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Several recent studies have shown that the ON and OFF channels of the visual system are not simple mirror images of each other, that their
response characteristics are asymmetric (Chichilnisky and Kalmar, 2002; Sagdullaev and McCall, 2005). How the asymmetries bear on
visual processing is not well understood. Here, we show that ON and OFF ganglion cells show a strong asymmetry in their temporal
adaptation to photopic (day) and scotopic (night) conditions and that the asymmetry confers a functional advantage. Under photopic
conditions, the ON and OFF ganglion cells show similar temporal characteristics. Under scotopic conditions, the two cell classes di-
verge—ON cells shift their tuning to low temporal frequencies, whereas OFF cells continue to respond to high. This difference in
processing corresponds to an asymmetry in the natural world, one produced by the Poisson nature of photon capture and persists over a
broad range of light levels. This work characterizes a previously unknown divergence in the ON and OFF pathways and its utility to visual
processing. Furthermore, the results have implications for downstream circuitry and thus offer new constraints for models of down-
stream processing, since ganglion cells serve as building blocks for circuits in higher brain areas. For example, if simple cells in visual
cortex rely on complementary interactions between the two pathways, such as push–pull interactions (Alonso et al., 2001; Hirsch, 2003),
their receptive fields may be radically different under scotopic conditions, when the ON and OFF pathways are out of sync.

Introduction
The ON and OFF pathways are among the most well known
examples of parallel processing in the visual system (Wässle,
2004). The division into these streams begins in the retina at
the very first synapse— bipolar cells contain either sign-
inverting or sign-conserving glutamate receptors, which de-
termine whether they depolarize or hyperpolarize to light. The
depolarizing and hyperpolarizing bipolar cells constitute two
general classes of cells, termed ON and OFF bipolar cells. The
ON and OFF bipolar cells send their axon terminals to sepa-
rate sublaminae in the inner-plexiform layer, where they syn-
apse with ganglion cell dendrites and shape ganglion cell
responses. Thus, the split into cells that respond to ON and
OFF signals in the retina is carried forth from the first synapse
to the ganglion cell output.

Initially, the working hypothesis was that this ON and OFF
output was essentially “equal and opposite,” that is, the ON and
OFF cells were thought to respond to the same features of the
visual scene, just with opposite polarity. Evidence has begun to
accumulate, however, that this description is too simple, that ON
and OFF cells carry at least partially different information. Spe-
cifically, at the level of the retinal circuitry, studies have shown
that the two pathways receive distinct inhibitory input (Pang et

al., 2003; Zaghloul et al., 2003; Murphy and Rieke, 2006; Eggers et
al., 2007; Molnar and Werblin, 2007). Furthermore, at the level of
retinal output, ON and OFF cells of the same class have been
shown to have 10 –20% differences in receptive field size and
kinetics (Chichilnisky and Kalmar, 2002) (but see Benardete and
Kaplan, 1999, with respect to the kinetics), and additional differ-
ences in the degree of nonlinearity (Sagdullaev and McCall,
2005). The significance of these differences for visual processing
is not well understood. Although a proposal has been made for
the functional role of the difference in receptive field size (a spa-
tial aspect) (Balasubramanian and Sterling, 2009), the roles of the
differences in dynamics have yet to be determined.

Here, we show that ON and OFF cells show a substantial dif-
ference in their temporal adaptation to day and night, and, fur-
thermore, that this difference has a functional advantage. We
characterized the temporal responses of mouse ON and OFF gan-
glion cells using gratings and white-noise stimuli under photopic
and scotopic conditions. Our results show that under photopic
conditions, the pathways are, in fact, largely symmetric: their
responses differ in sign, but their temporal characteristics are
similar. Under scotopic conditions, however, the pathways di-
verge—the tuning of the ON cells shifts to low temporal frequen-
cies, whereas the tuning of the OFF cells remains high. Using a
model for signal detection, we then address the issue at the func-
tional level, showing how this difference corresponds to a natural
asymmetry in the visual world.

These results show a new divergence in the ON and OFF path-
ways and its potential value for processing visual information.
The results also have implications for downstream circuitry, spe-
cifically, for receptive field models that depend on ON and OFF
interactions.
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Materials and Methods
Experiments
Recording. Ganglion cell spike trains were recorded from the central ret-
ina of C57BL/6J mice using a multielectrode array, as described previ-
ously (Nirenberg et al., 2001; Sinclair et al., 2004; Dedek et al., 2008).
Spikes were sorted into units (cells) using a Plexon Instruments Mul-
tichannel Neuronal Acquisition Processor. Five retinas were used in these
studies. Retina pieces used for the recordings were �1.5–2 mm across.

Stimulation. The light source for these experiments was a Sony Multiscan
CPD-15SX1 computer monitor. Neutral density filters were used to attenu-
ate the output of the monitor to the desired scotopic and photopic levels. The
scotopic intensity was 2.8�10�5 �W/cm2; the photopic was 0.25 �W/cm2.
Following Lyubarsky et al. (2004) and using the spectrum of our monitor
(Bohnsack et al., 1997), these radiometric units can be converted to photore-
ceptor-equivalent-photons � micrometers�2 � second�1: The scotopic intensity
converts to 0.3 rod-equivalent-photons � �m�2 � s�1, 0.3 M-cone-equivalent-
photons � �m�2 � s�1 [in mouse, the rod and the M-cone have very closely
matching absorption spectra (Lyubarsky et al., 1999; Nirenberg et al.,
2001)], and 0.01 S-cone-equivalent-photons � �m �2 � s �1, the pho-
topic, to 2.7 � 10 3 rod-equivalent-photons � �m �2 � s �1, 2.7 � 10 3

M-cone-equivalent-photons � �m �2 � s �1, and 120 S-cone-equivalent-
photons � �m �2 � s �1. This gives a rate of 0.2 R* � rod �1 � s �1, 0.1
R* � M-cone �1 � s �1, and 5 � 10 �3 R* � S-cone �1 � s �1 for scotopic,
and 1.8 � 10 3 R* � rod �1 � s �1, 900 R* � M-cone �1 � s �1, and 40 R* � S-
cone �1 � s �1 for photopic, assuming an effective collecting area (i.e.,
collecting area/funneling factor) from the studies by Lyubarsky et al.
(1999, 2004) of 0.67 �m 2 for rods and 0.34 �m 2 for cones. Note that
recordings were made in central retina, where most cones coexpress both
opsins (Applebury et al., 2000; Nikonov et al., 2006). Thus the numbers
900 R* � cone �1 � s �1 and 40 R* � cone �1 � s �1 constitute the range of
photoisomerizations at the higher light intensity. See also supplemental
material (available at www.jneurosci.org) for experiments with 2-amino-
4-phosphonobutyric acid (APB) that show that responses to the low light
level condition are mediated through the rod bipolar pathway.

Two stimuli were used: drifting sine wave gratings and a binary ran-
dom checkerboard (white noise). The sine wave gratings were presented
at nine temporal frequencies, ranging from 0.15 to 6 Hz, all with a spatial
frequency of 0.039 cycles/deg. Each temporal frequency was presented
for 2 min. The white noise stimulus was a random checkerboard at a
contrast of 1, in which the intensity of each square was either white or
black, randomly chosen every 0.067 s. The size of the squares was 9 � 9°;
this size was chosen to elicit responses in the low-light (scotopic) condi-
tion. The white noise stimulus was presented for 10 min. Note that the
update rate of the white noise stimulus, 1/0.067 � 15 Hz, which would be
considered low for some species, is appropriate for the mouse, the re-
sponses of whose ganglion cells fall off rapidly above 5 Hz. The frequency
range focused on in this paper is 3– 0.5 Hz (or lower). With a noise update
rate of 15 Hz and a corresponding Nyquist frequency of 7.5 Hz, this range
is well covered. After both stimuli were presented, the light intensity was
increased. After 20 min of adaptation to the photopic intensity, the stim-
uli were presented again, as above. All animals were dark-adapted for 1 h
before recording.

Assessing potential rundown caused by bleaching. Response rundown
can occur because of bleaching during the photopic condition. To assess
this, we measured the firing rate in the responses to a periodic flashing
stimulus at the beginning and end of the photopic condition. Firing rates
between the beginning and end differed by �10% on average, and this
was not significantly different between ON and OFF cells ( p � 0.5,
Student’s t test comparing the mean firing rate change of ON cells with
that of the OFF cells).

Data analysis
Designation of ON and OFF cells. Cells were designated as ON or OFF
using the spike-triggered average to the checkerboard stimulus (see
above). If the sign of the initial deflection was positive, the cells were
designated as ON, and if negative, then OFF.

Analysis of responses to drifting gratings. For the drifting sine wave
gratings, temporal tuning curves were created from ganglion cell re-
sponses using standard methods (Enroth-Cugell and Robson, 1966; Pur-

pura et al., 1990; Croner and Kaplan, 1995). Briefly, for each grating, the
first harmonic of the response of the cell, R(f ), was calculated as follows:

R�f� � �1

L�
j

exp	�i2�ftj
�, (1)

where f is the temporal frequency of the drifting sine wave grating (in
cycles/second), L is the duration of the stimulus (in seconds), which was
always an integer multiple of 1/f, and tj is the time of the jth spike of the
response of the cell to the given grating.

Analysis of responses to the white noise stimulus. For the white noise
stimulus, spike-triggered averages were computed using reverse correla-
tion (for review, see Chichilnisky, 2001). When calculating temporal
frequency responses, for a given cell, the input stimulus was the intensity
of the checkerboard square that produced the largest response for that
cell. Temporal frequency responses were then taken as the transfer func-
tion between that stimulus and the response of the cell, calculated as
follows:

R(f) � �WXY

WXX
�, (2)

where f is the temporal frequency of interest, WXY is the cross-
spectrum between the stimulus and response, and WXX is the power
spectrum of the stimulus. Spectra were estimated using the multitaper
method [Chronux library for Matlab (Mitra and Bokil, 2007); available at
http://chronux.org], using an effective bandwidth of 0.27 Hz.

Generation of confusion matrices. Confusion matrices were used to
quantify and visualize the extent to which different stimuli could be
distinguished based on the ganglion cell responses. The vertical axis of a
confusion matrix gives the presented stimulus (i), whereas the horizontal
axis gives the decoded stimulus ( j). Each element (i,j) of the confusion
matrix indicates the probability that when stimulus i is presented, it will
be decoded as stimulus j. The matrices were constructed using the re-
sponses to the drifting sine wave grating stimuli at the seven highest
temporal frequencies, ranging from 0.45 to 6 Hz (the extreme low-
frequency gratings did not provide a sufficient number of repeats for
estimating probability distributions and thus were not included in the
construction of the matrices).

On each trial of the task, a stimulus, s, was presented (a grating of a
particular temporal frequency), and a response, r, was recorded. The
response was then decoded by choosing the stimulus most likely to have
produced it. The probability that a recorded response r is produced by
the stimulus sj, namely, p(sj � r), can be calculated by Bayes rule as follows:

p�sj � r� � p�r � sj�p�sj�. (3)

Thus, to decode a response r, we need to find the stimulus sj for which
p(r � sj) is maximal. (This is because all stimuli were equally likely [i.e., all
p(sj) are identical].)

To calculate the response distribution for each stimulus, p(r � sj), we
proceeded as follows. First, the 34 trials at each frequency were split into
interleaved sets: one set to build the response distributions (the training
set) and the other set to be decoded (the test set). For each stimulus, the
response distribution was assumed to be an inhomogenous Poisson pro-
cess spanning 1.2 s, and constant in 133 ms bins. The firing rate in each
bin was estimated by binning each spike train at this resolution, and
averaging over all training trials of a given stimulus. To calculate p(r � sj)
for a response in the test set, we binned responses in the same manner.
Since we assumed that the conditional response distribution is an inho-
mogeneous Poisson process, the probability p(r � sj) was the product of
the Poisson probabilities for each bin. This process was repeated for each
response in the test set, and results were tallied into the confusion matrix.
Results similar to those shown in Figures 5 and 6 were obtained with a
range of bin sizes (75–170 ms) and random assignments to training and
test sets.

Animals
Animals were from a C57BL/6J background. All experiments were con-
ducted in accordance with the institutional guidelines for animal welfare.
Mice were dark-adapted for 1 h before the start of an experiment.
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Supplemental material
The supplemental material (available at
www.jneurosci.org) provides all individual
grating responses, tuning curves, and confu-
sion matrices in the dataset. The figures in
the main text show representative examples
as well as averages; the supplemental mate-
rial provides the complete set for the inter-
ested reader. The supplemental material also
includes a set of figures showing responses
after APB application.

Results
To assess differences in the temporal re-
sponse properties of ON and OFF gan-
glion cells, we recorded the spiking
activity of the cells in response to drifting
sine wave gratings of different temporal
frequencies and a white noise stimulus.
Measurements were performed under
both photopic and scotopic conditions.

Figure 1 shows the results for the
grating stimulus under the photopic
conditions. The left panel shows the re-
sponses of several individual ON cells
(top) and OFF cells (bottom), and the
right panel shows the average temporal
frequency tuning curves for the ON and
OFF populations (n � 20 ON cells; n �
31 OFF cells). Consistent with previous
studies (Kremers et al., 1993; Benardete
and Kaplan, 1999; Keat et al., 2001;
Zaghloul et al., 2003), both cell classes
responded similarly, that is, they both responded to a broad
range of temporal frequencies (0.15– 6 Hz) ( p � 0.05, Stu-
dent’s t test comparing the mean center of mass of the ON cell
tuning curves with those of the OFF cells).

The results for the same cells under scotopic conditions are
shown in Figure 2. As in Figure 1, the left panel shows responses
for several individual ON and OFF cells, and the right panel
shows the average tuning curves. In contrast to the photopic
condition, there was a clear difference in tuning: ON cells
showed tuning to low temporal frequencies, peaking near 0.5
Hz, whereas OFF cells continued to respond to high temporal
frequencies. The difference in tuning between the ON and OFF
populations was highly significant ( p � 10�3, Student’s t test,
comparing the mean center of mass of the tuning curves of the
two populations).

Similar results occurred for the white noise stimulus (Figs. 3,
4). Figure 3 shows the responses from the two cell classes under
photopic conditions. The left panel shows the time course of the
spike-triggered average (STA) for several ON cells and OFF cells,
and the right panel shows the average temporal frequency re-
sponses for both cell classes (n � 20 ON cells, 31 OFF cells). As
with the grating stimulus, both cell types responded similarly
over a broad range of temporal frequencies ( p � 0.05, Student’s
t test, comparing the mean center of mass of the ON cell temporal
frequency responses with those of the OFF cells). Figure 4 shows
the responses to the same stimulus under scotopic conditions.
Again, the left panel shows STA time courses for individual ON
and OFF cells, and the right panel shows the average temporal
frequency responses across all cells for the two populations. The
same divergence in tuning observed with the grating stimulus—
that ON cells were tuned to low frequencies, whereas OFF cells

continued to respond to high frequencies—was also seen with
the white noise stimulus ( p � 10 �3, Student’s t test, compar-
ing the mean center of mass of the temporal frequency re-
sponses of the two populations).

These differences in temporal frequency characteristics show
that there is an ON cell/OFF cell asymmetry with respect to en-
coding stimuli at low light levels. To assess the effects of this on
decoding, rather than encoding, stimuli, we used an ideal ob-
server approach (Barlow, 1978; Geisler, 1989). Specifically, we
measured the extent to which different stimuli can be distin-
guished given responses from each cell class.

The decoding results were then quantified and visualized via
confusion matrices (Figs. 5, 6) (Hand, 1981). A confusion matrix
indicates the probability that the neural response to a presenta-
tion of a stimulus will be decoded as that stimulus, or whether it
will be confused with another stimulus. Specifically, the element
in position (i,i) of the matrix indicates the probability that stim-
ulus i is decoded correctly, and the element in position (i,j) indi-
cates the probability that stimulus i is decoded incorrectly as
stimulus j.

Figure 5 shows the confusion matrices generated from re-
sponses taken under photopic conditions. The stimuli were drift-
ing gratings of different temporal frequencies. As shown in the
figure, both ON and OFF cells decoded the gratings correctly over
the range of frequencies; this is indicated by the prominent diag-
onal line in each confusion matrix. As in the previous figures,
results for individual ON and OFF cells are shown on the left, and
the average for the population is shown on the right. The results
are summarized in B, which shows the average of the diagonals of
the matrices for each population (i.e., the average probability
that stimuli will be correctly decoded). Under photopic con-

Figure 1. ON and OFF cells show similar temporal frequency tuning in response to sine wave gratings under photopic condi-
tions. A, Representative responses for four ON and four OFF ganglion cells to drifting sine wave gratings of increasing temporal
frequency. Each segment of the traces shows the average firing rate over one period of the drifting grating for a given frequency.
B, Average tuning curves (mean � SEM) for all ON and OFF cells, normalized to the peak (n � 20 ON cells, 31 OFF cells). Temporal
tuning curves were calculated by Fourier analyzing the responses and extracting the amplitude of the first harmonic response at
each frequency. ON and OFF cells respond to a similar range of temporal frequencies ( p � 0.05, Student’s t test, comparing the
mean center of mass of the ON cell tuning curves with that of the OFF cells).
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ditions, no statistically significant difference between the
classes was observed ( p � 0.1 for all frequencies, Student’s t
test, adjusted for multiple comparisons).

Figure 6 shows the same analysis for these cells under
scotopic conditions. Here, there is a clear difference in the
decoding: the ON cells showed accurate decoding at low fre-
quencies and poor decoding at high frequencies; this is indicated
by the bright squares along the diagonal line at the low frequen-
cies that dissolve as high frequencies are approached. In contrast,
the OFF cells showed accurate decoding at high frequencies; here,
the bright squares are shifted toward the middle and high fre-
quencies of the matrices. As summarized in B, which shows the
average of the diagonals of the matrices for each population, the
ON cells were more accurate at low frequencies, whereas the OFF
cells were more accurate at high frequencies ( p � 0.01, Student’s
t test, adjusted for multiple comparisons; n � 20 ON cells, n � 31
OFF cells). [All individual grating responses, tuning curves, and
confusion matrices for both light conditions are provided in sup-
plemental material for the interested reader (supplemental Fig.
S1 for ON cells; supplemental Fig. S2 for OFF cells, available at
www.jneurosci.org).]

The above finding—that ON cells but not OFF cells shift to
low temporal frequencies in the dark—indicates that, as light
level decreases, the retina processes increments and decre-
ments differently. Interestingly, this difference in processing
corresponds to an asymmetry in the physical world, one pro-
duced by the Poisson nature of photon capture. In a Poisson
process, the variance is proportional to the mean. This means
that there is more dispersion in the distribution of counts
when the event rate increases (i.e., when light increments occur)
than when the event rate decreases (when light decrements oc-
cur). Because of this asymmetry, more time is needed to detect
increments than decrements.

The effect of this asymmetry is shown
in Figure 7A. We consider the discrimina-
tion of positive and negative fluctuations
around a background luminance. As
mentioned above, Poisson statistics dic-
tate that increments are associated with
broader count distributions, and decre-
ments with narrower ones. Consequently,
there is more overlap among the incre-
ments, making them harder to distin-
guish. As shown in B, an ideal observer in
a discrimination task, who chooses stim-
uli based on the maximum a posteriori
probability over the set of stimuli, will be
less accurate in discriminating between
increments than between decrements.
Changing the event count (either by
changing the integration time or the pho-
ton rate) changes performance for both
increments and decrements, but the dif-
ference between decrements and incre-
ments persists—for at least three orders of
magnitude, as shown in the figure. (Ap-
pendix provides an information-theoretic
analysis of this asymmetry.)

Discussion
It is well known that the signals in the first
stages of visual processing segregate into
ON and OFF channels. The working hy-
pothesis for many years was that these

channels are symmetric, but recent observations suggest that this
notion needs modification, that the two pathways show differences
(Devries and Baylor, 1997; Demb et al., 2001; Chichilnisky and
Kalmar, 2002; Pang et al., 2003; Zaghloul et al., 2003; Sagdullaev
and McCall, 2005; Murphy and Rieke, 2006; Eggers et al., 2007;
Molnar and Werblin, 2007). The significance of the differences in
conveying visual information has been unclear.

Here, we showed a case in which the symmetry breakdown
between the ON and OFF channels is very apparent, and func-
tional significance can be attributed. By day, that is, under pho-
topic conditions, the temporal tuning of ON and OFF ganglion
cells in the mouse retina is very similar, but at night it diverges:
ON cells shift to low temporal frequencies, that is, they increase
their gain at low temporal frequencies and reduce it at high. Fig-
ures 2 and 4 show the changes in gain, and Figure 6 shows an
example of the functional consequences: the changes in gain cor-
respond to changes in signal-to-noise ratio, which directly affect
performance on a temporal frequency discrimination task. Fig-
ure 7 then shows that this result is predicted by an asymmetry in
the physical world, specifically, the asymmetric detection of light
increments and decrements because of the Poisson nature of
photon capture.

This breakdown of symmetry between the two pathways in the
dark is unlikely to be specific to the mammalian visual system.
Armstrong-Gold and Rieke (2003) recorded from ON and OFF
bipolar cells under scotopic conditions in the tiger salamander
retina and noted that OFF bipolar cells responded to higher fre-
quency stimuli than ON bipolar cells. Although the salamander
appears to have significant differences in the circuitry that medi-
ates rod-driven signals (Yang and Wu, 1997), their findings sug-
gest that the asymmetries in the ON and OFF pathways at low
light levels generalize to nonmammals as well.

Figure 2. Frequency tuning of ON and OFF cells diverges under scotopic conditions. A, Representative responses of four ON and
four OFF ganglion cells to drifting sine wave gratings of increasing temporal frequency. B, Average tuning curves (mean � SEM)
for all ON and OFF cells, normalized to the peak (n � 20 ON cells, 31 OFF cells). On average, the ON cells shifted to low frequencies,
whereas the OFF cells continued to respond to high frequencies ( p � 10 �3, Student’s t test, comparing the mean center of mass
of the two populations). Note that, under scotopic conditions, both ON and OFF cells fail to respond to the extreme high frequencies.
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Functional implications of the differences
in visual processing
The results in this paper represent an ex-
ample of a neural system evolving to
match a fundamental property of the nat-
ural world—the intrinsic asymmetry in
the detection of light increments and dec-
rements that arises from the Poisson na-
ture of photon capture. That there is an
asymmetry has been previously noted
(Cohn, 1974; Thibos et al., 1979;
Hornstein et al., 1999), but the studies
considered only the implications for
photoreceptor responses, and only in
the regimen of low photon counts (�10
per discrimination window). Here, we
show that the retina exploits this asymme-
try after photoreceptor signals are parti-
tioned into ON and OFF channels.
Moreover, we demonstrate that this asym-
metry is relevant to much higher photon
counts, up to thousands of photons per win-
dow in our discrimination task (Fig. 7B).

Two factors make the asymmetry rele-
vant to high counts. First, the asymmetry
is greater for large deviations from the
mean than for small ones. For example, in
Figure 7A, the signals near threshold (the
distributions of counts closest to the
mean) only show a slight difference be-
tween increment and decrement distri-
butions and thus would be nearly
equally challenging to discriminate. In
contrast, for suprathreshold signals (de-
viations further from the mean), the in-
crement distributions become broader
(less discriminable), whereas the decre-
ment distributions become narrower
(more discriminable). (Formally, the in-
trinsic difference in discriminability of in-
crements and decrements depends in an accelerating fashion on
distance from the mean— detailed in Appendix.) Second, the
effects of the asymmetry are compounded when one considers
not just the detection of a single increment or decrement, but
instead the discrimination of multiple increments or decre-
ments around a mean photon count. This latter task is much
more closely related to the task the animal’s visual system is per-
forming—that is, cells in the retina do not simply signal the pres-
ence of an increment or decrement, but their response increases
with larger magnitude increments or decrements, and therefore
the cells must be able to discriminate multiple levels. Because
these levels overlap with one another (more so for increments
than decrements, as shown in Fig. 7A), the task becomes harder as
multiple contrasts are considered, which makes the asymmetry
relevant to higher photon counts.

The results of the simple discrimination task, presented in
Figure 7B, suggest that ON cells would need to observe more
photons, by approximately a factor of 3, to match the perfor-
mance of OFF cells (shown by the separation between the gray
and black curves). (This is similar to the factor of 2.5 found in
Appendix using a formal information-theoretic analysis.) This
factor of 3 approximates the shift of the tuning curves along the
frequency axis seen in the observed data in Figures 2 and 4. Note,

however, that the discriminability of increments and decrements
will not always differ by this ratio. This is because Poisson fluctu-
ations in photon count are not the only source of noise. As the
signals travel through multiple levels of processing, other noise
sources are added. To the extent that these noise sources corrupt
increments and decrements equally, they will dilute the intrinsic
difference in detectability.

An additional point worth mentioning is that the impact of
the increment/decrement asymmetry on signaling by ON and
OFF ganglion cells depends on the presence of a nonlinearity,
specifically, the well known rectification in the output of ganglion
cells in many species, including mouse. If, for example, ON cells
and OFF cells were not rectified, they could each signal both incre-
ments and decrements. In this scenario, the increment/decrement
asymmetry would not have a differential effect on the two classes.

Finally, the results in this paper have implications for down-
stream circuitry, since retinal outputs serve as building blocks for
circuits in higher brain areas. For example, some models of sim-
ple cell receptive fields in visual cortex hold that cortical cells are
activated in a push–pull manner, with ON and OFF subregions
driven by complementary ON and OFF retinal ganglion cell in-
put, relayed through the lateral geniculate nucleus (Alonso et al.,
2001; Hirsch, 2003). Our findings predict that, if simple cell re-

Figure 3. ON and OFF cells show similar temporal response properties to white noise under photopic conditions. A, Represen-
tative STA time courses for four ON and four OFF ganglion cells in response to a white noise (random checkerboard) stimulus. Note
that OFF STAs are inverted so that the similarity of the short peaks is easy to observe. B, Average temporal frequency responses
(mean � SEM) for all ON and OFF cells (n � 20 ON cells, n � 31 OFF cells), normalized to the peak. Temporal frequency responses
were calculated by Fourier analyzing the STA at the checkerboard square that produced the largest response for each cell. ON and
OFF cells showed similar temporal response profiles ( p � 0.05, Student’s t test, comparing the mean center of mass of ON cell
temporal frequency responses with that of the OFF cells).
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ceptive fields rely on complementarity of ON and OFF input,
their receptive field structure may be radically different at night,
when the two pathways are out of sync; alternatively, assuming
this model is correct, these cells may have some plasticity (e.g., the
ability to differentially filter ON and OFF input), which would
allow the cells to preserve their receptive field structure with the
shift to scotopic vision.

Relating the differential filtering properties of ON and OFF
ganglion cells to retinal circuitry
Our results show, at the level of the ganglion cell output, that ON
and OFF pathways have filtering properties that diverge in the
dark. This requires elements in retinal circuitry that act separately
on ON and OFF signals. Under the scotopic conditions used in
this paper, signal transmission to ON and OFF ganglion cells is
dominated by the rod bipolar pathway (see supplemental mate-
rial, available at www.jneurosci.org) (for review of the pathway,
see Bloomfield and Dacheux, 2001; Völgyi et al., 2004; Murphy
and Rieke, 2006, 2008). Along this pathway, ON and OFF signals
first diverge at the output from the AII amacrine cell, which con-
nects to ON cone bipolar cells, OFF cone bipolar cells, and OFF
ganglion cells. Here, ON signals are mediated by gap junctions,
whereas OFF signals (both to the bipolar and ganglion cells) are
mediated by chemical synapses (Kolb and Famiglietti, 1974;
Strettoi et al., 1992; Völgyi et al., 2004; Murphy and Rieke, 2008).

It has been shown recently that, under
these conditions, the synaptic input to ON
and OFF ganglion cells is correlated
(Murphy and Rieke, 2006, 2008), creating
an expectation that the ON and OFF re-
sponses would be similar. However, it has
also been shown that the two ganglion cell
types undergo different filtering with re-
spect to their inputs (Murphy and Rieke,
2006, 2008). In ON cells, excitation is fol-
lowed by delayed inhibition, in a feedfor-
ward manner, whereas in OFF cells,
excitation and inhibition occur simulta-
neously, but with opposite polarity; in this
case, the cell is driven to fire in a push–pull
manner by a combination of excitation
and disinhibition. These different filtering
mechanisms are potential mediators of
the differences in the output properties
between the two pathways. We empha-
size, however, that since the ON and OFF
pathways have not been completely delin-
eated, it is possible that there are other
processes as well that shape response
dynamics.

Interestingly, under photopic condi-
tions, in which ON and OFF signals diverge
at an earlier point in the circuitry (i.e., at the
level of the photoreceptor output to the bi-
polar cells), one might expect greater diver-
gence between ON and OFF ganglion cell
responses. This was not the case for the fil-
tering properties we examined. However,
differences between the ON and OFF path-
ways under photopic conditions have been
reported by others in studies of adaptation,
specifically, contrast adaptation (Chander
and Chichilnisky, 2001; Kim and Rieke,

2001; Wark et al., 2009).

Appendix: Discriminability of increments and
decrements in the rate of a Poisson process:
an information-theoretic perspective
Here, we analyze the asymmetry in detecting increases and decreases
in the rate of a Poisson process, viewed from an information-
theoretic perspective. This asymmetry has previously been analyzed
from the point of view of signal detection theory and asymptotic
expressions for receiver operating curve characteristics (Thibos et al.,
1979). The information-theoretic perspective used here leads to a
simple, exact result (Eq. 10) that indicates how much more quickly
an ideal observer can detect a decrement, versus an increment, in a
Poisson process. This ratio depends in an accelerating fashion on the
fractional size of the change (i.e., the contrast), and, perhaps surpris-
ingly, is independent of the baseline event rate.

To reach our result, we first need a measure of the discriminabil-
ity of two Poisson processes, one with rate �P from one with rate �Q.
We will then compare the discriminability of a fractional increase in
rate by an amount c [i.e., �P � �Q(1  c)] to the discriminability of a
fractional decrease by the same amount [i.e., �P � �Q(1 � c)].

The first step is to define a natural measure of discriminability per
unit time. We do this by taking the Kullback–Leibler divergence,
which is a standard measure of discriminability for discrete distribu-

Figure 4. The divergence under scotopic conditions was also observed for the white noise stimulus. A, Representative STA time
courses for four ON and four OFF ganglion cells in response to a white noise (random checkerboard) stimulus. B, Average temporal
frequency responses (mean � SEM), normalized to the peak (n � 20 ON cells, n � 31 OFF cells). As with the grating stimulus, the
ON cells shifted to low frequencies, whereas the OFF cells continued to respond to high frequencies ( p � 10 �3, Student’s t test,
comparing the mean center of mass the two populations).
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tions, and extending it to continuous processes. For discrete distribu-
tionsPandQ, theKullback–Leiblerdivergence isgivenbythefollowing:

DKL�P\Q� � �
i

pi log
pi

qi
. (4)

This is a natural measure of discriminability because it has the fol-
lowing interpretation: given a random draw from the P distribution,

DKL(P�Q) is the log-likelihood ratio that this observation arises from
the P distribution, versus that it arises from the Q distribution
(Latham and Nirenberg, 2005; Cover and Thomas, 2006).

To apply this notion to Poisson processes, we note that for a
sequence of independent samples, log-likelihood ratios combine
by simple addition. In a Poisson process discretized in small in-
tervals of size �t, each time step is independent. So the discrim-
inability per unit time, which we denote RKL(P �Q), is given by the
number of time steps (1/�t) multiplied by the discriminability

Figure 5. Under photopic conditions, it is possible to decode across the entire range of
temporal frequencies using responses of ON or OFF cells. A, Representative confusion matrices
for 16 ON and 16 OFF cells calculated using responses to drifting gratings. The vertical axis gives
the presented stimulus (i), and the horizontal axis gives the decoded stimulus ( j). Each element
of a confusion matrix plots the probability of decoding stimulus j when presented with stimulus
i (see text). Decoders based on both ON and OFF responses show little confusion over the range of
temporal frequencies, as indicated by the prominent diagonal lines in the confusion matrices. B,
Average confusion matrices over all ON and OFF cells (n � 20 ON cells; n � 31 OFF cells). C, The
average of the diagonals of the matrices (mean � SEM) for all ON (red) and OFF (blue) cells (n � 20
ON cells; n � 31 OFF cells). ON and OFF cells perform equally well over the full range of temporal
frequencies ( p � 0.1 for all frequencies, Student’s t test, adjusted for multiple comparisons).

Figure 6. Under scotopic conditions, there is a divergence in performance—ON cells per-
form better at low frequencies, whereas OFF cells perform better at high. A, Representative
confusion matrices calculated using the responses of 16 ON and 16 OFF cells to drifting gratings.
ON cells show better performance at low frequencies, as indicated by the bright squares along
the diagonal at low frequencies, which break down at middle and high frequencies. In contrast,
for OFF cells, performance is shifted toward high frequencies. B, Average confusion matrices
over all ON and OFF cells show the same trend (n�20 ON cells; n�31 OFF cells). C, The average
of the diagonals of the matrices (mean � SEM) for ON (red) and OFF (blue) populations (n � 20
ON cells; n � 31 OFF cells). ON cells perform significantly better at the lowest two frequencies
tested ( p � 0.01), whereas OFF cells perform significantly better at the highest frequency
( p � 0.01, Student’s t test, adjusted for multiple comparisons).
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within a time step of size �t. Since this holds for infinitesimal time
steps as well as finite ones, we can write the following:

RKL�P\Q� � lim
�t30

DKL�P�t\Q�t�

�t
, (5)

where P�t and Q�t indicate the Poisson processes P and Q, dis-
cretized in time steps of size �t.

We now calculate this single-time-step discriminability,
DKL(P�t �Q�t). With time discretized in steps of size �t, a Poisson
process of rate � can be approximated as a discrete symbol se-
quence: the symbol 0 occurs with probability 1 � ��t, and the
symbol 1 occurs with probability ��t. Thus, in a discretization
interval �t, the discriminability of a Poisson sequence with rate
�P from one with rate �Q is as follows:

DKL�P�t\Q�t� � p0log
p0

q0
� p1log

p1

q1
� O���t�2�, (6)

where p0 � 1 � �P�t, p1 � �P�t, q0 � 1 � �Q�t, q1 � �Q�t. The
final term in the above equation represents the contribution of
bins with two or more events; their contribution is negligible as
the step size �t approaches zero.

With these substitutions, we find the following:

DKL�P�t\Q�t� � �1 � �P�t�log
1 � �P�t

1 � �Q�t

� �P�t log
�P�t

�Q�t
� O���t�2� (7)

or

DKL�P�t\Q�t� � ��Q � �P��t � �P�t log
�P

�Q
� O���t�2�.

(8)

Here, we have used the approximation log(1  u) � u  O(u 2)
because we are interested in the limit of a small discretization
interval, �t.

From this, it follows that

RKL�P\Q� � lim
�t30

DKL�P�t\Q�t�

�t
� ��Q � �P� � �P log

�P

�Q
,

(9)

which is the discriminability per unit time of a Poisson process
with rate �P from one with rate �Q.

Finally, we want to compare the discriminability of a decre-
ment by a fractional contrast c from the background, with the
discriminability of an increment by a fractional contrast c from
the same background. We represent the background signal as a
Poisson process Q with rate �, and we represent the decrements
and increments as Poisson processes Q� and Q, with rates �� �
�(1 � c) and � � �(1  c).

The answer we seek, the ratio of discriminabilities, is
RKL�Q

�\Q�

RKL�Q
\Q�

. Substituting the above expressions for � and ��

in Equation 9 yields the following:

RKL�Q�\Q�

RKL�Q\Q�
�

�c � ��1 � c�log�1 � c�

��c � ��1 � c�log�1 � c�

�
c � �1 � c�log�1 � c�

�c � �1 � c�log�1 � c�
. (10)

The numerator and denominator of
RKL�Q

�\Q�

RKL�Q
\Q�

are propor-

tional to the baseline event rate �, so the ratio of discriminabilities
is independent of �. That is, the ratio of discriminabilities de-
pends only on contrast and the relative photon rates, but not on
the absolute photon rate. This gives the ratio in Equation 10 a
universal interpretation: it indicates how much more quickly an
ideal observer can reach the same certainty in detecting a decre-
ment of a given contrast, versus detecting an increment.

To understand the qualitative behavior of Equation 10, we
consider its Taylor expansion. This begins as follows:

RKL�Q�\Q�

RKL�Q\Q�
� 1 �

2

3
c �

2

9
c2 � O�c3�. (11)

Figure 7. At low light levels, increments become harder to discriminate than decrements of
equal magnitude, because of asymmetries in the Poisson distribution. A, Distributions of pho-
ton counts are shown for increments (gray) and decrements (black) in steps of 10% contrast
around a mean rate (dotted line). For increments, the distributions are broader and show much
greater overlap than for decrements, making increments harder to detect. B, Performance for
an ideal observer in the discrimination task for increments (gray) or decrements (black) over a
range of mean photon counts. For each mean photon count, stimuli at steps of �10% contrast
around the mean are simulated (as in A), and the observer chooses stimuli based on the maxi-
mum a posteriori probability over the set of stimuli. Over a broad range of photon counts,
performance is better for decrements than for increments. The arrows indicate separation be-
tween increment and decrement performance (i.e., the factor by which an increment detector
needs to observe more photons to match the performance of the decrement detector). The
dotted line indicates performance at chance. We note that this aspect of Poisson processes—
that it is more difficult to detect increments than to detect decrements—might seem counter-
intuitive, since signal-to-noise ratio (SNR) increases with mean rate increases. But SNR is not the
relevant statistic here. An increase in SNR means that it is easier to detect the same fractional change
around a high mean rate than around a low mean rate. In our case, we are asking whether, given a
constant mean rate (e.g., the rate under night conditions), it is easier to detect an increment or a
decrement. Since the variability of a Poisson process is proportional to its rate, an increment leads to
a more variable signal than a decrement and, therefore, is harder to detect. The suggestion in this
paper, then, is that ON cells compensate for the higher variability by integrating their input over a
longer period of time (i.e., by shifting toward low temporal frequencies).
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Thus, the asymmetry between detection of increments and dec-
rements an accelerating function of the contrast c (Fig. 8): it is
progressively more prominent in the suprathreshold range. At

the extreme (c � 1), we find
RKL�Q

�\Q�

RKL�Q
\Q�

�
1

2log2 � 1
, �2.589.

That is, abrupt extinction of a light can be detected �2.5 times
faster than abrupt doubling.
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