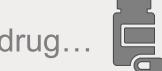
Weill Cornell Medicine
 Pathology & Laboratory Medicine

RNA-Seq for Precision Medicine: translating research into clinical applications

Clinical and Research Genomics Spring 2022 Course

Andrea Sboner, PhD (he/him/his) Director of Informatics and Computational Biology

Weill Cornell Medicine Caryl and Israel Englander Institute for Precision Medicine


**New** 

esbyterian



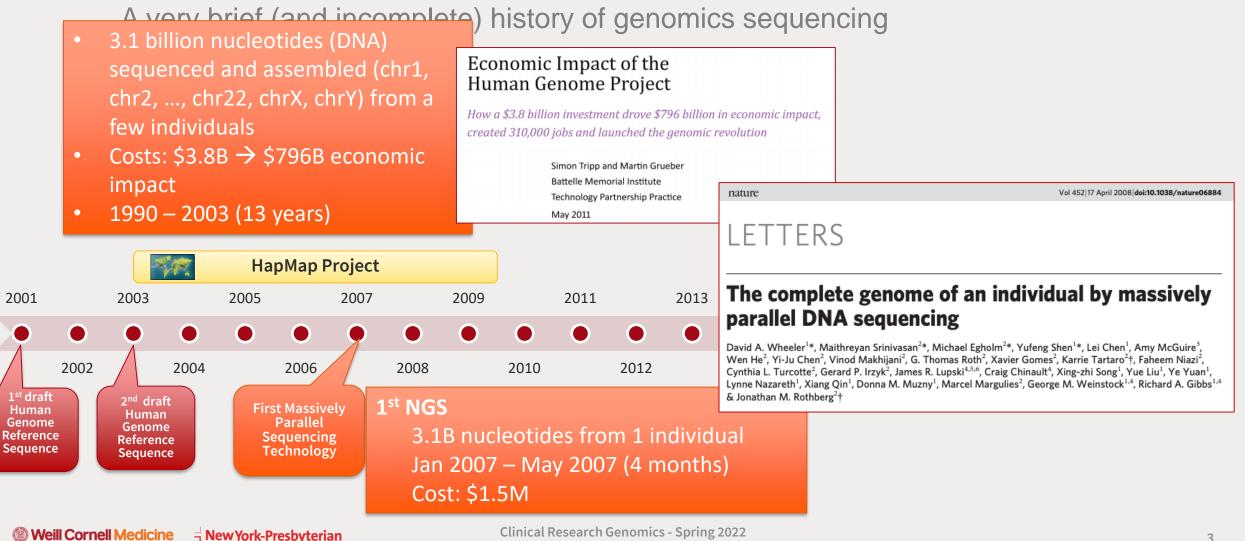


# What is Precision Medicine?



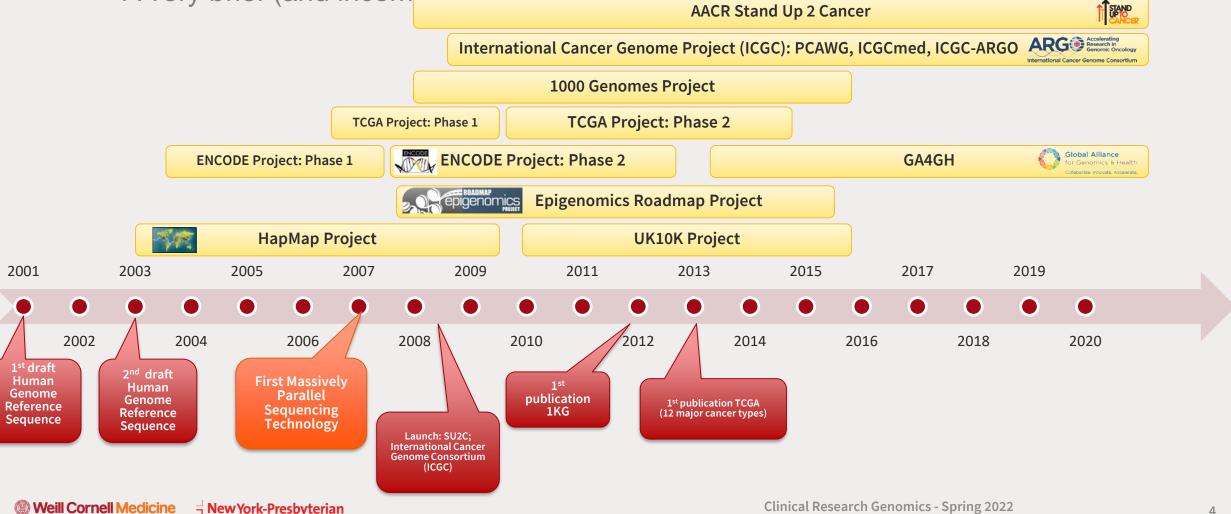
The right drug...

... to the right patient ...


...at the right time!



**Clinical Research Genomics - Spring 2022** 

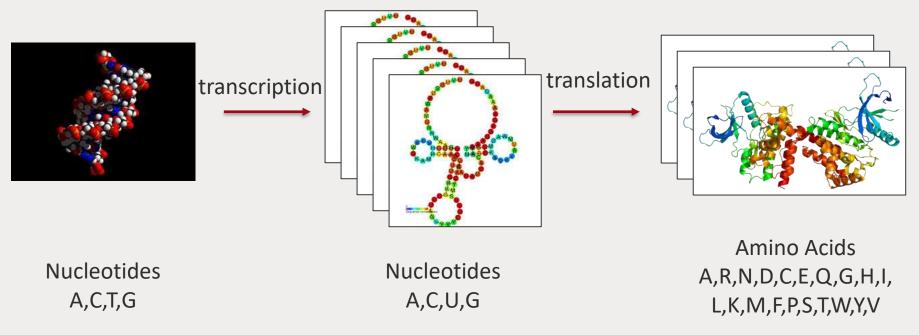

Weill Cornell Medicine - New York-Presbyterian

# Precision Medicine benefits from advancements in sequencing technology (NGS)



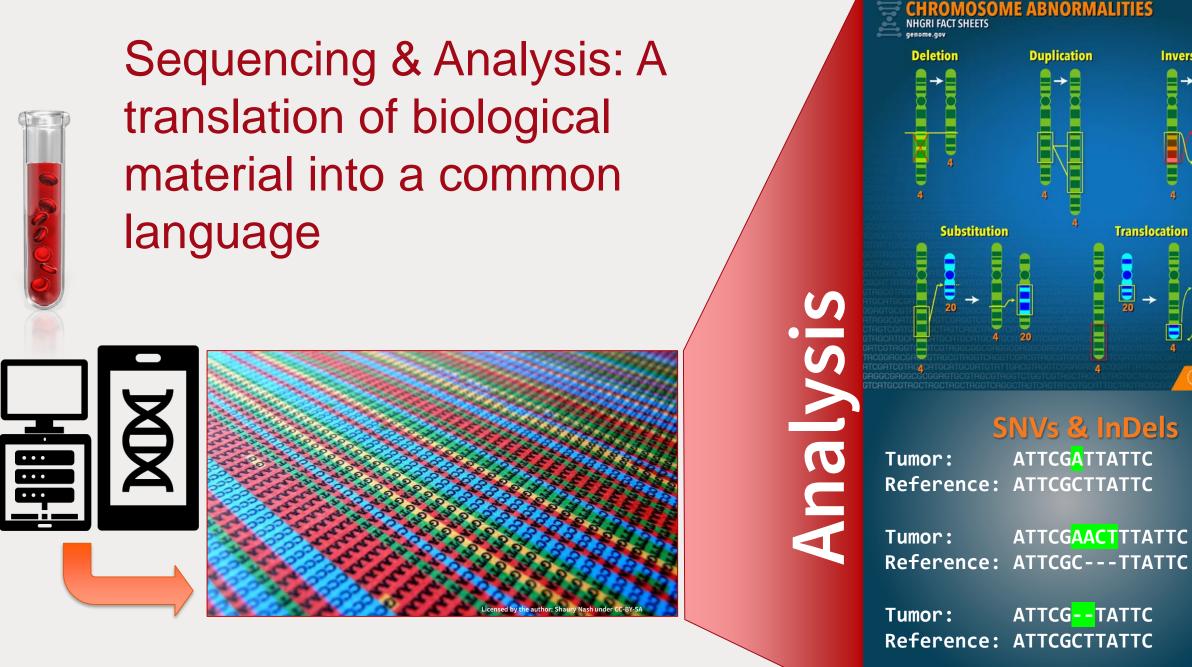
# Precision Medicine benefits from advancements in sequencing technology (NGS)

A very brief (and incomplete) history of genomics sequencing




# The Precision Medicine Ecosystem




S. J. Aronson, H. L. Rehm, Nature. 526, 336–342 (2015).

# Transcriptome profiling

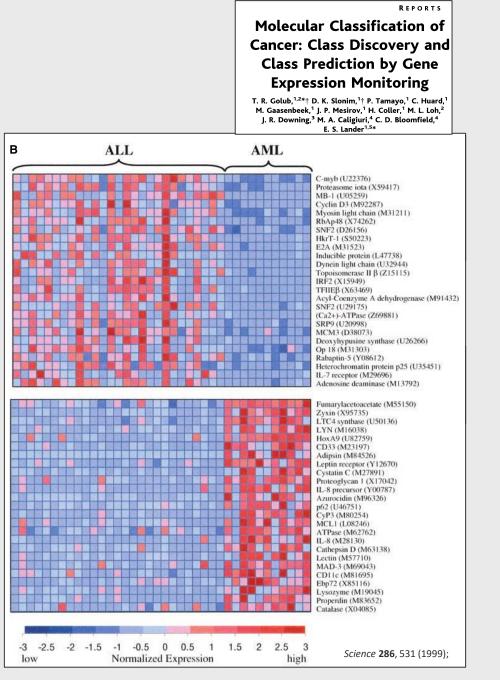


Transcriptome profiling goal is to characterize the RNA in a tissue or cell.

The 'simpler' structure of RNA allows to employ most techniques used for DNA analysis – hybridization, polymerase chain reaction, etc.



NIH)=

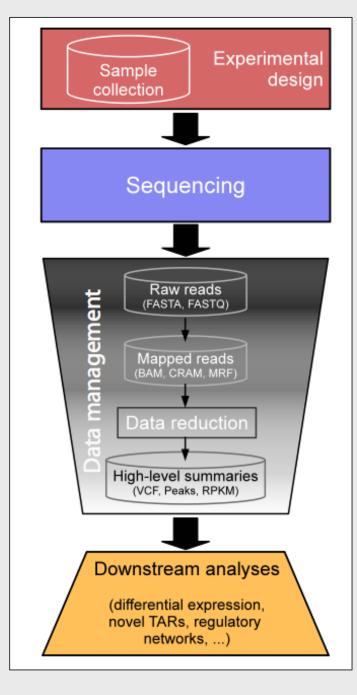

Inversion

# Genome Era (1990s – 2000s)

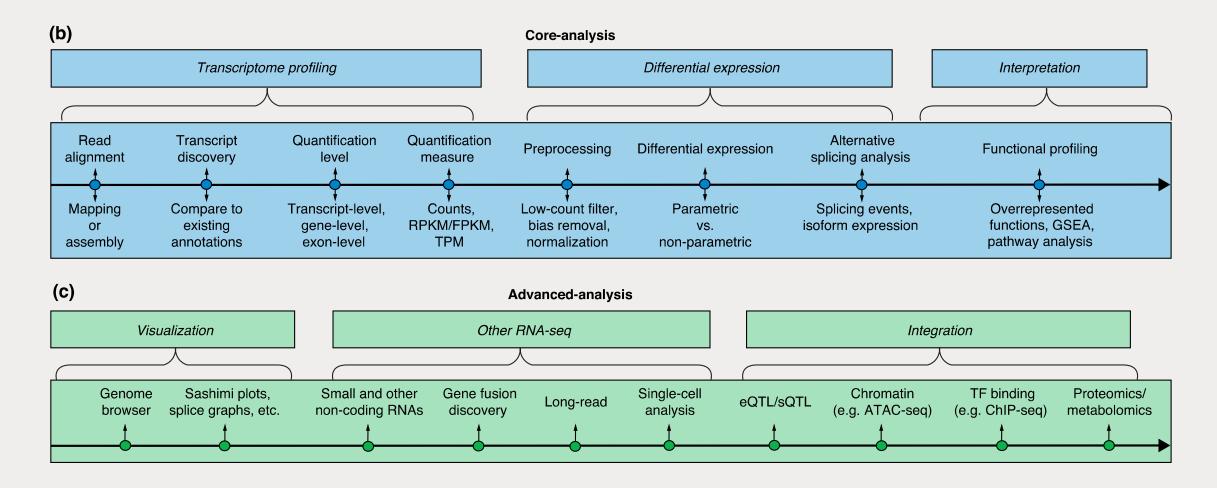
~ 1991 Expressed Sequence Tags (ESTs) sequencing (500-800 nucleotides)

~ 1995 Series Analysis of Gene Expression (SAGE) (9-12 nucleotides)

~ 1999 Microarray

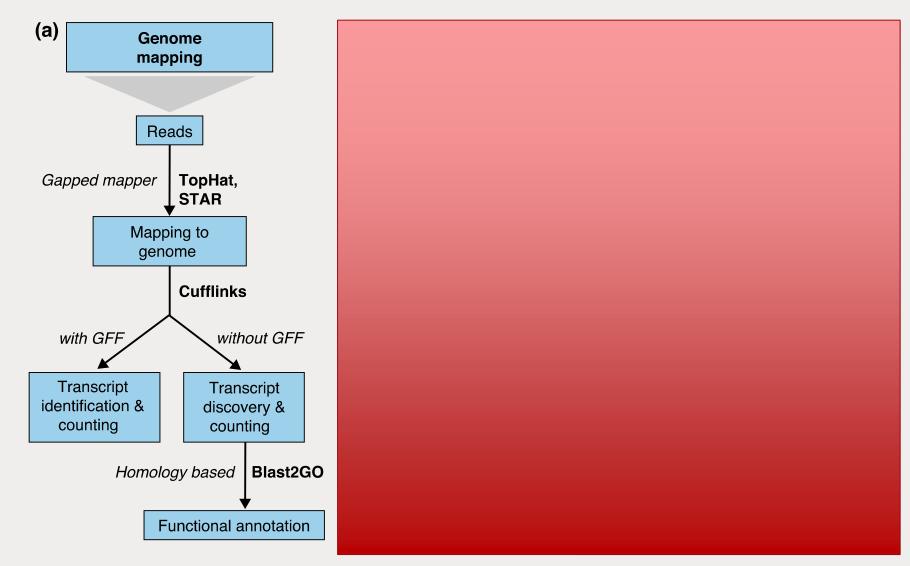



# **RNA-Seq Experiment**


Data management:

Mapping the reads Creating summaries

Downstream analysis: *the interesting stuff* Differential expression, chimeric transcripts, novel transcribed regions, etc.




# Roadmap for RNA-seq analyses

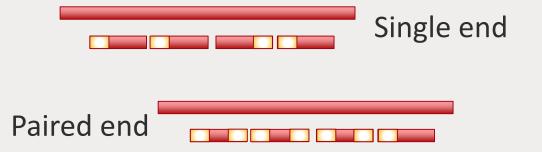


A. Conesa et al., Genome Biology. 17, 13 (2016).

# Alignments for Transcriptomics (RNA-seq)



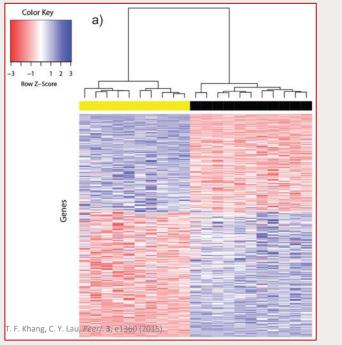
A. Conesa et al., Genome Biology. 17, 13 (2016).

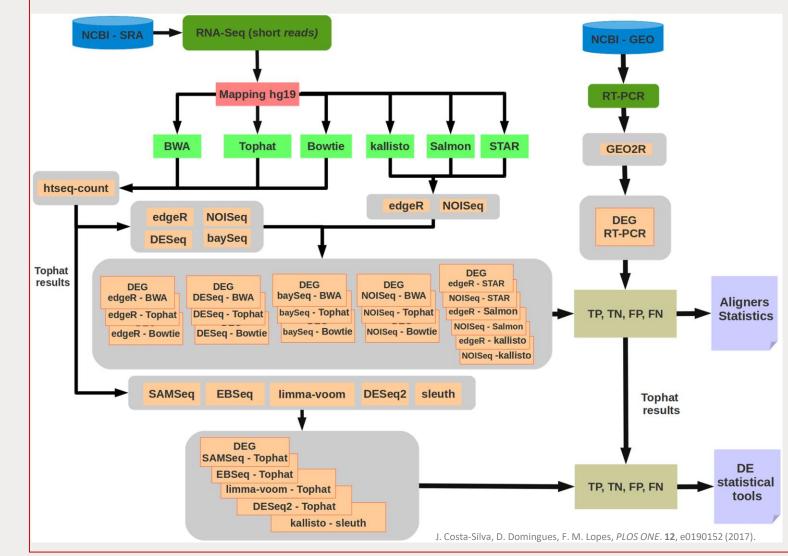

#### Weill Cornell Medicine 🚽 New York-Presbyterian

# **Expression Quantification**

FPKM/RPKM: Fragment/Reads per Kilobase of exonic region per Million of reads

TPM: transcripts per million


Normalization strategies affect results of comparisons (ERCC-spike-ins)




- 1. Divide the total # reads by 1M=scaling factor
- 2. Divide the read/fragment counts by the scaling factor=RPM/FPM
- 3. Divide RPM by the length of the genes in KB=RPKM/FPKM
- 1. Divide the read/fragment counts by the length of the gene=RPK
- 2. Sum all RPK and divide by 1M=scaling factor
- 3. Divide RPK by the scaling factor=TPM

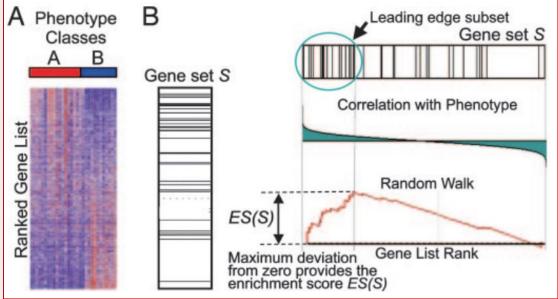
# Differential Expression

#### Comparison of groups






We have identified that the impact of the mapping tool on the final results is minimal, indicating the DEGs identification method is the main choice for differential expression analysis in RNA-Seq data.

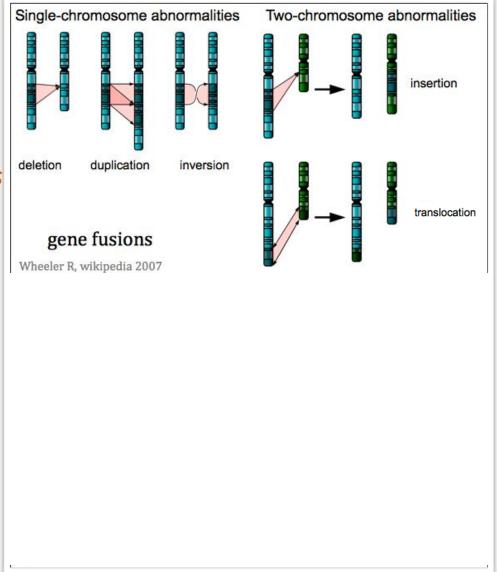

We <u>did not</u> identify among the evaluated methods a tool that obtained <u>optimum results in all performance measures</u>, for the evaluated experimental conditions. The NOIseq, DESeq2 and limma+vomm methods present the best individual results with 95%, 95% and 93% of Specificity and 80%, 84% and 81% of True Positive Rate, respectively.

# Pathway analysis (gene set enrichment)

Are a group of genes dys-regulated in a certain condition?

"The basic assumption is that although large changes in individual genes can have significant effects on pathways, <u>weaker but coordinated changes</u> in sets of functionally related genes (i.e., pathways) can also have significant effects. Therefore, the gene-level statistics for all genes in a pathway are aggregated into a single pathway-level statistic (e.g. the sum of all log-fold changes), which will then be evaluated."





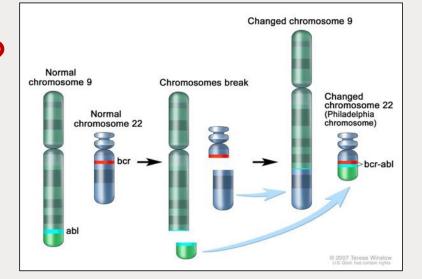

# What are chimeric transcripts?

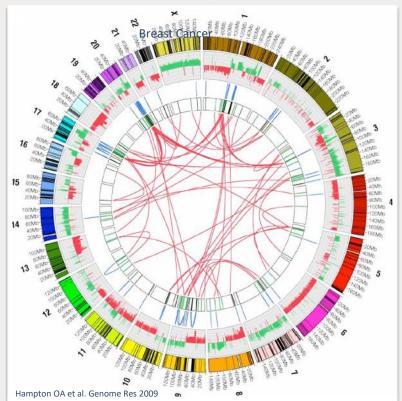
- Transcripts that are *not co-linear* in the genome space
- They can arise from:

genomic rearrangements, i.e. gene fusions

```
post-transcriptional events, i.e. trans-
splicing or cis-splicing
```




# Why are they (gene fusions) important?


Fusion genes are often *oncogenes* 

Ex: BCR-ABL1 (Philadelphia chromosome) in Chronic myelogenous leukemia (CML) and Acute Lymphoblastic leukemia (ALL) t(9;22)(q34;q11)

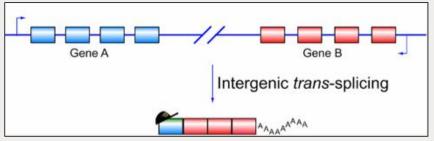
Fusion involving a proto-oncogene with a strong promoter resulting in *upregulation* (lymphomas)

Ex: (IgH locus)-MYC in Burkitt's lymphoma (cMYC overexpressed)



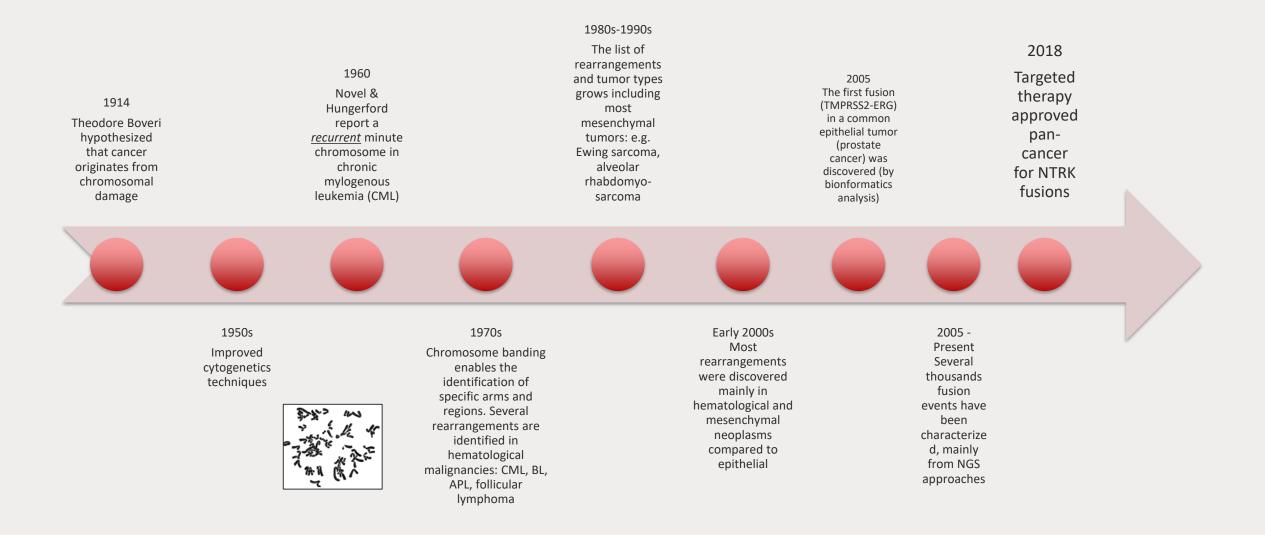


# Why are they (trans-splicing events) important?

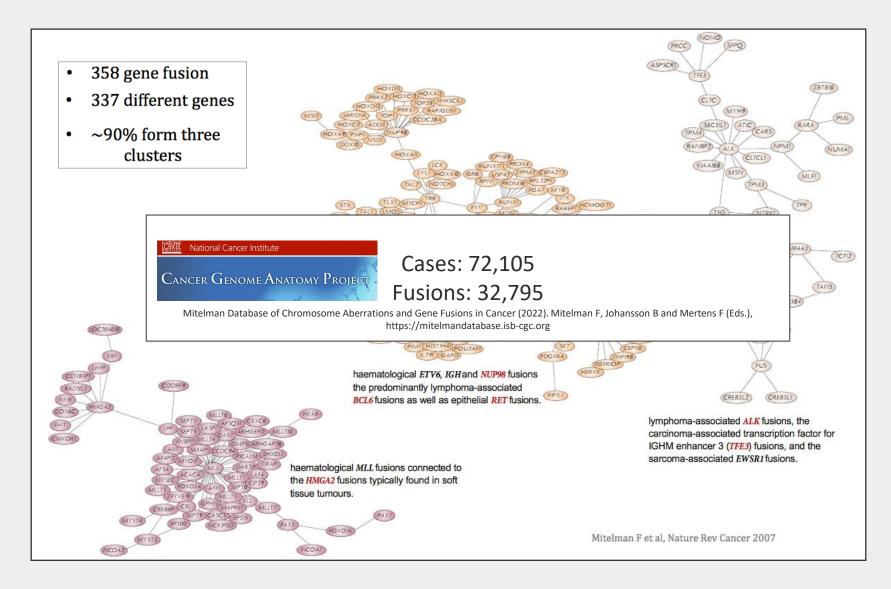

Trans(cis)-splicing was initially found in lower eukariotes, such as trypanosomes and worms

## Short sequences of nucleotides are trans-spliced to distant 5' of many protein coding genes

Recently, they were found in mammalian cells:

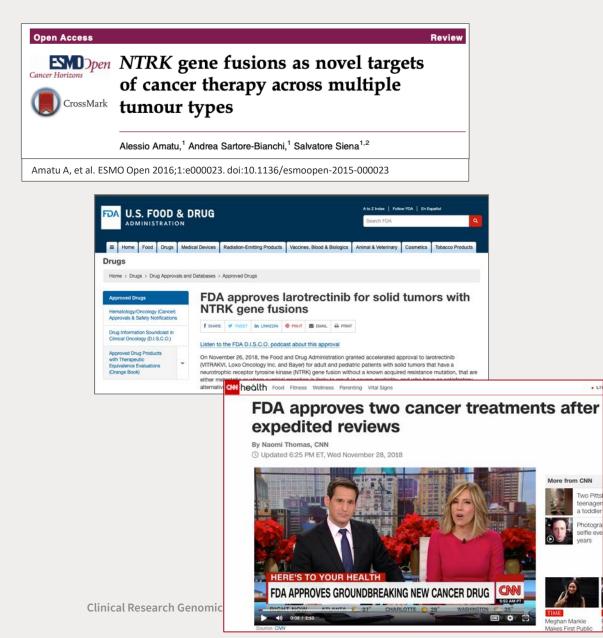

- JAZF1-SUZ12 in endometrial stroma cells (Li et al. Science 2008)
- SLC45A3-ELK4 in prostate tissues (Rickman et al. Cancer Res 2009)

65% of protein-coding genes have distal 5' transcription start sites (ENCODE pilot) --> revised to ~50% the ENCODE 2012




Horiuchi, Takayuki, and Toshiro Aigaki. Biology of the Cell 98, no. 2 (January 9, 2012): 135–140.

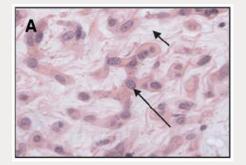
# An historical perspective of gene fusions



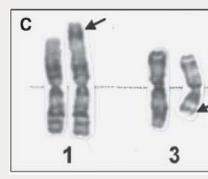

## How many different gene fusions do we know?

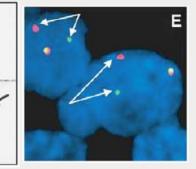


## Gene fusions are important for clinical treatment



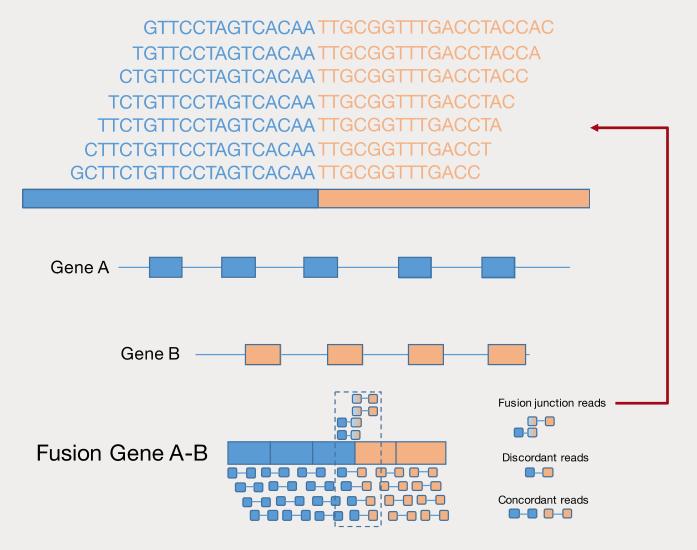




• LI


# ... and diagnostic/prognostic purposes





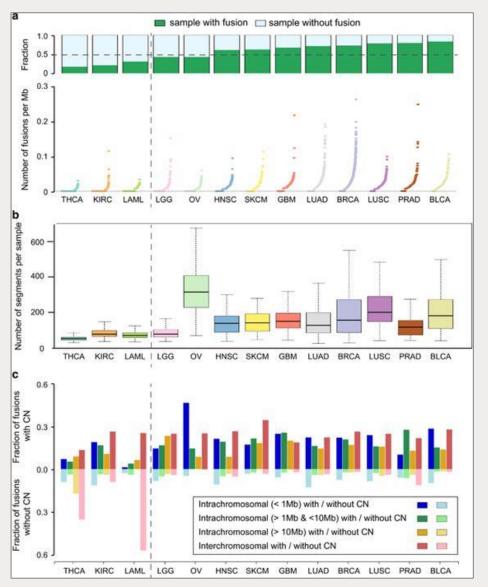


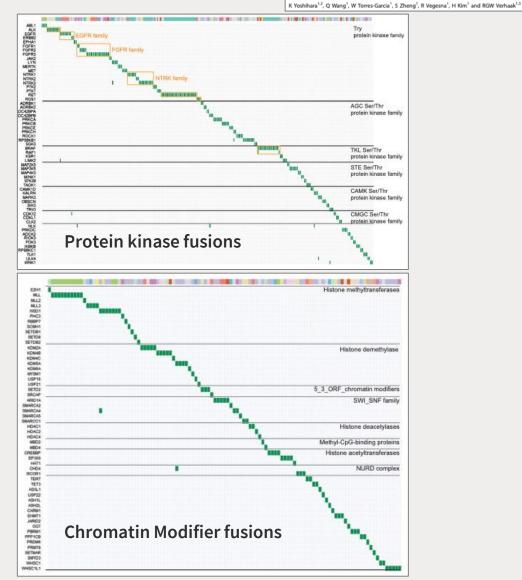





| 0                                   | WWTF               | 71   | CAMTA1             |      |  |
|-------------------------------------|--------------------|------|--------------------|------|--|
| G                                   | Positive<br>/total | %    | Positive<br>/total | %    |  |
| Epithelioid hemangioendothelioma    | 42/47              | 89%  | 39/45              | 87%  |  |
| Angiosarcoma, NOS                   | 0/42               | 0.70 | 0/38               | 0.70 |  |
| Epithelioid angiosarcoma            | 0/7                | 0%   | 0/7                | 0%   |  |
| Intimal sarcoma                     | 0/5                | 0%   | 0/3                | 0%   |  |
| Kaposi's sarcoma                    | 0/4                | 0%   | 0/4                | 0%   |  |
| Malignant hemangioendothelioma, NOS | 0/1                | 0%   | 0/1                | 0%   |  |
| Retiform hemangioendothelioma       | 0/1                | 0%   | 0/1                | 0%   |  |
| Kaposiform hemangioendothelioma     | 0/3                | 0%   | 0/2                | 0%   |  |
| Epithelioid hemangioma              | 0/5                | 0%   | 0/4                | 0%   |  |
| Arteriovenous malformation          | 0/2                | 0%   | 0/2                | 0%   |  |
| Angiomatosis                        | 0/1                | 0%   | 0/1                | 0%   |  |
| Hemangioma, NOS                     | 0/3                | 0%   | 0/3                | 0%   |  |
| Capillary/pyogenic hemangioma       | 0/5                | 0%   | 0/5                | 0%   |  |
| Cavernous hemangioma                | 0/5                | 0%   | 0/5                | 0%   |  |
| Juvenile hemangioma                 | 0/1                | 0%   | 0/1                | 0%   |  |
| Spindle cell hemangioma             | 0/4                | 0%   | 0/4                | 0%   |  |
| Synovial hemangioma                 | 0/1                | 0%   | 0/1                | 0%   |  |
| Intramuscular hemangioma            | 0/6                | 0%   | 0/5                | 0%   |  |
| Littoral cell hemangioma            | 0/6                | 0%   | 0/2                | 0%   |  |
| Malignant hemangiopericytoma        | 0/1                | 0%   | 0/1                | 0%   |  |
| Hemangiopericytoma, NOS             | 0/1                | 0%   | 0/1                | 0%   |  |
| Sinonasal hemangiopericytoma        | 0/1                | 0%   | 0/1                | 0%   |  |
| Glomus tumor                        | 0/1                | 0%   | 0/1                | 0%   |  |
| Atypical glomus tumor               | 0/2                | 0%   | 0/2                | 0%   |  |
| Lymphangioma                        | 0/7                | 0%   | 0/7                | 0%   |  |
| Lymphangioleiomyomatosis            | 0/1                | 0%   | 0/1                | 0%   |  |
| Papillary endothelial hyperplasia   | 0/2                | 0%   | 0/2                | 0%   |  |
| Total cases                         | 165                |      | 151                |      |  |

# **Fusion supporting reads**





Weill Cornell Medicine 🚽 New York-Presbyterian

**Clinical Research Genomics - Spring 2022** 

The landscape and therapeutic relevance of cancer-associated

# **Spectrum of fusions in cancer types**





**ORIGINAL ARTICLE** 

transcript fusions

Weill Cornell Medicine - New York-Presbyterian

# "Targeted" fusion detection methods

### ARCHER® **FUSIONPlex**<sup>®</sup> **NGS Assays**





#### Novel fusions

AMP<sup>™</sup> chemistry utilizes open-ended targeted amplification to identify gene fusions whether or not the fusion partner is known Video Blog

### 

#### Expression

Molecular barcodes coupled with open-ended amplification allows for determination of RNA vs DNA reads Blog

- nanoString
- Breast Cancer 360<sup>™</sup> Panel
- PanCancer IO 360<sup>™</sup> Panel
- CAR-T Characterization Panel
- Hallmarks of Cancer Collection PanCancer Pathways Panel
  - PanCancer Immune Profiling Panel
  - PanCancer Progression Panel
- PlexSet<sup>™</sup> Pre-selected Panels
- Vantage 3D<sup>™</sup> RNA Panels
- Vantage 3D<sup>™</sup> Gene Fusion Panels
- miRNA Panels
- Kinase Panel
- Stem Cell Panel
- nCounter Gene Fusion Panels (Ex-US only)

Prepare Library | Sequence | Analyze Data

# TruSight<sup>™</sup> Oncology 500

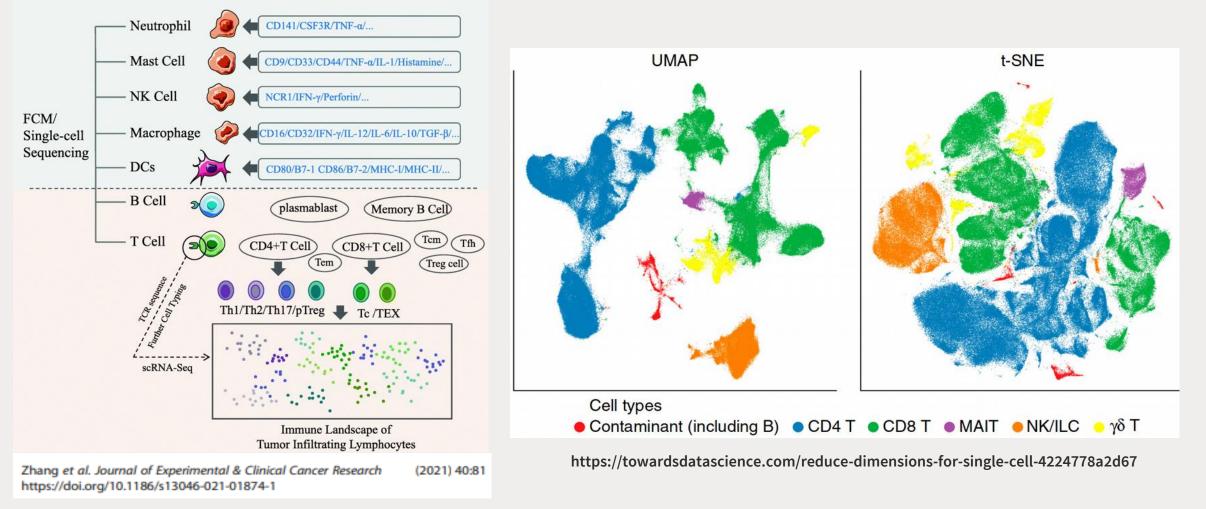
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NTRK1, NTRK2, NTRK3 (pan-cancer)   MSI (pan-cancer)                                              |                                                                                                          |                                                           |                                                                            |                                                      |                      |                                                                                                                                                  |                                                                                                                                                                                   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                  | Colon                                                                                                    | Ovarian                                                   | Breast                                                                     | Gastric                                              | Bladder              | Myeloid                                                                                                                                          | Sarcoma                                                                                                                                                                           |
| AKTI<br>ALK<br>BRAF<br>DDR2<br>EGFR<br>EGFR1<br>FGFR3<br>KRAS<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAP2K1<br>MAPX<br>MAPX<br>MAPX<br>MAPX<br>MAPX<br>MAPX<br>MAPX<br>MAPX | BRAF<br>CTINIB1<br>GINA11<br>GINA10<br>KIT<br>MAP2K1<br>NFAS<br>PDGFRA<br>PIK3CA<br>PTEN<br>TP53 | AKT1<br>BRAF<br>HRAS<br>KRAS<br>MET<br>MSH2<br>MSH6<br>NRAS<br>PIK3CA<br>PIK3CA<br>PTEN<br>SMAD4<br>TP53 | BRAF<br>BRCA1<br>BRCA2<br>KRAS<br>POGFRA<br>FOXL2<br>TP53 | AKTI<br>ART<br>BRCA1<br>BRCA2<br>ERB82<br>FGFR1<br>FGFR2<br>PIK3CA<br>PTEN | BRAF<br>KIT<br>KRAS<br>MET<br>MLH1<br>PDGFRA<br>TP53 | MSH6<br>PMS2<br>TSC1 | ABL1<br>ASXL1<br>CALR<br>CEBPA<br>ETV6<br>EZH2<br>FLT3<br>GATA2<br>IDH1<br>IDH2<br>JAK2<br>KIT<br>MPL<br>NPM1<br>RUNX1<br>SF3B1<br>SRSF2<br>TP53 | ALK<br>APC<br>BRAF<br>CDK4<br>CTNNB1<br>ETV6<br>EWSR1<br>FOX01<br>GLI1<br>KIT<br>MDM2<br>MYOD1<br>NAB2<br>NF1<br>PAX3<br>PAX7<br>PDGFRA<br>SDHB<br>SDHC<br>SMARCB1<br>TFE3<br>WT1 |

## FDA-approved drugs targeting oncogenic fusions in solid tumors

| Fusion target        | Therapy       | Indication         | FDA approval   |
|----------------------|---------------|--------------------|----------------|
| ALK fusion           | Crizotinib    | Lung               | August 2011    |
|                      | Ceritinib     | Lung               | May 2017       |
|                      | Alectinib     | Lung               | November 2017  |
|                      | Brigatinib    | Lung               | May 2020       |
|                      | Lorlatinib    | Lung (second line) | November 2018  |
| FGFR fusion          | Erdafitinib   | Urothelial         | April 2019     |
|                      | Pemigatinib   | Cholangiocarcinoma | April 2020     |
| ROS1 fusion          | Crizotonib    | Lung               | March 2016     |
|                      | Entrectinib   | Lung               | August 2019    |
| <i>RET</i> fusion    | Selpercatinib | Lung<br>Thyroid    | May 2020       |
|                      | Pralsetinib   | Lung               | September 2020 |
| NTRK1/2/3 fusion     | Larotrectinib | Solid tumor        | November 2018  |
|                      | Entrectinib   | Solid tumor        | August 2019    |
| PDGFB fusion         | Imatinib      | DFSP               | November 2006  |
| MET exon 14 skipping | Capmatinib    | Lung               | May 2020       |

# Tools for detecting fusion transcripts

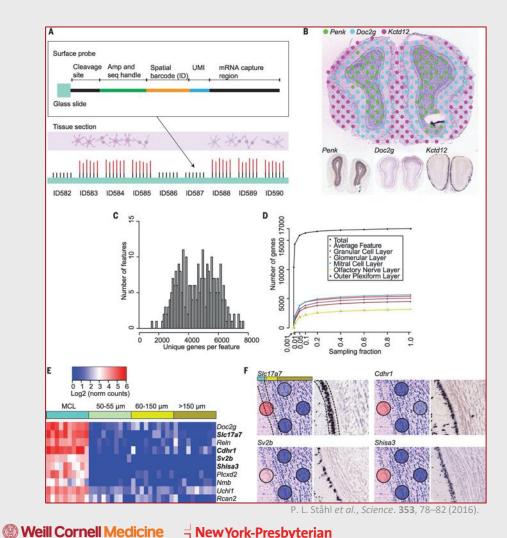
Gene fusion detection software tools | RNA sequencing High-throughput sequencing software tools > RNA sequencing software tools

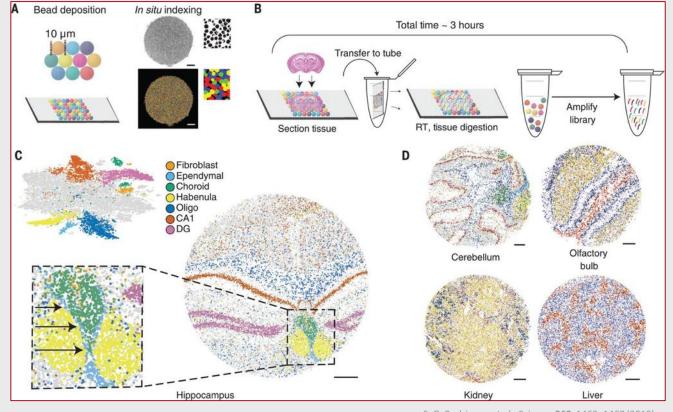

http://omictools.com/gene-fusion-detection-category

| <b>RNA-seq short-reads "only"</b><br>Bellerophontes<br>BreakFusion<br>chimeraScan<br>CRAC<br>deFuse<br>EricScript | <b>RNA-seq &amp; DNA-seq</b><br>BreakTrans<br>Comrad<br>nFuse                  | <b>Gene fusion anno</b><br>Chimera<br>Pegasus                                                               | tation                                                                                        | <b>Transcript A</b><br>CuffLinks<br>Scripture<br>Trinity<br>Trans-Abyss | ·                                                                                     |                                                                                       |                                                                                                          |
|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| FusionAnalyser<br>FusionCatcher                                                                                   |                                                                                |                                                                                                             | Published online 17 Nov                                                                       | vember 2015                                                             |                                                                                       | Nucleic Acids Resea                                                                   | arch, 2016, Vol. 44, No. 5 <b>e4</b> 7<br>doi: 10.1093/nar/gkv1234                                       |
| FusionFinder<br>FusionHunter<br>FusionQ<br>FusionSeq<br>Jaffa<br>MapSplice<br>PRADA                               |                                                                                |                                                                                                             | detection a<br>performing<br>Silvia Liu <sup>1,2,†</sup> , Wei<br>SungHwan Kim <sup>1</sup> , | g methods i                                                             | and a me<br>n paired-<br>ng Ding <sup>1,2,†</sup> , Ru<br>g-Yu Chang <sup>4</sup> , N | eta-caller to<br>-end RNA-s<br>ii Chen <sup>1</sup> , Zhou Fan<br>Iolan Michael Pried | combine top<br>seq data<br>g <sup>1</sup> , Zhiguang Huo <sup>1</sup> ,<br>digkeit <sup>5</sup> , Adrian |
| shortFuse<br>SnowShoes-FTD<br>SOAPFuse/Fusion<br>TopHat-Fusion<br>STAR-fusion                                     | A<br>12<br>10<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5 | \$<br>\$<br>9<br>\$<br>\$<br>9<br>\$<br>9<br>\$<br>9<br>\$<br>9<br>\$<br>9<br>\$<br>9<br>\$<br>9<br>\$<br>9 | 4<br>49<br>10                                                                                 | *<br>1<br>• *                                                           | 6 <sup>56</sup> 4                                                                     | ÷                                                                                     | ◆<br>◆<br>● BT474 (11)<br>● SKBR3 (10)<br>■ MCF7 (3)<br>■ KPL4(3)                                        |

De novo transcriptome assembly software tools | RNA sequencing High-throughput sequencing software tools > RNA sequencing software tools

http://omictools.com/transcriptome-assembly-category


# Single-cell RNA sequencing (scRNA-seq): higher magnification using the NGS microscope




#### 🕲 Weill Cornell Medicine 🚽 New York-Presbyterian

# **Spatial profiling**

Measurements (such as gene expression) that maintain the spatial information.





S. G. Rodriques et al., Science. 363, 1463–1467 (2019).

**Clinical Research Genomics - Spring 2022** 

# **Summary and future directions**

- Massively Parallel Sequencing has enabled the discovery of additional fusion transcripts
- Specificity is the main challenge: too many false positives (FPs)!
- Longer reads: could help overcome the limitations of short reads
- <u>Combination of tools</u> may help further improve on the reduction of FPs

• "For the large bioinformatics community, development of a high-performing (accurate and fast) fusion detection tool or methods to combine top-performing tools remains an important and open question"

