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An Embedded Real-Time Processing Platform
for Optogenetic Neuroprosthetic Applications

Boyuan Yan and Sheila Nirenberg

Abstract— Optogenetics offers a powerful new approach
for controlling neural circuits. It has numerous applica-
tions in both basic and clinical science. These applications
require stimulating devices with small processors that can
perform real-time neural signal processing, deliver high-
intensity light with high spatial and temporal resolution,
and do not consume a lot of power. In this paper, we
demonstrate the implementation of neuronal models in a
platform consisting of an embedded system module and
a portable digital light processing projector. As a replace-
ment for damaged neural circuitry, the embedded module
processes neural signals and then directs the projector to
optogenetically activate a downstream neural pathway. We
present a design in the context of stimulating circuits in the
visual system, but the approach is feasible for a broad range
of biomedical applications.

Index Terms— Embedded processor, neural signal
processing, neural pathway modeling, optogenetic
stimulation, digital light processing, neuroprosthesis.

I. INTRODUCTION

OPTOGENETICS allows neurons to be selectively turned
on or off with unprecedented precision [1]–[5]. This

offers great opportunities for clinical applications because it
provides a way to activate or inactivate specific neurons or
classes of neurons in a malfunctioning or damaged circuit and
re-engage them into normal activity. As such, the development
of optogenetic tools offers new hope for patients suffering
from neurological disorders [6] such as epilepsy [7]–[9]
Parkinson’s disease [10], [11], hearing impairments [12], or
vision impairments [13]–[22].

The basic strategy of an optogenetic prosthesis is to bypass
a damaged neural pathway and provide direct stimulation to
downstream components in the pathway. To implement the
strategy in a device, two components are needed: a processor,
which processes neural signals in real time, to mimic the
function of the pathway being bypassed, and a stimulator to
optogenetically activate the downstream cells.

From the stimulator point of view, it is necessary
to target optogenetic proteins with precise spatial and
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temporal resolution. Since these proteins require bright
light [23], [24], standard high resolution devices such as LCD
monitors are ineffective. While laser or LED-based illumi-
nation systems can meet the requirements of light intensity,
they are not readily suitable for providing spatially-patterned
stimuli. Digital light processing (DLP) projectors, however
can achieve this: the key component, a chip called Digital
Micromirror Device (DMD) [25], consists of an array of
several hundred thousand micromirrors, which can change
position at kHz frequencies. These offer the most flexibility in
terms of the spatial and temporal modulation of the activating
light.

In addition to an effective stimulator, the other essential
component is an efficient processor to mimic the processing of
the neural pathway being bypassed. To replace the function of
the bypassed system, processors are required to simulate neural
processing and signaling in real time. To achieve sufficient
spatial and temporal resolution, it may involve the simulation
of a large number of model cells at a temporal scale that is
on the order of milliseconds, which is computationally inten-
sive [26]–[28]. Besides the real-time computing constraint, the
processor also needs to be small and consume less power
so that the prosthetic device can be portable and energy
efficient (so batteries last long enough for the device to be
useful). These requirements make embedded processors with
low power consumption, small size, and low cost a perfect
candidate.

In this paper, we demonstrate the implementation of neu-
ronal models in a platform consisting of an embedded system
module and a portable DLP projector for high spatial and
temporal resolution optogenetic stimulation. The platform is
described in the context of driving visual circuits: briefly, the
embedded module takes visual input (data from a camera),
passes it through an array of model neurons to produce
firing patterns that are similar to the patterns produced by
the targeted downstream cells. The DLP projector then opto-
genetically actives the targeted downstream cells to fire in
these same patterns. To allow processing in real time, models
are simulated with a heterogeneous architecture composed
of a general-purpose processor (GPP) and a digital signal
processor (DSP). Although presented in the context of visual
systems, the platform can be easily adapted for a broad range
of biomedical applications.

The paper is organized as follows: In Section II, we
describe our strategy for implementing a neuronal model in
a digital signal processor. In Section III and Section IV, the
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hardware platform and software design are presented, respec-
tively. In Section V, an illustrative example is provided to
demonstrate the capability of the platform. Section VI gives a
detailed discussion on the applicability and limitations.

II. MODEL

In this section, we describe our implementation of compact
neuronal models in digital signal processors.

A. Firing-Rate Model

A variety of neuronal models have been proposed to mimic
the processing performed by neurons in the nervous system.
In this paper, we use the classic firing-rate model as an
example (reviewed in [29]). This model [29] is described in
a network setting, where both inputs and outputs are charac-
terized by firing rates. Given a neuron receiving P synaptic
inputs labeled by i = 1, 2, . . . , P , the synaptic current entering
the soma I (t) in terms of the firing rates of the presynaptic
neurons is determined by the following first-order differential
equation

τ
d I (t)

dt
= −I (t) +

P∑

p=1

wpu p(t − dp), (1)

where τ denotes the time constant, u p denotes the firing rate
of the pth input, and dp and wp denote the corresponding
axonal conduction delay and synaptic weight, respectively.
Given I (t), the firing rate of postsynaptic neuron λ(t) can
be expressed as

λ(t) = F(I (t) + I0), (2)

where F is called an activation function, and I0 is a constant
offset which sets the baseline firing rate of the model.

Firing rate models can be used to generate stochastic spike
sequences from a deterministically computed rate. A spike
train is typically described by an inhomogeneous Poisson
process, which involves a time-dependent firing rate λ(t) [29].
If n is the observed number of spikes during a given time
interval �, the probability of such an event is given by a
Poisson distribution

P(n|λ(t)) = (λ(t)�)n

n! ex p(−λ(t)�). (3)

The Poisson process provides a useful approximation of sto-
chastic neuronal firing, and we show how we use it to generate
Poisson spikes trains below.

More generally, the rate model given by (1)(2)(3) can
be used as a simplified functional model to describe the
stimulus-response characteristics of spiking neurons in early
sensory pathways. In this case, the input u p(p = 1, . . . , P)
represents the pth component of an external sensory stimulus.
For example, in the visual system, the inputs could represent
a number of pixels that fall on the receptive field of a neuron.

B. Implementation of Firing-Rate Models in the Discrete-
Time Domain for Real-Time Applications

The firing-rate model above is described by a first-
order delayed differential equation, which is a continuous

time model. For many practical applications, the inputs are
typically represented by discrete-time stimulus sequences
(e.g, a sequence of frames from camera), and the storage of
any time function in a computer or digital signal processor
can only be as a discrete function. Therefore, a discrete-time
system model is often needed from the implementation point
of view.

1) Difference Equation: Discrete-time systems are described
by difference equations. In general, a Qth order discrete-
time system with a number of P inputs is described by the
input/output difference equation

I [k] = −
Q∑

q=1

aq I [k − q] +
P∑

p=1

M∑

m=0

bpmu p[k − m], (4)

where k is the integer-valued discrete-time index, u p is the pth
input, I is the output, and aq and bpm are constant coefficients.
The equation shows a Qth order recursion process, i.e., the
next value of the output is computed from the Q previous
values of the output and the P(M + 1) values of the input at
the cost of O(Q + P(M + 1)). There is a trade-off between
accuracy and simplicity. Models with a larger Q and M
typically provide a more accurate description of the responses
characteristics but they are also more expensive to calculate.

The time interval between any pair of consecutive sample
times is the signal’s sampling period, Ts , and the sampling
rate Fs is the reciprocal of the sampling period

Fs = 1/Ts . (5)

2) Spike Generation: For an inhomogeneous Poisson
process, the probability of observing exactly n spikes in a
particular interval � is given by (3).

For sufficiently small intervals �, the average number of
spikes can be approximated by 〈n〉 = λ�. In addition, the
interval can be reduced until the probability of occurrence
of more than one spike in the interval is sufficiently small
that it can be ignored. In this case, the probability of a spike
occurring in a brief time interval is equal to the product of the
instantaneous firing rate during that interval and the length of
the interval

P(n = 1|λ) = λ�. (6)

Therefore, in order to generate spikes, we need to divide
the sampling periods (e.g., frame periods), which are typically
large (e.g., Ts = 16.7ms, 33.3ms, 66.7ms for Fs = 60Hz,
30Hz, 15Hz, respectively) compared to the duration of spikes
(typically 1-2ms). Given the sampling period of the input
stimuli Ts , we choose J large, and divide each period into
J bins (each of width � = Ts/J ).

Take the period of the kth frame (tk−1, tk) as an example.
Given I [k − 1] at tk−1 and I [k] at tk , we perform a linear
interpolation to calculate I [k − 1 + j/J ] at tk−1+ j/J , where
j = 1, · · · , J − 1. For j = 1, · · · , J , we calculate the firing
rate at each bin as

λk, j = F(I [k − 1 + j/J ] + I0), (7)

where F() is the static nonlinear function, and I0 is a con-
stant offset which sets the baseline firing rate of the model.
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Algorithm 1 Implementation of Firing-Rate Model to Recur-
sively Process a Discrete-Time Input Sequence u p[k]
Input: u p[k](p = 1, . . . , P)
Output: nk, j ( j = 1, . . . , J )

1 I [k] = − ∑Q
q=1 aq I [k − q] + ∑P

p=1
∑M

m=0 bpmu p[k − m]
2. Add a constant offset I [k] = I [k] + I0
3. Given I [k − 1] at tk−1 and I [k] at tk , perform a linear
interpolation to calcuate I [k − 1 + j/J ] at tk−1+ j/J , where
j = 1, · · · , J − 1.
4. For bins j ( j = 1, . . . , J )

Calculate the firing rate λk, j = F(I [k − 1 + j/J ] + I0)
Draw a Bernoulli random variable X with probability
λk, j �
Set nk, j = 1 if X = 1, or set nk, j = 0 if X = 0

A bit array nk, j ( j = 1, · · · , J ) is used to store the spikes
corresponding to the kth frame: for the j th bin ( j = 1, · · · , J ),
we draw a Bernoulli random variable X with probability
λk, j �. If there is a spike (X = 1), we set nk, j = 1; otherwise
(X = 0), we set nk, j = 0.

For each bin, the cost mainly involves a linear interpolation,
a static nonlinear function evaluation, and a random number
generation. The linear interpolation takes two multiplications
and one summation, the static nonlinear function can be
implemented as a lookup table, and the random number
generator can be implemented by a pre-stored random number
sequence. For each frame, the cost of the spike generation step
is dominated by O(cJ ), where J is the number of bins per
frame, and c is the number of operations involved for each
bin, typically c � J .

3) Algorithm: The implementation of firing-rate model to
recursively process a discrete-time input sequence u p[k] is
shown in Algorithm 1. Since the cost for the first two steps
is O(Q + P(M + 1)), and the cost for the last two steps is
O(cJ ), it takes a total cost of O(Q + P(M + 1) + cJ ) to
process one frame in general.

III. HARDWARE PLATFORM

As shown in Fig. 1, the hardware platform (less than $1000)
consists of a camera (sensor), an embedded system module
(processor), and a DLP projector (stimulator).

In the context of visual systems, images taken by the
camera are converted into sequences of binary patterns by the
embedded system module. The DLP projector then converts
the patterns into spatially structured light pulses, which are
delivered to drive light-sensitive proteins in the targeting cells.

A. Camera

In general, as the input of the platform, a sensor detects
various environmental stimuli, and the detected signal is
typically sampled at a constant rate. In the context of visual
systems, we use a Caspa VL camera board (Gumstix Inc., San
Jose, CA) as the sensor as shown in Fig. 1.

The camera has a 3.6mm fixed focal length lens with IR
cut filter so that it receives only visible spectrum light, and a
CMOS imager (Aptina MT9V032, 752(H)×480(V), 60 FPS).

Fig. 1. The hardware platform consists of an embedded system module
with a camera (left), and a portable DLP projector (right).

The active imager size is 4.51mm (H)×2.88mm (V), and the
size of each pixel is 6.0μm×6.0 μm. Therefore, the angle
of view is 64.1°(H)×43.6°(V), and each pixel corresponds to
approximately a visual field of 0.1°.

B. Embedded System Module

A tiny low-power computer on module (COM) is used in the
platform. The module (Overo Water, Gumstix Inc., San Jose,
CA), roughly the size of a stick of gum, includes an embedded
processor (OMAP3530, Texas Instruments, Dallas, TX), an
onboard memory package (Micron 512MB DDR low-power
DRAM and 512MB NAND flash memory), a highly integrated
power-management integrated circuit, and an onboard card-
slot for system storage expansion using microSD cards.

Owing to its small size, the module itself does not have
any Standard I/O connectors. There is a Hirose 27-pin camera
connector that connects a Caspa camera to the board, and two
small 70-pin AVX connectors that mate with an expansion
board that provides the usual connections (Ethernet, USB,
HDMI video, etc). As shown in Fig. 1 (left), the Overo COM
is mounted on a Tobi expansion board. Note that customized
expansion boards could be built to achieve much smaller size
by keeping only components necessary to the project.

The OMPA3530 processor is designed to provide high
performance real-time video, image, and graphics processing
while maintaining low power consumption. The processor
integrates a 720MHz ARM Cortex-A8 general purpose proces-
sor (GPP), and a 520MHz digital signal processor (DSP)
(TMS320C64x, Texas Instruments). For most applications, the
GPP takes care of system management, command, and control.
The DSP, on the other hand, is optimized for intensive signal
processing in real time. The dual processor architecture thus
provides a means to coordinate both processors to seamlessly
leverage the unique capabilities of each.

C. DLP Projector

In recent years, as optogenetic technology rapidly devel-
ops, optical stimulation has become an alternative to
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Fig. 2. The organization of the diamond pixels (square rotated
45 degrees). The row and column indices for each pixel are based on
the addressing of the corresponding memory bit (represented by red
dots). Since the distance between two neighboring columns is twice the
distance between two neighboring rows, the 608 × 684 pixel array has
an aspect ratio of 608:342.

Fig. 3. The one to one mapping of RGB input bits to the sequence
of output light pulses per pixel per frame. For example, the B5 pulse is
associated with the bit 5 of byte Blue. Note that the duration of each light
pulse is equal to the frame period Ts divided by 24.

electrical stimulation. Here, we present an optogenetic stimula-
tor based on a portable DLP projector to achieve not only high
light intensity but also high spatial and temporal resolution.
The projector (DLP LightCrafter, Texas Instruments) shown
in Fig. 1 (right) is a compact evaluation module for inte-
grating projected light into industrial, medical, and scientific
applications. The module has three main components: a digital
micromirror device (DMD) and its control circuitry, a light
module, and an output lens module.

1) Digital Micromirror Device: The DMD contained in the
module is a 0.3-inch WVGA chip (DLP3000, Texas Instru-
ments). It consists of a 608×684 array of micromirrors with
diamond pattern geometry, each 7.6μm×7.6μm. Fig. 2 shows
the organization of the diamond pixels. The module also
includes control circuitry to receive input images over an
HDMI connection and presents them on the DMD.

Importantly, the DMD supports a high speed monochrome
pattern mode, in which each micromirror can be individually
switched on or off at up to 1440Hz. In this mode, only one of
the three colors (red, green, or blue) can be used. As shown
in Fig. 3, the RGB data format for each pixel is interpreted
as follows: bits 0-7 of byte Blue correspond to patterns 0-7,
bits 0-7 of byte Red correspond to patterns 8-15, and bits 0-7
of byte Green correspond to patterns 16-23. The display
sequence of the patterns is 0-23.

There are a number of 24 binary patterns per frame period:
given a frame rate Fs , the pattern rate (denoted by Fp) is

Fp = 24 × Fs , (8)

TABLE I
ALLOWABLE HIGH SPEED BINARY PATTERN COMBINATIONS

and the pattern period (denoted by tp) is equal to the reciprocal
of the pattern rate

tp = 1/Fp. (9)

Table I gives several allowable high speed binary pattern
combinations.

2) Light Module: There are 3 LEDs in the light engine (peak
wavelengths: 460nm (blue), 515nm (green), and 617nm (red)).
Each LED has an optical collimator to collect the wide beam
of light from the LED to produce a narrower beam. A set of
dichroic mirrors recombine the different colors of light into
one collinear beam. The recombined light passes through a
fly-eye and condenser lens to provide uniform illumination
to the DMD. When the micromirrors are in the on-position,
the light is reflected through the projection lens; otherwise,
the light is directed towards a light absorbing barrier. The
power loss of DMD is characterized by the efficiency in visible
light (420 to 700 nm): window transmission 97%, micromirror
reflectivity 80%, array diffraction efficiency 86%, and array fill
factor 92%.

The output intensity of each LED can be precisely con-
trolled by adjusting the current through the LED. When at
room temperature, the maximum current allowed is dependent
on the cooling system: 633mA for passively cooled systems
(no extra heat sinks or fans) and 1.5A for actively cooled
systems (extra heat sink and fan).

The projection lens in the light engine is intended for
projecting images onto large areas: the maximum focus dis-
tance is 2169mm and the image diagonal size is 60inch.
To produce a smaller image that would provide the spatial
resolution and intensity needed for optogenetic stimulation,
additional converging lenses need to be placed in front of
the projection lens [30]. For example, with an additional lens
(focal length: 15mm, aperture: 3mm) placed a distance of
10mm, the image size of each DMD pixel is 11μm and the
light intensity at the maximum current allowed for passively
cooled systems (633mA) could reach 1.4mW/mm2(460nm),
1.1mW/mm2(515nm), and 1.2mW/mm2(617nm), respectively.
The light intensities delivered are sufficient for many
channelrhodopsin variants to produce precise temporal
resolution [23], [24]. For example, a new channelrhodopsin
with fast kinetics and high light sensitivity, Chronos, reli-
ably drove 100% spiking at light powers as low as
0.05mW/mm2(470nm).

For passively cooled systems, the DLP evaluation module
consumes power up to 12.5W (5V, 2.5A). The power is
mostly consumed by the three LEDs (∼3.5W each at the
maximum current of ∼0.7A). For optogenetic applications, the
consumption of the DLP module can be reduced to ∼5.5W
as only one LED is turned on in the monochrome mode.
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Together with the embedded system module (3.3V, 0.4A), the
whole platform consumes ∼7W, which is less than the power
typically consumed by a laptop computer (20-60W).

IV. SOFTWARE DESIGN

In this section, we describe the software aspects of the
platform including embedded operating system, preprocessing
for model cell placement and geometrical mapping, and real-
time processing by heterogeneous computing.

A. Embedded Operating System and Cross-Compilation

In the OMAP3530 processor, since the GPP takes care of the
control and the DSP is specialized for real-time computation,
a complete operating system is typically installed on the GPP,
and a simple Basic Input/Output System (BIOS) is sufficient
for the DSP.

In the platform, we use the Ångström distribution (a Linux
distribution for embedded devices) as the GPP operating
system and TI DSP/BIOS real-time operating system on the
DSP. The embedded Linux distribution and executable codes
for the application are created on a host machine by cross-
compilation. A cross-compilation produces executable codes
for a target platform different from the host platform (where
the compiler is running). This is necessary for building soft-
ware packages for embedded platforms where compilation is
infeasible due to limited resources.

B. Model Cell Placement and Geometrical Mapping

In the context of visual systems, the processor functions
as an input/output model of the upstream visual pathway:
images taken by the camera are converted into spatio-temporal
patterns of light, delivered by the DLP to drive light-sensitive
proteins in the downstream targeting cells. As a result, there
are two streams of images: input images and output patterns,
and it is necessary to establish a spatial correspondence
between an input image and its output counterpart.

1) Spatial Range and Resolution of Optogenetic Stimulation:
The spatial range is typically determined by the extent of
neural tissue to be targeted. For visual systems, the targeting
neural tissue could be retina, or other downstream structures
that are responsive to visual input. Typically, cells in each
structure in the pathway can be seen as contributing to a
map of the visual field (retinotopic map) [31], and there is a
correspondence between a cell location in the structure and a
location in the visual field. For convenience, we use the visual
angle as a way to reference the size of optogenetic stimulation
on the targeting neural tissue.

For illustration purposes, we assume a circular targeting
area, and the visual angle of its diameter is denoted by �out .
The maximum resolution of the optogenetic stimulation is
determined by the image size of a single output pixel of
the DMD, and the visual angle of its side length is denoted
by �out,1. A lower spatial resolution can be achieved by
using a s × s (s > 1) pixel group as a super-pixel, and the
visual angle of the side length of a super-pixel is denoted by
�out,s = s�out,1.

The size of super-pixel affects the activation of neurons. For
example, if the size is too small (i.e., only a small surface area
of cell membrane is illuminated), the activated ion channels
may not be sufficient to trigger an action potential. On the
other hand, if the size is too large (i.e., multiple cells are
covered), it causes a decrease in spatial resolution. Assume
the density of targeting neurons is d per unit length (linear
density), to achieve stimulation at cellular resolution, the
length of a super-pixel should be close to the reciprocal of the
linear density of neurons in the 2-dimensional surface (1/d).
Nevertheless, for sensory systems, neighboring neurons often
have similar receptive fields and their responses to natural
stimuli are correlated. This makes it possible to use a larger
super-pixel to drive neighboring neurons as a group without
sacrificing a lot of spatial resolution.

2) Spatial Coordinate System of Input and Output Images:
Often, the most convenient method for expressing locations in
an image is to use pixel indices. The image is treated as a grid
of discrete elements, ordered from top to bottom and left to
right. For pixel indices (i , j ), the row i increases downward,
while the column j increases to the right. Pixel indices are
integer values, and range from 1 to the length of the row
or column. This is exactly how pixels are identified in each
image.

However, while both input and output images are arrays of
pixels, they may have different spatial scales or orientations.
For example, in terms of spatial scales, the pixels of the input
image (from the camera) and output image (from the DLP
projector) may correspond to different sizes of visual field.
In terms of orientation, the camera uses an orthogonal pixel
array configuration; the DLP projector uses a diamond pixel
array configuration.

Therefore, in order to establish the correspondence between
input and output pixels, we adopt another method for express-
ing locations in an image, which uses a system of continuously
varying coordinates (x ,y) rather than discrete indices (i , j ). In a
spatial coordinate system like this, locations in an image are
positions on a plane, and they are described in terms of x and
y (not row and column as in the pixel indexing system). This
means x and y can be any real numbers instead of integers.
Thus, the correspondence between input and output pixels can
be determined by describing both input and output images
with a spatial coordinate system, in which each point is given
a unique coordinate (x ,y) in degrees of visual angle. Assume
the coordinates of the image centers are (0,0), the coordinates
of all the pixels can be calculated in degrees of visual angle.

3) Model Cell Placement: Given the size of a super-pixel
�out,s as the spatial resolution, the output image can be
divided into an array of non-overlapping adjacent super-pixels.
The number of super-pixels falling into the range determines
the total number of processing units

N = (π�2
out/4)/�2

out,s, (10)

and the coordinates of the super-pixel centers deter-
mine the locations of the processing units (xi ,yi ), where
i = 1, 2, . . . , N . In the context of visual systems, the process-
ing units are model cells and the correspondence between input
and output pixels can be determined by the receptive field of
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the cell (i.e., the particular region of the visual field in which
a stimulus will trigger the firing of that cell).

The receptive field is typically specified by a r × r array
of squares centered at the location of the model cell, and
each square spans a visual angle �r f,1. The coordinates of the
square centers can be calculated from the coordinates of the
model cell. For example, given a model cell located at (xi ,yi ),
the coordinates of the centers of r2 squares are given by

(xi + kx�r f,1, yi + ky�r f,1), (11)

where kx = −(r − 1)/2 + c, c = 0, · · · , r − 1, and ky =
−(r −1)/2+d , d = 0, · · · , r −1. Given the coordinates of the
centers, we can determine which input pixels encompass these
centers, and take the values of the pixels as the corresponding
stimuli to the model cell. If the square size is larger than
the pixel size �r f,1 > �in,1, the above process essentially
corresponds to a downsampling of the input image.

4) Preprocessing to Generate Lookup Table: The correspon-
dence between input and output pixels for each processing
unit is established as follows: given a model cell, the input
is specified by a set of pixel indices of the camera, and the
output is specified by a set of pixel indices of the DMD.

In the implementation, a preprocessing process is used to
calculate the mapping of input and output pixels onto each
model cell, and the results are stored in a lookup table. For
each model cell, there is an entry in the lookup table, which
contains a set of input pixel indices and a set of output pixel
indices. In the real-time processing, the lookup table can be
consulted to quickly calculate the responses of each model
cell based on the values of corresponding input pixels and
then map the responses to the corresponding output pixels.

C. Real-Time Processing by Heterogeneous Computing

As mentioned in Section III, the processor integrates a
general purpose processor (GPP) and a digital signal proces-
sor (DSP). In this section, we show how to take advantage of
the heterogeneous system architecture for real-time processing.

Briefly, the DSP is reserved for intensive neural processing
as an input/output model of the upstream visual pathway. The
GPP takes care of the control and coordination, which sends
inputs from the camera to the DSP and sends outputs from
the DSP to the projector. The flow is shown in Fig. 4. There
are two loops: one runs on the GPP and the other runs on
the DSP. The DSP loop is essentially nested inside the GPP
loop. The loops repeat forever until either the user issues a stop
command or a preset number of frames are processed. To meet
the real-time constraint, the execution time of the GPP loop
for one iteration should be less than one frame period Ts .

At each iteration, the GPP grabs a new frame from the cam-
era and preprocesses it. The preprocessing typically involves
cropping away parts of the image that would fall out of the
range of optogenetic stimulation and rescaling the light level
and contrast range to fall within the operating range of the
model cells.

After preprocessing is finished, the GPP waits for the
DSP to finish the processing of the previous frame. Upon
notification of completion, the GPP transfers the results of

Fig. 4. The flow of real-time processing based on the GPP-DSP
heterogeneous computing system. Note that the step in the dashed box
on the GPP side is skipped at the first iteration as there is no frame under
DSP processing at the beginning. Since the local memory locations to
store the results are zero-initialized, nothing will be displayed at the end
of the first iteration.

the previous frame from shared memory to local memory.
Immediately, the GPP writes the preprocessed new frame to
the shared memory, and then notifies the DSP that a frame is
ready to be processed. By sending a new frame to the DSP
right after the previous frame is processed, we can minimize
the DSP’s idle time and thus take maximum use of it.

Upon notification of a new frame, the DSP loops through all
the model cells: for each model cell, the input pixel indices are
determined by consulting the lookup table. Given the values
of the input pixels, the responses of each model cell can be
calculated by running Algorithm 1. Given the frame period
Ts , we choose J = 24, and divide the period into 24 bins.
We use a 24-bit binary number to store the spike train of
the model cell in response to the current frame, where a 1 at
the ith bit indicates a spike in the i th bin (i = 0, · · · , 23).
The calculated spike trains are stored in the shared memory.
Once all the results are available, the DSP sends a notification
to the GPP.

On the side of GPP, after a new frame is sent to the DSP,
it starts to prepare to display the results of the previous frame
by mapping the data in the local memory to frame buffer.
Specifically, the GPP loops through all the model cells to
write the appropriate bytes into the video memory to define
the image. For each model cell, the output pixels can be
determined by consulting the lookup table, and the spike train
of the model cell represented by a 24-bit binary number is
written into RGB data format as described in Section III-C.
Briefly, bits 0-7 are written into bits 0-7 of byte Blue, bits 8-15
are written into bits 0-7 of byte Red, and bits 16-23 are written
into bits 0-7 of byte Green.

Once the frame of data is ready, the GPP sends it to the DLP
upon the arrival of the next refresh signal, and then returns to
the start of the loop to process the next frame. This imposes the
real-time constraint: each frame needs to be processed within
the time limit of one frame period Ts .
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In the high speed pattern mode, the DLP decomposes the
24-bit RGB frame into 24 binary patterns and display the
patterns in sequence. Note that a double buffering is employed
in the GPP implementation: one part of memory in the frame
buffer is used to display the current frame, and the other
part of memory is used to store data for the next frame. The
double buffering allows for a new frame to be written without
disturbing the frame currently being displayed.

V. RESULTS

In this section, we demonstrate the design and performance
of the embedded real-time processing platform in the context
of visual systems.

A. Model Cell Placement and Geometrical Mapping

As described in Section IV, a preprocessing process is used
to determine model cell placement and geometrical mapping.
In the illustrative example, we assume the spatial range is a
circular retinal area corresponding to a visual angle of 10°
(�out = 10°), and assume a maximum spatial resolution
of 0.04°.

The maximum spatial resolution is determined by the visual
angle of a single output pixel �out,1. A lower spatial resolution
can be achieved by using a s × s (s > 1) pixel group as a
super-pixel. Assuming a super-pixel formed by a 4 × 4 pixel
group is being used, the visual angle of a super-pixel is 0.16°
(�out,4 = 4�out,1). Given the spatial range of 10° and the
spatial resolution of 0.16°, the total number of model cells
is around N = 3045, which is determined by the number of
super-pixels falling into the spatial range according to (10).

Next, we need to map input and output pixels onto each
model cell. The geometrical mapping for a model cell is
illustrated in Fig. 5. The background pattern depicts the
orthogonal pixel array of the camera overlaid on the diamond
pixel array of the DLP projector. Each little square represents
a pixel of the camera corresponding to a visual field of
0.1° (�in,1 = 0.1°). Each little rhombus (square tilted at a
45 degrees angle) represents a pixel of the DLP projector
corresponding to a visual field of 0.04° (�out,1 = 0.04°).

A super-pixel formed by a 4 × 4 pixel group is shown at
the center of the figure (represented by a larger rhombus).
The super-pixel is about 1.6 times the size of the camera
pixel. The corresponding model cell is placed at the center
of the super-pixel. The receptive field of the model cell is
specified by a 3 × 3 array of squares (represented by 9 larger
squares), and we assume each square spans a visual angle
of 0.27°(�r f,1 = 0.27°). The centers of all the squares
(represented by red dots), calculated from (11), are sampling
locations. The values of the camera pixels sampled at these
locations are taken as the the stimuli to the model cell. In
this example, since the square size �r f,1 is larger than the
pixel size �in,1, the above process essentially corresponds to
a downsampling of the input image.

To verify the geometrical mapping, we present a drifting
vertical grating at 30 Hz frame rate for a duration of 20s,
and examine the responses of model cells. The grating has a
temporal frequency of 3Hz and a spatial frequency of 0.5cpd

Fig. 5. An illustration of model cell placement and geometrical mapping:
each little square represents a pixel of the camera (0.1°); each little
rhombus represents a pixel of the DLP projector (0.04°); the larger
rhombus at the center represents a super-pixel of the DLP projector
(textsf �.textsf ��°); the 3×3 array of larger squares (0.27°) specify the
receptive field of the model cell located at the center of the super-pixel.

Fig. 6. The spatial temporal responses of models cells during one frame
period of 33ms. The circular area corresponds to a visual angle of 10°,
and each rhombus pixel represents a 4 × 4 super-pixel. The number of
spikes occurring during the frame period is represented by 6 different
intensity levels of the pixels: the complete darkness represents 0 and
the brightest represents 5.

(the spatial period of the grating is 2°, which has a width
of 20 input pixels as �in,1 = 0.1°). The spatial temporal
responses of model cells during one frame period of 33ms
is shown in Fig. 6.

Given the geometric mapping, there should be certain phase
relationships between the responses of model cells to the
drifting vertical grating stimulus. For example, two model cells
separated horizontally by one (half) of a spatial period should
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Fig. 7. The distribution of spike times of the three neighboring sampled cells (upper, middle, lower) over the temporal period of 0.33s. In each row,
the left plot shows firing times of the model cell wrapped to one cycle of the stimulus, and the right plot shows peristimulus time histograms of the
model cell, which represent the firing rate averaged across the 60 cycles.

be in-phase (anti-phase). In the current example, a super-pixel
is formed by a 4 × 4 pixel group (�out,4 = 0.16°), and the
diagonal of the super-pixel is about 0.23°. Since the spatial
period of the grating is 2°, the period is approximately as wide
as 9 super-pixels horizontally in the diamond pixel array of the
DLP projector. To verify the phase relationship, we uniformly
sample 1 out of 4 super-pixels (cells) in a row of the diamond
pixel array so that the center-to-center distance between two
neighboring sampled super-pixels is about 0.9°, corresponding
to a phase shift of 0.9π .

The responses of three neighboring sampled model cells
are given in Fig. 7. Since the temporal frequency of the
periodic stimulus is 3Hz, the 20s duration includes 60 cycles.
Fig. 7 presents the distribution of spike times of the three
cells (upper, middle, lower) over one temporal period of
the stimulus (333ms). In each row, the left plot shows fir-
ing times of the model cell wrapped to one cycle of the
stimulus, and the right plot shows peristimulus time his-
tograms of the model cell, which represent the firing rate
averaged across the 60 cycles (smoothed by a Gaussian
function with 17ms SD). As expected, the phases of spikes
of the model cells are locked to the 3Hz periodic stimu-
lus, the second cell is approximately antiphase with respect
to the first cell (phase difference: ∼0.9π), and the third
cell is approximately in phase with respect to the first cell
(phase difference: ∼1.8π).

B. Real-Time Performance and Scalability
Last, we test the scalability of the processing platform

under real-time constraint. The scalability of the processing
platform is measured by the number of model cells that can
be processed in real-time. A larger number of model cells
enable a larger stimulation area given a fixed spatial resolution;
alternatively, a larger number of model cells enable a higher
spatial resolution given a fixed stimulation area. In this section,
we use model cells described by (4) with (Q = 1, M = 9,
P = 9) to demonstrate real-time performance.

In Table II, the real-time performance is measured by the
number of model cells that can be processed in real-time.
The performance testing is done under conditions of different
temporal and spatial resolutions. The temporal resolutions is
given by a set of pattern rates (1440Hz, 720Hz, 360Hz) and
the corresponding pulse durations (the reciprocal of the pattern
rate: 0.7ms, 1.4ms, 2.8ms). The spatial resolution is given
by the size of super-pixels in terms of visual angle (0.08°,
0.12°, 0.16°).

Since the real-time constraint requires the system to fin-
ish processing one frame before the next one arrives, the
scalability is limited by the frame rate Fs . Given a lower
frame rate, more model cells can be processed within a frame
period Ts . While a lower frame rate increases the scalability,
it decreases the temporal resolution of optogenetic stimulation
as the temporal resolution is determined by the pattern rate Fp ,
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TABLE II
THE NUMBER OF MODEL CELLS THAT CAN BE PROCESSED IN REAL-TIME AND THE CORRESPONDING SPATIAL RANGE

(IN PARENTHESES) UNDER CONDITIONS OF DIFFERENT TEMPORAL AND SPATIAL RESOLUTIONS

which equals 24 times the frame rate Fs . The tradeoff between
scalability and temporal resolution is shown in Table II: the
number of model cells that can be processed in real-time is
inversely proportional to the temporal resolution, which is
about 3K, 7K, and 14K with a temporal resolution of 1440Hz,
720Hz, and 360Hz, respectively.

As shown in Table II, the scalability is also affected by the
spatial resolution but to a much lesser degree. In each column
(where the temporal resolution is fixed), as the size of the
super-pixel increases, the number of model cells processed in
real time remains relatively constant. As a result, the spatial
range of optogenetic stimulation is almost proportional to the
size of the super-pixel (and thus inversely proportional to the
spatial resolution). This indicates that another tradeoff exists
between spatial resolution and spatial range: given a fixed
temporal resolution, a lower spatial resolution enables a larger
stimulation area.

While remaining relatively constant, in each column, there
is a decrease in the number of model cells as the spatial range
of optogenetic stimulation increases. This is because a larger
stimulation area requires a larger visual field (and thus a larger
image) to be processed. Note that all the decreases are slight
with one exception: there is a drop from 3.5K to 2.6K in the
case of 60Hz frame rate. This is because when processing
larger images, the GPP requires more time to process and
transfer data so that the DSP cannot be taken maximum use.
The overhead could be critical for a short frame period (16.7ms
in this case).

As we mentioned before, there is a division of work between
the GPP and the DSP: the GPP is responsible for preprocessing
and transferring data and the DSP is reserved for intensive
neural computing. While the real-time performance is typically
limited by the DSP, this case shows that the GPP could also
become the limiting factor as the size of image increases.

VI. DISCUSSION

In this section, we gives a detailed discussion on the
applicability and limitations.

A. Platform

We have proposed a DMD based platform for optogenetic
applications in sensory restoration. Another application of
optogenetics is neurological diseases such as Parkinson’s dis-
ease and epilepsy. In these diseases, the devices work largely
by stimulating or inhibiting many neurons in a region (e.g., to
balance neuronal signaling); this is, at least in part, because
neuronal models for how these areas work and what causes

to malfunction is still under study, so the increased value of
building high spatial resolution is not yet known.

Optogenetic applications in these diseases are still very
much in the research stage. Currently, the goal is to dissect
the circuitry and determine points at which intervention is
possible within animal models. In epilepsy, optogenetics has
been applied to abort seizure-like activities [8], [9]. To achieve
a closed-loop control, the processor uses EEG signal as the
sensing input, and performs real-time seizure detection. Upon
detection, light is delivered to suppress excessive neuronal
activity in targeted brain regions (such as hippocampus and
thalamus). In Parkinson’s disease, optogenetics has been used
to define specific nuclei and projections for the therapeutic
effect of deep brain stimulation [10], [11]. Closed-loop control
is not necessary for these studies.

In both cases, the targeted brain areas are located deep in
the brain. While DMDs can offer high spatial resolution, they
are only applicable to 2-dimensional superficial surfaces, such
as the retina or the surface of the cortex. To stimulate deep
brain structures, optogenetic stimulation is typically performed
with implanted optical fibers and the light is supplied by
an external source such as high power LEDs [32]. The
implanted optical fibers guide light to regions of interest.
In comparison with DMDs, the fiber-coupled LED approaches
are limited by the spatial resolution they can offer. Never-
theless, the limitation has been lessened by the demonstrated
feasibility of increasing the number of optical stimulation
channels [33].

In the proposed platform, a single board computer (Overo
Water) was adopted as the embedded system module. The
choice is mostly due to its convenience as it provides all
the peripheral components and interfaces necessary for video
processing and DLP control. This makes development easier,
faster, and less expensive. The platform is appealing as it
is readily usable for a range of applications. Nevertheless,
for designs that demand more processing power, customized
circuit boards may need to be built to accommodate high-end
processors or FPGAs to increase the processing capacities.

B. Model

The focus of the paper is on the implementation aspects
of neuronal models in an embedded platform for optoge-
netic prosthetic applications. We have demonstrated general
principles of implementation in such a platform to meet the
requirements of a range of applications. Firing-rate models
were proposed as they provide a simpler description of neural
dynamics and can be simulated rapidly.
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In this paper, the firing rate model in the form of (4)
and (7) was employed as an example due to its generic
nature. The model consists of a linear difference equation
(which specifies an infinite impulse response function as the
kernel) for spatial and temporal integration, and a nonlinear
function for phenomena such as spike threshold and response
saturation.

The use of the model to describe neural dynamics has
been established and validated at the cellular and network
levels [34]–[39]. It has also been adapted to various appli-
cations in nervous systems. In some applications, the model
may evolve into variant forms but the general structure persists
and the same implementation strategies apply. For example,
when applied to describe stimulus-response characteristics
in sensory pathways such as retina [20], [40], [41], lateral
geniculate nucleus (LGN) [42], and visual cortex [43], the
kernel is more conveniently specified by a finite impulse
response function instead of a difference equation (the two
forms are convertible from one to the other [44]).

Since the paper focuses on implementation aspects, a
generic model was employed for the purpose of demonstration.
Readers interested in model development are pointed to exam-
ples at various levels of nervous system [34]–[43]. Especially,
those who are interested in prosthetic applications at the retinal
level are referred to our study [20], in which models were
developed for retinal prosthetics and the performance was
demonstrated by cross-validating it with data from in-vitro
retinal recording.

VII. CONCLUSION

In this paper, we have proposed an embedded processing
platform for optogenetic stimulation. The platform consists
of an embedded system module, and a portable digital light
processing projector. As an optogenetic stimulator, the pro-
jector is capable of delivering light with high intensity as
well as high spatial and temporal resolution. To mimic the
processing of nervous system in real time, a heterogeneous
GPP-DSP architecture of the embedded system module has
been explored to implement compact model cells. An illus-
trative example is given to illustrate design principles from
both software and hardware angles, and the real-time per-
formance of the processing platform has been demonstrated.
Constructed with off-the-shelf components, the high-efficiency
and low-cost (less than $1000) platform can be easily adapted,
upgraded, and customized to meet the needs of a wide range
of biomedical applications.
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