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Deciphering gene regulation
• Transcriptional regulation coordinated by transcription factors (TFs) 

binding to promoter and enhancer elements
• Distal enhancers may be >1Mb from promoters, physically interact via 

chromatin looping
• 1D epigenomic data (chromatin accessibility, histone marks) map 

candidate enhancer elements but not their connectivity

• Advances in chromosome conformation capture assays (e.g. Hi-C, HiChIP) 
can now resolve 3D genomic interactions relevant to gene regulation

transcript

gene

TF

TF

TSS



3D dysregulation in cancer cells
• Somatic alteration or epigenetic disruption of 3D 

organization can lead to oncogene activation, tumorigenic 
processes
– E.g. hypermethylation can lead to loss of insulation of PDGFRA 

in IDH mutant gliomas
– E.g. loss of H1 linker histone leads to chromatin “decompaction” 

in germinal center B cells

Flavahan et al., Nature 2016 Yusufova et al., Nature 2021



Outline
• HiC-DC+: a statistical framework for calling 

significant and differential interactions in 
Hi-C and HiChIP
– Sahin et al., Nat Commun 2021

• GraphReg: a deep learning approach for 
incorporating 3D genomic interactions in 
predictive models of gene regulation
– Karbalayghareh et al., Genome Research, to 

appear

• Epiphany: a deep learning model to predict 
the 3D contact matrix from 1D epigenomic 
data
– Yang, Das, et al., bioRxiv 2021



Mapping the 3D genome and 
calling 3D interactions



Mapping the 3D genome
• Hi-C, chromosome conformation capture
– Capture 3D interactions: crosslink DNA (now in situ), 

restriction enzyme digest, proximity ligation, pull down, 
paired-end sequencing

– Read pair = “contact”; build contact matrix for input cell 
population: Cij= #paired end reads with anchors in bini and 
binj

digest with
restriction enzyme
(or RE cocktail) Adapted from Arima product sheet



Hierarchical folding of chromatin
• TADs and CTCF/cohesin loops 

believed to play an “insulator” role 
in gene regulation

• 3D promoter-enhancer interactions 
can be more subtle than structural 
loops

Adapted from Wright et al., 2019

TAD loop



Calling 3D loops vs “interactions”
• Typical Hi-C loop callers treat 

the contact map like an image
– Find pixels that are brighter than 

surrounding pixels
– May use normalization, 

smoothing to improve signal-to-
noise

– Generally no good estimate of 
statistical significance

– Conservative, calls structural 
“loops” 

• Need more sensitive approach 
to find 3D “interactions” like 
promoter-enhancer contacts

Rao et al., Cell 2014



Methods matter: HiC-DC+
• “Hi-C direct caller”: use read counts from raw contact 

matrix directly, without normalization
– Estimate background model (expected read count) 

directly from data using negative binomial regression
– Covariates: genomic distance (spline fit), mappability, 

effective bin size (related to restricting enzyme 
density), GC content

– Assign P value (or Z-score) to interactions

• HiC-DC+: Efficient code, extends to HiChIP, 
differential interactions between cell types

Carty et al., Nat Commun 2017;
Sahin et al., Nat Commun 2021

bini binjdij

RE sites RE sites



Methods matter: HiC-DC+
• Gain of promoter-enhancer 

for developmental gene PDX1
in guided pancreatic 
differentiation
– With Danwei Huangfu and 

Eftychia Apostolou (as 4D 
Nucleome project)



HiC-DC+ analysis of HiChIP
• HiChIP: Hi-C contact library 

followed by chromatin IP for 
protein/histone mark of 
interest
– H3K27ac HiChIP: regulatory 

interactions, i.e. promoter-
enhancer, enhancer-
enhancer, etc.

• E.g. “enhancer hub” via 
differential analysis 
between mouse ESC and 
MEFs 
– Data from Effie Apostolou

lab (cf: Di Giammartino et 
al., 2019)



Graph neural networks for 
predictive models of gene regulation



Predictive models of gene regulation

• Can we learn to predict gene expression levels from 1D 
(e.g. DNA sequence, epigenomic signals) and 3D (physical 
interaction data)?

• If we could learn an accurate predictive model and 
interpret the model, we could: 
– Identify functional enhancers and TF regulators of genes
– Predict how gene expression would change under perturbations

transcript

gene

TF

TF

TSS



Epigenomic data encodes regulatory 
information

• E.g. chromatin accessibility (ATAC-seq) maps local 
regulatory elements and encodes global 
differentiation state

Functional 
CD8 T cells
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Predictive gene regulatory models
• Previous GRMs predict gene expression (or fold change) from DNA 

sequence and accessibility/activity of regulatory elements in order 
to decipher gene regulation

• Missing information: connectivity of promoter and enhancers
• Idea: use 3D interaction data in graph neural network GRMs

Data from genome-wide measurements 
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Figure 1 Modeling gene expression changes in tumors to identify dysregulated transcription factors and microRNAs. (A) Genome-wide measurements like copy
number, DNA methylation, and miRNA expression are used to predict gene expression changes of tumor samples relative to normal references. (B) To infer
dysregulated regulatory programs from tumor profiling data, change in gene expression in a tumor sample is modeled as linear function of the gene’s copy number, DNA
methylation at the promoter (when available for the sample), and counts of transcription factor binding sites in the DNaseI hypersensitive regions of the gene’s promoter
and conserved miRNA binding sites in the 30UTR. (C) The linear model is trained for all tumors, either on a sample-by-sample basis or simultaneously by using a group
approach, on all Refseq genes using sparse regression so that only a few explanatory variables have non-zero regression coefficients. In particular, only a small number
of transcription factors (TFs) and miRNAs, that is, those whose binding sites best correlate with target gene expression changes in the tumor sample, enter into the
regression model. Feature dependency analysis on these regression models identifies common and subtype-specific regulators.

Transcriptional and microRNA-mediated regulatory programs in GBM
M Setty et al

& 2012 EMBO and Macmillan Publishers Limited Molecular Systems Biology 2012 3

Osmanbeyoglu et al., Nat Commun 2019

Gonzalez*, Setty* et al., 
Nat Genet 2015

Setty et al., Mol Syst Biol
2012



GraphReg: graph neural networks for 
gene regulatory models

• Idea: use Hi-C/HiChIP to encode long-range chromatin interactions 
as a graph, propagate information information via graph neural 
networks (GNNs)

• Nodes of graph = genomic bins, edges = 3D genomic interactions
• Input features: epigenomic data or DNA sequence
• Output: gene expression (at node)
• Compare to (dilated) convolutional neural networks (CNNs), use 

only 1D data

a b

c

Figure 1: A schematic overview of HiGNNR models. a, E-HiGNNR model uses 1-D epigenomic data, such as H3K4me3,

H3K27ac, and DNase-seq (or ATAC-seq) to learn some local features for the genomic bins via convolutional neural networks,

and then propagates them over the adjacency graphs extracted from the HiC/HiChIP contact matrices using graph attention

networks to predict the gene expressions (CAGE-seq) in the promoter bins of the genes. b, S-HiGNNR model uses DNA

sequences and after some convolutional and dilated convolutional layers predicts the epigenomic data. This helps learn useful

latent representations of the DNA sequences which is then passed to the graph attention networks to be integrated over the

adjacancy graphs derived from the Hi-C/HiChIP contact matrices and to predict the gene expression values (CAGE-seq) in

the promoter bins, c, A 6Mb genomic region (11Mb-17Mb) of ch19 in the K562 cell line. The epigenomic data (H3K4me3,

H3K27ac, DNase), CAGE, HiChIP interaction graph, and predicted CAGE values for HiGNNR and CNN models are shown.

Training and evaluations of the models are performed in the dashed middle 2Mb (here 13Mb-15Mb) region so that all the genes

could see e↵ects of their distal enhancers up to 2Mb (HiChIP graphs have been extracted to include interactions up to 2Mb).

13

Linear genome
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Figure 1: A schematic overview of GraphReg models. a. The Epi-GraphReg model uses 1D epigenomic data, such as
H3K4me3 and H3K27ac ChIP-seq and DNase-seq (or ATAC-seq) to learn local features of genomic bins via convolutional neural
networks, and then propagates these features over adjacency graphs extracted from HiC/HiChIP contact matrices using graph
attention networks, in order to predict gene expression (CAGE-seq) across genomic bins. b. The Seq-GraphReg model uses
DNA sequence as input, and after some convolutional and dilated convolutional layers predicts epigenomic data. This helps
to learn useful latent representations of genomic DNA sequences that are then passed to the graph attention networks to be
integrated over the adjacancy graphs derived from Hi-C/HiChIP contact matrices and to predict gene expression values (CAGE-
seq). c. A 6Mb genomic region (11Mb-17Mb) of ch19 showing input and output signals and predictions in K562 cells, including
epigenomic data (H3K4me3, H3K27ac, DNase), CAGE, HiChIP interaction graph, and predicted CAGE values for GraphReg
and CNN models. Training and evaluations of the models are performed in the dashed middle 2Mb (here 13Mb-15Mb) region
so that all genes can see the e↵ects of their distal enhancers up to 2Mb.
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Epigenome-based GraphReg

Karbalayghareh et al., 
Genome Research, in press

• Predict gene expression from activity and connectivity of regulatory 
elements

• “Cell-type-agnostic”: can generalize to a new cell type given cell-type 
specific 1D and 3D inputs

1D input: chromatin 
accessibility
and histone 

modifications data

3D input: regulatory 
chromatin interactions
(H3K27ac HiChIP)  

Output: CAGE-seq
(gene expression at 
TSS)
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Figure 1: A schematic overview of GraphReg models. a. The Epi-GraphReg model uses 1D epigenomic data, such as
H3K4me3 and H3K27ac ChIP-seq and DNase-seq (or ATAC-seq) to learn local features of genomic bins via convolutional neural
networks, and then propagates these features over adjacency graphs extracted from HiC/HiChIP contact matrices using graph
attention networks, in order to predict gene expression (CAGE-seq) across genomic bins. b. The Seq-GraphReg model uses
DNA sequence as input, and after some convolutional and dilated convolutional layers predicts epigenomic data. This helps
to learn useful latent representations of genomic DNA sequences that are then passed to the graph attention networks to be
integrated over the adjacancy graphs derived from Hi-C/HiChIP contact matrices and to predict gene expression values (CAGE-
seq). c. A 6Mb genomic region (11Mb-17Mb) of ch19 showing input and output signals and predictions in K562 cells, including
epigenomic data (H3K4me3, H3K27ac, DNase), CAGE, HiChIP interaction graph, and predicted CAGE values for GraphReg
and CNN models. Training and evaluations of the models are performed in the dashed middle 2Mb (here 13Mb-15Mb) region
so that all genes can see the e↵ects of their distal enhancers up to 2Mb.
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Sequence-based GraphReg

• Predict expression and 1D epigenomic signals from genomic DNA 
sequence + 3D connectivity

• “Cell-type-specific”: captures TF binding signals that are specific to the 
training cell type 

Karbalayghareh et al., 
Genome Research, in press

3D input: regulatory 
chromatin interactions  

1D input: DNA sequence 

Output: CAGE-seqOutput: accessibility, 
histone marks
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Prediction of gene expression
• Train on cell line data, assess performance on held-out 

chromosomes

  

a

b

c

d



Epigenome-based models
Prediction performance

• GraphReg models outperform baseline 1D dilated CNNs
• Sequence-based prediction is more difficult
• Prediction of expression per se is not the point: want to interpret 

the model

Sequence-based models

Figure 2: Caption on next page.
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Figure 2: Caption on next page.
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Feature attribution to predict 
functional enhancers

• DeepSHAP identifies features/genomic bins that 
contribute most to specific gene predictions

true signal

predicted signal

feature attribution
(DeepSHAP) for the 
gene DHPS

DHPS

Epi-GraphReg



Evaluation of enhancer prediction with 
FlowFISH
• CRISPRi-FlowFISH: CRISPR 

inactivation screen against 
candidate enhancers, reads 
out expression change of 
target gene

• Activity-by-contact (ABC): 
score for predicting 
functional enhancers based 
on activity (DNase, 
H3K27ac) and Hi-C contacts

Fulco et al., Nat Genet 2019



  

a b c d e f

g h i

GraphReg improves functional 
enhancer prediction

CNN

GraphReg

ABC

• Use FlowFISH experiments sufficient data on distal elements 
(2574 candidate elements for 19 genes)

• GraphReg models with DeepSHAP or saliency outperform 
CNN models, ABC



  

a b c d e f

g h i

GraphReg models access distal 
information unavailable to CNNs

• Dilated CNNs can accept large input region, but feature 
attribution shows they rely on promoter-proximal signals

Epigenome-
based 
models

Sequence-
based 
models

Feature attribution

GraphReg

GraphReg

CNN

CNN



GraphReg predicts gene expression 
changes under TF knockout

• Can we test that Seq-GraphReg is learning meaningful sequence 
information?

• In silico TF KO via motif ablation: 

– Predict expression of g from original sequence and from sequence 
with TF hits ablated (set to 0), get predicted logFC
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GraphReg identifies TF binding events 
that contribute to gene regulation

• Gene TCF3, 
downregulated upon 
JUND KO

• Enhancers A and B 
have direct HiChIP
interactions with 
promoter

• In silico mutagenesis 
identifies JUND 
motifs in both distal 
enhancers 



Coming next: adapting regulatory 
models to sc-multiome

• High-quality scATAC + scRNA co-assay data enables new algorithmic 
possibilities

• E.g. Mutant FOXA1 alleles in prostate organoids (with Charles 
Sawyers lab) RNA

ATAC

LETTER
https://doi.org/10.1038/s41586-019-1318-9

FOXA1 mutations alter pioneering activity, 
differentiation and prostate cancer phenotypes
Elizabeth J. Adams1, Wouter R. Karthaus1, Elizabeth Hoover1, Deli Liu2,3,4, Antoine Gruet5, Zeda Zhang1,6, Hyunwoo Cho7,8,  
Rose DiLoreto8,9, Sagar Chhangawala7,8, Yang Liu10, Philip A. Watson1, Elai Davicioni10, Andrea Sboner2,4,11,  
Christopher E. Barbieri2,3,11, Rohit Bose12, Christina S. Leslie8 & Charles L. Sawyers1,13*

Mutations in the transcription factor FOXA1 define a unique 
subset of prostate cancers but the functional consequences of 
these mutations and whether they confer gain or loss of function is 
unknown1–9. Here, by annotating the landscape of FOXA1 mutations 
from 3,086 human prostate cancers, we define two hotspots in the 
forkhead domain: Wing2 (around 50% of all mutations) and the 
highly conserved DNA-contact residue R219 (around 5% of all 
mutations). Wing2 mutations are detected in adenocarcinomas at all 
stages, whereas R219 mutations are enriched in metastatic tumours 
with neuroendocrine histology. Interrogation of the biological 
properties of wild-type FOXA1 and fourteen FOXA1 mutants 
reveals gain of function in mouse prostate organoid proliferation 
assays. Twelve of these mutants, as well as wild-type FOXA1, 
promoted an exaggerated pro-luminal differentiation program, 
whereas two different R219 mutants blocked luminal differentiation 
and activated a mesenchymal and neuroendocrine transcriptional 
program. Assay for transposase-accessible chromatin using 
sequencing (ATAC-seq) of wild-type FOXA1 and representative 
Wing2 and R219 mutants revealed marked, mutant-specific changes 

in open chromatin at thousands of genomic loci and exposed sites 
of FOXA1 binding and associated increases in gene expression. 
Of note, ATAC-seq peaks in cells expressing R219 mutants lacked 
the canonical core FOXA1-binding motifs (GTAAAC/T) but were 
enriched for a related, non-canonical motif (GTAAAG/A), which 
was preferentially activated by R219-mutant FOXA1 in reporter 
assays. Thus, FOXA1 mutations alter its pioneering function 
and perturb normal luminal epithelial differentiation programs, 
providing further support for the role of lineage plasticity in cancer 
progression.

To investigate the role of mutant and wild-type FOXA1 in prostate 
cancer, we examined the landscape of FOXA1 mutations across a cohort 
of 3,086 patients with primary or metastatic disease. The overall fre-
quency of FOXA1 mutation in these patients is around 11% (Fig. 1a, b),  
3% of which are genomic amplifications and 8.4% are somatic point 
mutations, with less than 1% having both types of mutations (Fig. 1b). 
More than 50% of FOXA1 mutations map to a specific hotspot in the 
Wing2 region of the forkhead (FKHD) DNA-binding domain, often 
as missense mutations or indels in Wing2 (mainly between H247 and 

1Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA. 2Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, 
NY, USA. 3Department of Urology, Weill Cornell Medicine, New York, NY, USA. 4HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell 
Medical College, New York, NY, USA. 5Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA. 6Louis V. Gerstner Jr Graduate School of Biomedical 
Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA. 7Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA. 
8Physiology, Biophysics, and Systems Biology Program, Weill Cornell Graduate School, New York, NY, USA. 9Tri-Institutional Training Program in Computational Biology & Medicine, Weill 
Cornell Medicine, New York, NY, USA. 10GenomeDx Bioscience, Vancouver, British Columbia, Canada. 11Englander Institute for Precision Medicine of Weill Cornell Medicine and NewYork-
Presbyterian Hospital, New York, NY, USA. 12Departments of Anatomy, Medicine and Urology, University of California, San Francisco, San Francisco, CA, USA. 13Howard Hughes Medical 
Institute, Chevy Chase, MD, USA. *e-mail: sawyersc@mskcc.org

FOXA1 mutations in prostate cancer
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MSK-IMPACT 504 mutant frequencies by stage R219 Wing2-hotspot alterations Others Total

Locoregional (n = 30) 6.7% (2) 66.7% (20) 26.7% (8) 100%
Metastatic non-castration-resistant (n = 13) 0.0% (0) 38.5% (5) 61.5% (8) 100%

Castration-resistant (n = 18) 11.1% (2) 44.4% (8) 44.4% (8) 100%

R219 point mutants Other point mutants Total
Adenocarcinoma (n = 1,742) 9.5% (8) 90.5% (76) 100% (84) 1,658

NEPC (n = 80) 75% (3) 25% (1) 100% (4) 76

FOXA1 mutant casesPoint mutation frequencies in
adenocarcinoma vs NEPC

Non-FOXA1
mutant cases
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c
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Fig. 1 | Recurrent FOXA1 mutations in 
prostate cancer cluster in the FKHD DNA-
binding domain. a, Top, Distribution of 
FOXA1 mutations from a pan-prostate cancer 
analysis of 3,086 patients along the protein 
sequence, depicting the various alterations seen 
in patients. Bottom, The amino acid sequence 
of the conserved FKHD DNA-binding domain, 
with secondary structural elements indicated. 
Residues in red (top) or bold (bottom) are 
predicted to make contacts with DNA10.  
b, Classification of observed FOXA1 alterations. 
Mutations can be subdivided into several classes 
on the basis of their location in the FOXA1 
protein. Amp, amplification; mut, somatic 
point mutation. c, Frequency of the various 
classes of FOXA1 alterations in the three clinical 
stages reported in MSK-IMPACT 504. Data are 
expressed as percentage of the total number of 
samples with FOXA1 mutations at a given clinical 
stage. d, Prevalence of R219 mutations compared 
to all other point mutations found in FOXA1 in 
adenocarcinoma versus NEPC. Cases pooled 
from the Trento–Cornell–Broad12 dataset and 
MSK-IMPACT 1708. ***P = 0.0059, Fisher’s 
exact test, two-sided.
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Conclusions (GraphReg)
• Graph neural network model can predict gene 

expression (TSS output) across large genomic regions 
from 3D and 1D data, or from DNA sequence using 1D 
epigenomic prediction as auxiliary task

• Epi-GraphReg and Seq-GraphReg outperform baseline 
dilated 1D CNN models for gene expression prediction

• More importantly, can use feature attribution/in silico
mutagenesis to predict functional enhancers for genes

• Epi-GraphReg and Seq-GraphReg outperforms ABC 
score for identifying enhancer elements, as validated 
by CRISPRi-FlowFISH

• Next step is to deploy in biologically meaningful 
contexts, move to single cell multiome data



Predicting the Hi-C contact map



Predicting the 3D contact map from 1D 
data

• Recent deep learning models like Akita 
(Fudenberg et al., 2020) and DeepC
(Schwessinger et al., 2020) predict the Hi-
C contact matrix from DNA sequence
– Does not generalize to a new cell type
– Can be expensive to train (~1Mb input 

sequences)

• Can we train a relatively lightweight model 
on 1D epigenomic data (histone marks, 
CTCF, DNase) instead?
– Want to be able to use predicted Hi-C maps 

quantitatively (e.g. to call interactions or 
TADs)

Akita model (2020)



Epiphany predicts the Hi-C contact 
map from 1D epigenomic tracks

• HiC-DC+ or other preprocessing, MSE + adversarial loss

MSE only
prediction

Ground 
truth

MSE + GAN
prediction

DNase, CTCF,
H3K27ac, H3K4me3, 
H3K27me3 

Yang, Das et al.
bioRxiv 2021



Epiphany predicts the Hi-C contact 
map from 1D epigenomic tracks

• Sliding window to extract epigenomic inputs

# of windows 
(200)

Window 
size
(1.2 Mb)

# tracks 
(5)

..

.

..

.



Epiphany predicts the Hi-C contact 
map from 1D epigenomic tracks

• Bi-LSTM layers to predict “stripes” of Hi-C contact map

..

.

..

.

Conv layers

bi-LSTM layer
(+FC)



Epiphany predicts the Hi-C contact 
map from 1D epigenomic tracks

• Generative adversarial network to yield realistic maps

MSE only
prediction

Ground 
truth

MSE + GAN
prediction



Epiphany generalizes across cell types, 
learns cell-type specific contacts

• Example: same locus in GM12878 vs K562 (model trained 
on GM12878, tested on held-out chromosomes within and 
across cell types)

Figure 5: Comparison between GM12878 and K562

13

GM12878 K562



Epiphany can better learn cell-type 
specific structures 

• Similar performance to Akita on common held-out examples
• Epiphany improves cell-type specificify: Akita makes similar 

predictions across all cell types H1 GM12878 Difference

Akita

Epiphany

Ground 
truth

Prediction

Ground 
truth

Prediction



Predicting the impact of CTCF loss at 
TAD boundary

• TAD fusion event due to loss of CTCF binding sites between the Kcnj2 and 
Sox9 genes

• Use model trained in human GM12878 cells, test in mouse limb bud tissue 
(E11.5, E12.5 data)

Ground truth Epiphany prediction

WT

C1-4

All CTCF

mm9 mm10

WT
prediction

C1-4
prediction

All CTCF
prediction



Predicting 3D changes due to somatic 
alterations

• Somatic 13q14 deletion 
results in loss of TAD 
boundary element in ALL, 
TAD fusion, and oncogene 
access to an enhancer

• Predict impact of deletion 
with Epiphany

WT
prediction

GM12878
target

Perturbed
prediction



Conclusions (Epiphany)
• Epiphany accurately predicts cell-type-specific Hi-C 

contact map from 1D epigenomic signals
• Bi-LSTM better captures long-range effects of 

epigenomic inputs on 3D interactions, while generative 
adversarial network produces more realistic contact 
maps

• Epiphany can generalize across cell types and species, 
outperforming sequence-based models

• Can use Epiphany to predict the 3D impact of 
epigenomic perturbations, like loss of boundary CTCF 
binding events

• Coming next: predicting of the Hi-C map from single-
cell epigenomic data with scOrigami
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