The 3D genome and predictive models of gene regulation

Christina Leslie Computational and Systems Biology Program Memorial Sloan Kettering Cancer Center http://cbio.mskcc.org/leslielab

Deciphering gene regulation

- Transcriptional regulation coordinated by transcription factors (TFs) binding to promoter and enhancer elements
- Distal enhancers may be >1Mb from promoters, physically interact via chromatin looping
- 1D epigenomic data (chromatin accessibility, histone marks) map candidate enhancer elements but not their connectivity

 Advances in chromosome conformation capture assays (e.g. Hi-C, HiChIP) can now resolve 3D genomic interactions relevant to gene regulation

3D dysregulation in cancer cells

- Somatic alteration or epigenetic disruption of 3D organization can lead to oncogene activation, tumorigenic processes
 - E.g. hypermethylation can lead to loss of insulation of PDGFRA in IDH mutant gliomas
 - E.g. loss of H1 linker histone leads to chromatin "decompaction" in germinal center B cells

Flavahan et al., Nature 2016

Outline

- HiC-DC+: a statistical framework for calling significant and differential interactions in Hi-C and HiChIP
 - Sahin et al., Nat Commun 2021
- GraphReg: a deep learning approach for incorporating 3D genomic interactions in predictive models of gene regulation
 - Karbalayghareh et al., Genome Research, to appear
- Epiphany: a deep learning model to predict the 3D contact matrix from 1D epigenomic data
 - Yang, Das, et al., *bioRxiv* 2021

Mapping the 3D genome and calling 3D interactions

Mapping the 3D genome

- Hi-C, chromosome conformation capture
 - Capture 3D interactions: crosslink DNA (now in situ), restriction enzyme digest, proximity ligation, pull down, paired-end sequencing

Adapted from Arima product sheet

 Read pair = "contact"; build contact matrix for input cell population: C_{ij}= #paired end reads with anchors in bin_i and bin_j

Hierarchical folding of chromatin

Adapted from Wright et al., 2019

Calling 3D loops vs "interactions"

- Typical Hi-C loop callers treat the contact map like an image
 - Find pixels that are brighter than surrounding pixels
 - May use normalization, smoothing to improve signal-tonoise
 - Generally no good estimate of statistical significance
 - Conservative, calls structural "loops"
- Need more sensitive approach to find 3D "interactions" like promoter-enhancer contacts

Rao et al., Cell 2014

Methods matter: HiC-DC+

d_{ii}

- "Hi-C direct caller": use read counts from raw contact matrix directly, without normalization
 - Estimate background model (expected read count) directly from data using negative binomial regression
 - Covariates: genomic distance (spline fit), mappability, effective bin size (related to restricting enzyme density), GC content
 - Assign P value (or Z-score) to interactions

• HiC-DC+: Efficient code, extends to HiChIP, *differential* interactions between cell types

bin

RE sites

Carty et al., Nat Commun 2017; Sahin et al., Nat Commun 2021

Methods matter: HiC-DC+

- Gain of promoter-enhancer for developmental gene PDX1 in guided pancreatic differentiation
 - With Danwei Huangfu and Eftychia Apostolou (as 4D Nucleome project)

Guided differentiation

hESC

HiC-DC+ analysis of HiChIP

- HiChIP: Hi-C contact library followed by chromatin IP for protein/histone mark of interest
 - H3K27ac HiChIP: regulatory interactions, i.e. promoterenhancer, enhancerenhancer, etc.
- E.g. "enhancer hub" via differential analysis between mouse ESC and MEFs
 - Data from Effie Apostolou lab (cf: Di Giammartino et al., 2019)

Graph neural networks for predictive models of gene regulation

Predictive models of gene regulation

 Can we learn to predict gene expression levels from 1D (e.g. DNA sequence, epigenomic signals) and 3D (physical interaction data)?

- If we could learn an accurate predictive model and *interpret* the model, we could:
 - Identify functional enhancers and TF regulators of genes
 - Predict how gene expression would change under perturbations

Epigenomic data encodes regulatory information

• E.g. chromatin accessibility (ATAC-seq) maps local regulatory elements and encodes global differentiation state

Functional CD8 T cells

Tumorspecific dysfunctional CD8 T cells

Philip et al., Nature 2017

Predictive gene regulatory models

 Previous GRMs predict gene expression (or fold change) from DNA sequence and accessibility/activity of regulatory elements in order to decipher gene regulation

- Missing information: *connectivity* of promoter and enhancers
- Idea: use 3D interaction data in graph neural network GRMs

GraphReg: graph neural networks for gene regulatory models

- Idea: use Hi-C/HiChIP to encode long-range chromatin interactions as a graph, propagate information information via graph neural networks (GNNs)
- Nodes of graph = genomic bins, edges = 3D genomic interactions
- Input features: epigenomic data or DNA sequence
- Output: gene expression (at node)
- Compare to (dilated) convolutional neural networks (CNNs), use only 1D data

Linear genome

Epigenome-based GraphReg

- Predict gene expression from *activity* and *connectivity* of regulatory elements
- "Cell-type-agnostic": can generalize to a new cell type given cell-type specific 1D and 3D inputs

Sequence-based GraphReg

- Predict expression and 1D epigenomic signals from genomic DNA sequence + 3D connectivity
- "Cell-type-specific": captures TF binding signals that are specific to the training cell type

Prediction of gene expression

Train on cell line data, assess performance on held-out chromosomes

Prediction performance

Sequence-based models

Epigenome-based models

- GraphReg models outperform baseline 1D dilated CNNs
- Sequence-based prediction is more difficult
- Prediction of expression *per se* is not the point: want to interpret the model

Feature attribution to predict functional enhancers

• DeepSHAP identifies features/genomic bins that contribute most to specific gene predictions

Evaluation of enhancer prediction with FlowFISH

Sequence gRNAs in 6 bins infer effect of gRNAs on expression

Fulco et al., Nat Genet 2019

- CRISPRi-FlowFISH: CRISPR inactivation screen against candidate enhancers, reads out expression change of target gene
- Activity-by-contact (ABC): score for predicting functional enhancers based on activity (DNase, H3K27ac) and Hi-C contacts

GraphReg improves functional enhancer prediction

- Use FlowFISH experiments sufficient data on distal elements (2574 candidate elements for 19 genes)
- GraphReg models with DeepSHAP or saliency outperform CNN models, ABC
 DE-G Pairs (2574)

GraphReg models access distal information unavailable to CNNs

 Dilated CNNs can accept large input region, but feature attribution shows they rely on promoter-proximal signals

GraphReg predicts gene expression changes under TF knockout

- Can we test that Seq-GraphReg is learning meaningful sequence information?
- *In silico* TF KO via motif ablation:

JunD Gene g Gene g

- Predict expression of g from original sequence and from sequence with TF hits ablated (set to 0), get predicted logFC
- Compare results to true TF knockdown in K562 cells from ENCODE (29 CRISPRi experiments)

GraphReg identifies TF binding events that contribute to gene regulation

- Gene *TCF3*, downregulated upon JUND KO
- Enhancers A and B have direct HiChIP interactions with promoter
- In silico mutagenesis identifies JUND motifs in both distal enhancers

Coming next: adapting regulatory models to sc-multiome

- High-quality scATAC + scRNA co-assay data enables new algorithmic possibilities
- E.g. Mutant FOXA1 alleles in prostate organoids (with Charles Sawyers lab)

Conclusions (GraphReg)

- Graph neural network model can predict gene expression (TSS output) across large genomic regions from 3D and 1D data, or from DNA sequence using 1D epigenomic prediction as auxiliary task
- Epi-GraphReg and Seq-GraphReg outperform baseline dilated 1D CNN models for gene expression prediction
- More importantly, can use feature attribution/in silico mutagenesis to predict functional enhancers for genes
- Epi-GraphReg and Seq-GraphReg outperforms ABC score for identifying enhancer elements, as validated by CRISPRi-FlowFISH
- Next step is to deploy in biologically meaningful contexts, move to single cell multiome data

Predicting the Hi-C contact map

Predicting the 3D contact map from 1D data

- Recent deep learning models like Akita (Fudenberg et al., 2020) and DeepC (Schwessinger et al., 2020) predict the Hi-C contact matrix from DNA sequence
 - Does not generalize to a new cell type
 - Can be expensive to train (~1Mb input sequences)
- Can we train a relatively lightweight model on 1D epigenomic data (histone marks, CTCF, DNase) instead?
 - Want to be able to use predicted Hi-C maps quantitatively (e.g. to call interactions or TADs)

Akita model (2020)

• HiC-DC+ or other preprocessing, MSE + adversarial loss

• Sliding window to extract epigenomic inputs

• Bi-LSTM layers to predict "stripes" of Hi-C contact map

• Generative adversarial network to yield realistic maps

Epiphany generalizes across cell types, learns cell-type specific contacts

• Example: same locus in GM12878 vs K562 (model trained on GM12878, tested on held-out chromosomes within and across cell types)

GM12878

Epiphany can better learn cell-type specific structures

- Similar performance to Akita on common held-out examples
- Epiphany improves cell-type specificify: Akita makes similar predictions across all cell types H1 GM12878 Difference

Predicting the impact of CTCF loss at TAD boundary

- TAD fusion event due to loss of CTCF binding sites between the *Kcnj2* and *Sox9* genes
- Use model trained in human GM12878 cells, test in mouse limb bud tissue (E11.5, E12.5 data)

110,500 112,000 113.000 111.000 111.500 112,500 Kb WT C1-4 All CTCF 0.22 CTCF (E12.5) rep1 0.010 CTCF (E12.5) rep2 110,500 111,000 111,500 112,000 112,500 Kb 113,000 mm9

Ground truth

Predicting 3D changes due to somatic alterations

- Somatic 13q14 deletion results in loss of TAD boundary element in ALL, TAD fusion, and oncogene access to an enhancer
- Predict impact of deletion with Epiphany

Conclusions (Epiphany)

- Epiphany accurately predicts cell-type-specific Hi-C contact map from 1D epigenomic signals
- Bi-LSTM better captures long-range effects of epigenomic inputs on 3D interactions, while generative adversarial network produces more realistic contact maps
- Epiphany can generalize across cell types and species, outperforming sequence-based models
- Can use Epiphany to predict the 3D impact of epigenomic perturbations, like loss of boundary CTCF binding events
- Coming next: predicting of the Hi-C map from singlecell epigenomic data with scOrigami

Acknowledgements

Leslie lab

Alireza Karbalayghareh **Merve Sahin** Erik Ladewig **Rose DiLoreto** Alli Pine Zakieh Tayyebi Vianne Gao Rui Yang Wilfred Wong Viraj Rapolu Aditya Sinha Vijay Yarlaggada Preethi Periyakoil Changlin Wan, Sneha Mitra (PhD interns) NHGRI GVF

Collaborators

Effie Apostolou Danwei Huangfu Jeff Bilmes, Arnav Das Bill Noble Charles Sawyers, Abbas Nazir Ari Melnick Steve Josefowitz Alexander Rudensky

BIOLOGY CONSORTIUM

GEOFFREY BEENE

ER SYSTEMS