike trains.
However, we do not do that. Instead, we build two decoders, one from correlated spike
trains and one from uncorrelated trains*. We then run both decoders on the same set of
spike trains — the true, simultaneously recorded ones. Because both decoders are run on the
same spike trains, differences in the reconstructions must be due to differences in the filters.

The remaining question, then, is: are the filters sensitive to correlations? One can show in
general that the answer is yes. Just to be sure, we compared the correlated and uncorrelated
filters for the four examples shown in Fig. 4 of ref. 1. As can be seen in Fig. 1 below, the
difference between the two filters scales with the relative loss of information, AI/I, where I
is the mutual information between stimulus and response. Thus, the filters are picking up
the effects of correlations. The reason the two reconstructions in each panel of Fig. 4 are
almost identical is that the amount of information that you lose when you treat the cells as
independent encoders is small; not that linear reconstruction is incapable of picking up the
effects of correlations.

A technical note is in order: while the 10% difference in AI/I corresponds to an ~10%
difference in the filters, the error in the reconstruction is much smaller than 10%. This is
because the linear reconstruction fits the filters to a cost function with a quadratic minimum,
so a 10% difference in the filters results in an ~1% (0.1%) error in the reconstruction. Such
favorable scaling is relatively generic: any decoder with a quadratic minimum will have a
reconstruction error that scales as (AI/I)?.

Still, one might argue that straightforward linear reconstruction from two spike trains is
not a good test. Indeed, Meister and Hosoya suggest a different approach:

“Instead, one should identify synchronous spike pairs first, and then assign separate
messages to them.”

Given their subsequent reference to a paper that discusses this issue®, what we believe
Meister and Hosoya are advocating here is the following: Take two spike trains and construct
a third, which consists only of synchronous spikes. Then perform linear reconstruction using
the two original two spike trains (with the synchronous spikes removed) plus the third,
synchronous, spike train. Compare that reconstruction with the one made using the original
two spike trains.
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Figure 1: Filled circles: relative error in the filters, AF/F, plotted versus AI/I for the
four examples shown in Fig. 4 of ref. 1. The relative error is defined via the relations
AF?2=3%2_ [dt[fr(t)—fr(t)]?and F? = 32 _, [dtf™(t)?, where f7(t) is the filter for neuron
n constructed from correlated spike trains and f'(¢) is the same thing, except constructed
from uncorrelated spike trains. Line: least squares fit to the data. The slope is 1.4 and the
intercept is 0.013.

This process sounds totally reasonable, but let’s examine it a little more closely. Since we
want to build a near-optimal decoder, we should build our decoder using time bins that are
so small that no more than one spike from any one neuron can occur in a bin. In this limit,
the transformation from two to three spike trains is invertible — you can go from the original
two spike trains to the three spike trains and back without losing any information. Thus,
by the Data Processing Inequality, the three spike trains contain ezactly the same amount
of information about the stimulus as the two spike trains. Any difference one finds in the
quality of the reconstruction using two versus three spike trains is entirely an artifact of the
method, and has nothing to do with the importance of correlations.

This highlights the difficulty of testing for the importance of correlations using intuitively
reasonable, but non-rigorous, methods: it can be extremely difficult to untangle the effects
of correlations from the effects of the algorithm one adopts. It is for this reason that our
main analysis used an information-theoretic cost function, A, that does not depend on any
particular reconstruction algorithm.

Meister and Hosoya also fault the fact that we use linear reconstruction on spatially
uniform stimuli:

“The current best guess is that synchronous spike pairs originate in retinal interneurons
and thus have different spatial receptive fields from those of the participating ganglion
cells®7 If so, then the information they convey is about spatial detail, which cannot
possibly be tested with the spatially uniform stimulus used by the authors.”

We should emphasize that the “current best guess” is just that — a guess. In addition,
while we performed linear reconstruction using a spatially uniform field, our main result
(Fig. 3) was based on movies of natural scenes consisting of interacting mice.
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Meister and Hosoya’s critique ends with the statement:

“Ideally, one would carry such an analysis beyond mere pairwise correlations. Any
given pair of cells may have only few synchronous spikes in common, but once all the
nearby partners are considered, the fraction of spikes in such firing patterns may exceed
80% (ref. 8).

Thus, the degree to which concerted firing contributes to coding by retinal ganglion
cells remains an open issue.”

We agree that “the degree to which concerted firing contributes to coding by retinal
ganglion cells” remains an open issue — for populations of neurons. However, given that
our analysis was based on 498 cell pairs and a rigorously derived information-theoretic cost
function!, we feel that the issue has been largely closed for pairs of mouse neurons in the
photopic regime. We believe this is an important step, since six years ago Meister et al.’®
appeared to imply that concerted firing does contribute to coding by retinal ganglion cells,
based on one cell pair and qualitative analysis. The next step — determining whether or not
AT is small for neuronal populations — will have to wait for future studies.
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