## **Cancer Genomics**

2022.04.18 Cem Meydan, Ph.D

## Cancer

- All cancers derive from single cells that have acquired the characteristics of continually dividing in an unrestrained manner and invading surrounding tissues.
- Cancer cells behave in this abnormal manner because of changes in the DNA sequence of key genes, which are known as cancer genes. Therefore all cancers are genetic diseases.



Human melanoma cell undergoing cell division Paul Smith & Rachel Errington, Wellcome Images



Mira Grigorova and Paul Edwards, www.path.cam.ac.uk/~pawefish/BreastCellLineDescriptions/HCC38.html

#### yourgenome.org, Wellcome Sanger

## Genetics of cancer

- Inherited germline mutations  $\rightarrow$  5-10% of all cancers
  - TP53, BRCA1, BRCA2, PTEN...
- Somatic mutations
- Mutations:
  - SNVs, Insertion-deletions, Structural variants and rearrangements
  - Missense, nonsense, frameshift, splicing site
- Region:
  - Coding regions/exome
  - non-coding regions
- Genes
  - Oncogenes / tumor suppressors
  - Other (regulatory elements, epigenetic modifiers, ...)





## Genomics in cancer

- Clinical & translational:
  - Early diagnosis → liquid biopsy, cfDNA/ctDNA, exosomes
  - Detection & characterization for optimal therapy  $\rightarrow$  WGS, WES, ...
  - Personalized treatments, precision medicine
  - ...
- Research
  - Mechanism
  - Evolution
  - Emergence of therapy resistance
  - $\rightarrow$  Novel therapies

#### Mutation Frequencies in Common Cancers



Cancer Genome Group, Broad Institute

### Liquid Biopsy



Minimal residual disease Resistance mutations Initial genotyping when no tissue available Early detection/screening Research of heterogeneity



Liquid biopsies: genotyping circulating tumor DNA. Diaz LA Jr, Bardelli A. J Clin Oncol. 2014 Feb 20;32(6):579-86.

#### **Chronic Myeloid Leukemia**







• Target for inhibition: Tyrosine kinase

•Aim: to design a small chemical compound that would compete with ATP for its binding site in the kinase domain.

•By blocking the ATP site, no phosphate groups would be transferred to tyrosine residues on the BCR-ABL substrate  $\rightarrow$  unphosphorylated substrate protein would not be able to undergo a conformational change to allow it to associate with downstream effectors  $\rightarrow$  the downstream reactions would then be impeded  $\rightarrow$  interrupting transmission of the oncogenic signal to the nucleus.

http://cinjweb.umdnj.edu/sites/molmdweb/documents





#### Autologous CAR T-Cell Therapy Process



pct.mdanderson.org

Fran Milner

## Not just coding genes



Figure 2. Several mutational signatures identified so far have important clinical or epidemiological implications. Some signatures, such as those associated with tobacco smoke (A), ultraviolet light (B) and alkylating agents (E), can serve as markers of previous mutagenic exposure. Signatures associated with altered DNA damage response including deficiency in *POLE* (D), *BRCA* (F) and mismatch repair pathways (G) may serve as markers for prognosis and efficacy of certain types of therapy.



**Figure 3.** Several mechanisms have been discovered which can result in driver mutations, within both coding and non-coding regions of the genome. Enhancer mutations (A) may induce the binding of regulatory factors that either promote or inhibit gene expression. Promoter mutations (B) can similarly create or destroy binding sites that affect transcription. Coding mutations (C) can have many effects, such as altering critical amino acids, causing constitutive protein activation or disrupting protein folding. Splice site mutations (D) alter the splicing of genes. UTR mutations (E) can have various effects, including altering miRNA targeting.



Epigenetic state of normal cell-of-origin



epigenetic state of the tumor cell

#### Cuykendall et al. Non-coding genetic variation in cancer

|   | Wild type                  | Gene E     | Disease             | Affected gene               | Enhancer              | Refs    |
|---|----------------------------|------------|---------------------|-----------------------------|-----------------------|---------|
| а | Enhancer deletion          | Gene       | β-Thalassaemia      | β-globin genes              | LCR                   | 3,4     |
| b | Disruption TF binding site | Gene (     | HPE                 | SHH                         | SBE2                  | 36      |
| С | Insertion TF binding site  | Gene Gene  | PDD2                | SHH                         | ZRS                   | 35,122  |
| d | Enhancer duplication       |            | Lung adenocarcinoma | МҮС                         | 3'~450 kb SE          | 124     |
| е | Enhancer introduction      | Gene E E   | T-ALL               | TAL1                        | NA                    | 121     |
| f | Promoter introduction      | Gene       | lpha-Thalassaemia   | $\alpha$ -Globin genes      | lpha-Globin enhancers | 46      |
| g | Promoter deletion          | Gene Gene  | α-Thalassaemia*     | $\alpha$ -Globin genes/NME4 | lpha-Globin enhancers | 44      |
| h | Enhancer hijacking         | - Gene //E | Burkitt lymphoma    | МҮС                         | lgH enhancer          | 116,117 |

Figure 3 | Erroneous regulatory wiring between enhancers and target genes causing disease. Erroneous regulatory

## Data analysis



Bulk Single-cell Spatial Spatiotemporal

## Clustering

- Hierarchical
  - Agglomerative
  - Divisive
  - $\rightarrow$  Neighbor joining, UPGMA...
- Partitioning
  - Centroid  $\rightarrow$  K-means, PAM...
  - Distribution
- Partitioning with outliers
  - Density-based  $\rightarrow$  DBSCAN, OPTICS
- Overlapping clustering
- Graph clustering
- Spectral clustering









Alizadeh et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling, Nature 2000



Figueroa et al. DNA Methylation Signatures Identify Biologically Distinct Subtypes in Acute Myeloid Leukemia



scikit-learn.org

## Supervised methods



## Case study: TET2+FLT3-ITD or IDH2+FLT3-ITD double mutant AML

## Genomic Analysis of AML Identifies Mutations in Genes Which Regulate DNA Methylation and Chromatin State



TCGA AML NEJM 2013

## Adverse Outcome in AML Patients With Mutations in Epigenetic Modifiers



Patel et al. NEJM 2012





TET2/FLT3 interaction causes disproportional epigenetic changes compared to the single mutants

### # of DMRs

**Differentially Methylated Regions** 



## GATA2

#### Gata2: transcription factor, regulator of gene expression in hematopoietic cells, associated with AML



Deviation from the mean methylation



TET2 and FLT3-ITD mutations in LSKs led to significant decreased levels of Gata2 RNA compared to wild type or single mutants

# GATA2 re-expression restores differentiation and attenuates leukemogenesis



Days from transplant

mice expressing vector alone succumbed to leukemia, whereas no mice expressing GATA2 developed lethal AML *Gata2* expression, but not expression of vector control, resulted in a progressive reduction in the proportion of ckit+ AML cells, consistent with disappearance of the AML clone in vivo





# AzaC reverts methylation of GATA2 to WT levels

|                     | -                |                |   |                |                   |   |                |   |               | – 22 kb — |                  |                  |                  |                |   |
|---------------------|------------------|----------------|---|----------------|-------------------|---|----------------|---|---------------|-----------|------------------|------------------|------------------|----------------|---|
|                     | l8,138 kb<br>I I | 88,140 kb<br>I | I | 88,142 kb<br>I | 88, 144 kb<br>I I | 1 | 88,146 kb<br>I | I | 88,148 kb<br> | 1         | 88,150 kb<br>I I | 88,152 kb<br>I I | 88,154 kb<br>I I | 88,156 kb<br>I | 1 |
| Refseq genes        |                  |                |   |                |                   |   |                |   |               | <b>—</b>  |                  | Gata2            |                  |                |   |
| TET2+FLT3 vs WT DMR |                  |                | I |                |                   |   |                |   |               |           |                  |                  |                  |                |   |
| TET2+FLT3 vs WT DMC |                  |                |   |                |                   |   |                |   |               |           |                  |                  |                  |                |   |
| TET2+FLT3+AzaC      |                  |                |   |                |                   |   |                |   |               |           |                  |                  | AT 1001          |                |   |
| TET2+FLT3+vehicle 2 |                  |                |   |                |                   |   |                |   |               |           |                  |                  | AI INNI          |                |   |
| TET2+FLT3+ac220     |                  |                |   |                |                   |   |                |   |               |           |                  |                  | AL LUUL          |                |   |
| TET2+FLT3+vehicle   |                  |                |   |                |                   |   |                |   |               |           |                  |                  | AT 1000          |                |   |
| TET2+FLT3           |                  |                |   |                |                   |   |                |   |               |           |                  |                  | A 11 1 11 1      |                |   |
| FLT3                |                  |                |   |                |                   |   |                |   |               |           |                  |                  |                  |                |   |
| TET2                |                  |                |   |                |                   |   |                |   |               |           |                  |                  |                  |                |   |
| WT                  |                  |                |   |                |                   |   |                |   |               |           |                  |                  |                  |                |   |
|                     |                  |                |   |                |                   |   |                |   |               |           |                  |                  |                  |                |   |

- Complete reversal of aberrant hypermethylation at FLT3/TET2 synergistic target loci, including GATA2, MN1, HOXA3 which are aberrantly methylated in FLT3/TET2-mutant AMLs
- See synergistic activity with FLT3 targeted therapies (dose, sequence matter)
- What about inhibition of mutant IDH1/2?

- Azacytidine therapy results in clearance of AML cells from peripheral blood
  - Marked reduction in white blood cell count, blast percentage
  - Reduction in spleen size
  - Reversal of anemia/thrombocytopenia with normalization of hematocrit/platelet counts



5A20

Jon

 AzaC therapy normalizes differentiation in TET2-mutant AML

#### **Restores Long-term HSC Compartment**

#### Vehicle

Azacytidine

...5



# AzaC treatment in TET2+FLT3 causes differentiation response





Monocytes, Mac+Gr- are reduced

# Overlap in Epigenetic Signature in TET2 & IDH2 + FLT3



IDH2 + FLT3 TET2 + FLT3

Synergy versus WT

Figueroa, Abdel-Wahab, Lu et al, Cancer Cell 2010

## GATA2 Hypermethylation in IDH2/FLT3

|               | chr6       |                |     |                |          |               | _   |                |   |                |         |                | _        |                |    |                |       |                |     |                |         |
|---------------|------------|----------------|-----|----------------|----------|---------------|-----|----------------|---|----------------|---------|----------------|----------|----------------|----|----------------|-------|----------------|-----|----------------|---------|
|               |            |                | qA2 |                | qB1      | qB2.1 qB2     | 2.3 | qB3            |   |                | qC2     | qC3            | <b>q</b> | D1 qD2 q[      | )3 | q f            |       | qF1 qF2        | qF3 | qG1            | qG2 qG3 |
|               | -          |                |     |                |          |               |     |                |   |                | 22 kb - |                |          |                |    |                |       |                |     |                |         |
|               | 136 kb<br> | 88,138 kb<br>I | I   | 88,140 kb<br>I | <br>88,1 | 142 kb<br>I I |     | 88,144 kb<br>I | 1 | 88,146 kb<br>I | 1       | 88,148 ki<br>I |          | 88,150 kb<br>I | 1  | 88,152 kb<br>I | 1     | 88,154 kb<br>I | ı   | 88,156 kb<br>I |         |
| Refseq genes  |            |                |     |                |          |               |     |                |   |                |         |                | -        |                |    | • •            | Gata2 | · · · ·        | -   |                |         |
| WT            |            |                |     |                | I.       |               |     |                | - |                |         | 1              |          |                |    | - 11           |       |                |     |                |         |
| TET2.FLT3_veh |            |                |     |                | 1        |               |     |                |   |                |         | 1              |          |                | I  | 11             | 11    |                |     |                |         |
| TET2.FLT3     |            |                |     |                | I.       |               |     |                |   |                |         |                |          |                |    | - 11           |       |                |     |                |         |
| TET2          |            |                |     |                | I        |               |     |                |   |                |         | 1              |          |                | I  | - 11           |       |                |     |                |         |
| FLT3          |            |                |     |                | I        |               |     |                |   |                |         | 1              |          |                | I  | 11             |       |                |     |                |         |
| IDH2.FLT3_veh |            |                |     |                | 1        |               |     |                |   | - 1            |         | 1              |          |                |    | 11             | 11    |                |     |                |         |
| IDH2_veh      |            |                |     |                | 1        |               |     |                |   |                |         |                | 1.001    |                |    | 11             |       |                |     |                |         |
|               |            |                |     |                |          |               |     |                |   |                |         |                |          |                |    |                |       |                |     |                |         |

- IDH2/FLT3 shows hypermethylation/silencing of GATA2 not present in IDH2only mutant mice
- Similar signature to TET2/FLT3

## IDH2 Inhibitor

• AG221 - orally available, selective, potent inhibitor of the mutated IDH2 protein



#### IDH2-inhibition Inhibits FLT3/IDH2-mutant Replating

No effect on TET2-mutant cells consistent with mutant-specific effects on 2-HG and self-renewal in vitro



## AG221 reatment does not significantly alter IDH2-mut allele frequency

IDH2 variant allele frequency



Patient

# AG221 treatment in IDH+FLT3 model causes differentiation changes



spleen ckit+



spleen monocytes



#### **Press Release**

#### View printer-friendly version

<< Back

FDA Grants Approval of IDHIFA®, the First Oral Targeted Therapy for Adult Patients with Relapsed/Refractory Acute Myeloid Leukemia and an IDH2 Mutation

IDHIFA is the first and only oral, targeted inhibitor of IDH2<sup>1</sup>

FDA approval of IDHIFA was based on results from the phase I/II AG-221 AML-001 study including safety, rate and duration of complete response (CR) or CR with partial hematologic recovery (CRh) and rate of conversion to transfusion independence<sup>1</sup>

Relapsed and refractory AML is a debilitating disease with a significant unmet medical need<sup>2</sup>

SUMMIT, N.J., & CAMBRIDGE, Mass.--(BUSINESS WIRE)-- Celgene Corporation (NASDAQ:CELG) and Agios Pharmaceuticals, Inc. (NASDAQ:AGIO) today announced that IDHIFA® (enasidenib) was granted approval from the U.S. Food and Drug Administration (FDA) for the treatment of adult patients with relapsed or refractory AML (R/R AML) with an isocitrate dehydrogenase-2 (IDH2) mutation as detected by an FDA approved test.1 IDHIFA, an oral targeted inhibitor of the IDH2 enzyme, is the first and only FDA-approved therapy for patients with R/R AML and an IDH2 mutation, which represents between 8 and 19 percent of AML patients.3

This Smart News Release features multimedia. View the full release here: http://www.businesswire.com/news/home/20170801006281/en/



transformation

progression

metastasis

initiation

Time

acquired

#### Sarah Haurin, Duke university

organ development



Venkatesan et al. Tumor Evolutionary Principles: How Intratumor Heterogeneity Influences Cancer Treatment and Outcome







Model 2 (UPNs 426980, 452198, 758168, 869586, 933124)



#### Cell

#### Lineage Tracing in Humans Enabled by Mitochondrial Mutations and Single-Cell Genomics

#### **Graphical Abstract**



#### Authors

Leif S. Ludwig, Caleb A. Lareau, Jacob C. Ulirsch, ..., Jason D. Buenrostro, Aviv Regev, Vijay G. Sankaran

#### Correspondence ludwig@broadinstitute.org (L.S.L.),

aregev@broadinstitute.org (A.R.), sankaran@broadinstitute.org (V.G.S.)

#### In Brief

Using single-cell sequencing technologies, somatic mutations in mtDNA can be used as natural genetic barcodes to study cellular states and clonal dynamics.









. .

0 3 6 9 12 15 18 21 (weeks)





#### Single-cell lineage tracing by endogenous mutations enriched in transposase accessible mitochondrial DNA

#### Jin Xu<sup>1,2,3</sup>, Kevin Nuno<sup>4,5</sup>, Ulrike M Litzenburger<sup>1,2,3</sup>, Yanyan Qi<sup>1,2,3</sup>, M Ryan Corces<sup>1,2,3</sup>, Ravindra Majeti<sup>4,5</sup>\*, Howard Y Chang<sup>1,2,3,6</sup>\*

<sup>1</sup>Center for Personal Dynamic Regulomes, Stanford, United States; <sup>2</sup>Department of Dermatology, Stanford University School of Medicine, Stanford, United States; <sup>3</sup>Department of Genetics, Stanford University School of Medicine, Stanford, United States; <sup>4</sup>Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, United States; <sup>5</sup>Division of Hematology, Department of Medicine, Stanford University School of Medicine, Stanford, United States; <sup>6</sup>Howard Hughes Medical Institute, Stanford University, Stanford, United States

Abstract Simultaneous measurement of cell lineage and cell fates is a longstanding goal in biomedicine. Here we describe EMBLEM, a strategy to track cell lineage using endogenous mitochondrial DNA variants in ATAC-seq data. We show that somatic mutations in mitochondrial DNA can reconstruct cell lineage relationships at single cell resolution with high sensitivity and specificity. Using EMBLEM, we define the genetic and epigenomic clonal evolution of hematopoietic stem cells and their progenies in patients with acute myeloid leukemia. EMBLEM extends lineage tracing to any eukaryotic organism without genetic engineering. DOI: https://doi.org/10.7554/eLife.45105.001



Single cell chromatin accessibility.

(A) Phylogenetic relationship of cells from SU353 was inferred using the Neighbor-Joining method. The phylogenetic tree is drawn to scale, with branch lengths in the units of the number of base difference





Figure 2. Clonal evolution of pre-leukemic HSCs inferred from joint lineage tracing and single cell chromatin accessibility. (A) Lineage hierarchy in acute myeloid leukemia based on EMBLEM and prior genetic information. mtDNA mutations reveals pHSC clonal heterogeneity. The clonal precursor of the leukemic stem cell is not the clone with most representation in the pHSC pool, but rather the clone with epigenomic bias towards the leukemic regulatory program, as depicted by related color schemes. (B) EMBLEM deconvolutes AML clonal heterogeneity. Heteroplasmic mtDNA mutations in

#### ARTICLES https://doi.org/10.1038/s41587-019-0071-9

## A comparison of single-cell trajectory inference methods

Wouter Saelens 1,2,6, Robrecht Cannoodt 1,3,4,6, Helena Todorov 1,2,5 and Yvan Saeys 1,2\*



| Num                 | ber of methods | 1 2                   | 3 4       | 5 6                |                       |
|---------------------|----------------|-----------------------|-----------|--------------------|-----------------------|
| trajectory<br>types | PAGA Tree      | SCORPIUS              | Slingshot | Angle- Monoci      | - PAGA                |
| ear → tree          |                |                       |           |                    |                       |
|                     | Slingshot      | PAGA Tree 1           | SCORPIUS  | Monocle MP         | A_ cellTree<br>mantox |
| Cycle               |                |                       |           |                    |                       |
|                     |                |                       |           | reCAT              | Angle                 |
| Linear              |                |                       |           |                    |                       |
|                     |                |                       | SCORPIUS  | Embeddr            | Monocle               |
| ifurcation          |                |                       |           |                    |                       |
|                     |                | Slingshot             | SLICE (P) | AGA Tree cell      | Iree MFA              |
| ltifurcation        |                |                       |           |                    |                       |
|                     |                | PAGA Tree             | Slin      | gshot MERLo        | 1                     |
| Tree                |                |                       |           |                    |                       |
|                     |                | RaceID / P/<br>StemID | GA Tree   | Monocle PAG<br>ICA | A pCreode             |
| onnected            |                |                       |           |                    |                       |
| graph               |                |                       |           | PAGA               | RaceID /<br>StemID    |
| connected<br>graph  |                |                       |           |                    |                       |
| graph               |                |                       |           | PAG                | StemID                |
|                     | 0 05           |                       | 0         | -                  | 100                   |
|                     | 0 25           |                       |           | /5                 | 100                   |
|                     | Likelihoo      | od of obtain          | ing a top | model (%)          |                       |

dyno

#### Inferring trajectories using dyno

The dyno package offers end-users a complete TI pipeline. It features:

- a uniform interface to 59 TI methods,
- an interactive guideline tool to help the user select the most appropriate method,
- streamlined interpretation and visualisation of trajectories, including colouring by gene expression or clusters, and
- downstream analyses such as the identification of potential marker genes.

For information on how to use dyno, check out the installation instructions, tutorials and documentation at dynverse.org







#### Article | Published: 02 August 2019

#### Massively parallel single-cell chromatin landscapes of human immune cell development and intratumoral T cell exhaustion

Ansuman T. Satpathy, Jeffrey M. Granja, Kathryn E. Yost, Yanyan Qi, Francesca Meschi, Geoffrey P. McDermott, Brett N. Olsen, Maxwell R. Mumbach, Sarah E. Pierce, M. Ryan Corces, Preyas Shah, Jason C. Bell, Darisha Jhutty, Corey M. Nemec, Jean Wang, Li Wang, Yifeng Yin, Paul G. Giresi, Anne Lynn S. Chang, Grace X. Y. Zheng ♥, William J. Greenleaf ♥ & Howard Y. Chang ♥

Nature Biotechnology 37, 925–936(2019) Cite this article



Pseudotime orde

10

B cell lineage trajectory

0

UMAP dimension 1





## Epigenetic clonality



Xu et al. Cellular heterogeneity– adjusted clonal methylation (CHALM) provides better prediction of gene expression

Li et al. Dynamic evolution of clonal epialleles revealed by methclone

## Distinct evolution and dynamics of epigenetic and genetic heterogeneity in acute myeloid leukemia

Sheng Li<sup>1,18,19</sup>, Francine E Garrett-Bakelman<sup>2,19</sup>, Stephen S Chung<sup>3</sup>, Mathijs A Sanders<sup>4</sup>, Todd Hricik<sup>3</sup>,





## Chromatin Structure

#### Genome







Three-dimensional chromatin packing and positioning of plant genomes Dogan et al.

Nucleosomal scale



Fig. 3 | **Mechanisms of loop extrusion. a** | General model of loop extrusion. The extrusion process involves cohesin composed of structural maintenance of chromosomes (SMC) proteins SMC1 and SMC3 and RAD21; cohesin is loaded onto chromatin via NIPBL<sup>94</sup>. Extrusion is blocked at CTCF sites arranged in a convergent head-to-head orientation<sup>45–49</sup>. Some proportion of cohesin is released throughout this process by the activity of WAPL and PDS5 (REF.<sup>94</sup>). **b** | Extrusion via cohesin diffusion. Extrusion may occur by constant loading of cohesin resulting in a diffusion gradient<sup>70</sup>. **c** | Extrusion via cohesin motor activity. An alternative explanation for extrusion is that the process is driven by the motor activity of cohesin via ATP hydrolysis<sup>54,72</sup>. **d** | Extrusion via pushing of cohesin by RNA polymerase II (RNAPII). Other factors able to move along chromatin, such as RNAPII (purple), may help cohesin to extrude DNA<sup>50,51,73-76</sup>.



Chromatin fibers are orgnaized in TADs

Hi-C analysis of HEK293T cells



TADs are chromatin loop clusters



Cohesin and CTCF shape chromatin loops and promote promoter-enhancer interactions



Regulation of disease-associated gene expression in the 3D genome, Krijger et al Cohesin in chromatin structure and gene regulation, Erasmus MC

#### DNA loop extrusion by cohesin



DNA loop extrusion by human cohesion Davidson et al. Science 2019

## SMC3

- Structural Maintenance Of Chromosomes 3
- Part of cohesin complex
- Important for
  - regulation of gene expression (enhancer/promoter interactions, insulators)
  - cell cycle (separation of sister chromatids
  - etc
- Abnormal copies (heterozygous) were found in myeloid and lymphoid cancers and more



## Smc3 deficiency accelerates malignant transformation of GC B-cells and is linked to inferior outcome of DLBCL patients



## Smc3 deficiency accelerates malignant transformation of GC B-cells and is linked to inferior outcome of DLBCL patients







Chris Chin

#### chr19:29995000-37995000







#### CC, All TADs +- 1\*TAD length, stretched to same size



CC SMC3



CC SMC3vsWT Log2Ratio





**c** Gene competition for a shared enhancer: winner takes all



**d** Gene competition for a shared enhancer: we are all winners







