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Background



DNA RNA Protein
transcription translation

James Watson, 1958



Epigenome

DNA RNA Protein
transcription translation



We can observe 

many, many more molecules than before

1.2 million sequence reads in brain 
(1990-2010)

New School:
One run of a NGS machine = billions of sequence reads in days

Old School



The Annotation/Composition of the Human Genome

from Mason, State, and Moldin, Kaplan & Sadock’s Comprehensive Textbook of Psychiatry, 2009



Validation of known Gene Boundaries
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Find Longer Isoforms
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Find New Genes
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About Half of the Noncoding 

Genome  is Transcriptionally Active

 

Humans: 47% (Schadt et al., 2004)

Arabadopsis: 51% (Yamada et al., 2003)Stolc, Gauhar, Mason et al, Science, 2004

Mason, 2006



The transcriptome’s potential complexity is vast

exon1 

exon2 

exon3

exon1-exon2

exon1-exon3

exon2-exon3

exon1-exon2-exon3

6 63 15

7 127 21

8 255 28

3 7 3

4 15 6

5 31 10

1 1 0

2 3 1

Exons Variants Junctions

2n-1

Exon 1 Exon 2 Exon 3

Exon 1 Exon 2 Exon 3

n(n-1)

2

Exon4

Exon4

exon4 

exon1- exon4

exon2-exon4

exon3-exon4

exon1-exon2-exon4

exon1-exon3-exon4

exon2-exon3-exon4

exon1-exon2-exon3-exon4

8x1083 theoretical transcript combinations

8x1080 atoms in the universe
(159 atoms/star, 111 stars/galaxy, 110 galaxies)Li and Mason, ARGHG, 2014
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Early 
Development



2008



Can RNA-Seq replace microarrays?

Marioni and Mason et. al, Genome Research, 2008

RNA-Seq: An assessment of technical reproducibility and 

comparison with gene expression arrays



• Early days—fold change cutoffs (e.g., 2x difference or better)

• not a very satisfying approach:

-doesn’t take into account variance

-misses any small changes

Data Analysis: What genes are 
differentially expressed?

Here, “A” has a fold change 

>2.5, but varies greatly between 

replicate experiments. “B” has a 

fold change of only 1.75, but 

changes reliably each time the 

experiment is performed. 



Comparing GA and Affy arrays
L

o
g
2

 f
o

ld
 c

h
a

n
g
e

 (
k
id

n
e

y
/l
iv

e
r)

 -
A

ff
y
m

e
tr

ix

Log2 fold change (kidney/liver) - SolexaSpearman correlation = 0.72



13,072 Differentially Expressed (DE) Genes 

(37%)

DE in

Solexa

4,959

(12%)

DE in

Affy

1,579

(50%)

Both

6,534



Coverage Requirements:
How many lanes/plates/wells?

Depends on:

1.Read Length

2.Size of Transcriptome

3.Complexity of Transcriptome

4.Cellular Heterogeneity of Tissue

5.Biological Variance

6.Errors (random and systematic)



But, coverage Requirements 
depend on your species

Wang, Gerstein, and Snyder, 2008

Yeast Mouse



Metric for RNA-Seq Expression

RPKM:

Reads per Kilobase per Million Reads

Normalizes for (1) gene size and (2) sequencing depth 

(~0.1-1 transcript/cell)

Y = (exons, introns, intergenic reads)

Mortazavi, Williams, et al. 

Nature Methods, 2008

FPKM=fragments-PKM

is for paired-end data



RPKM, FPKM, TPM

RPKM:
1.Count up the total reads in a sample and divide that number by 1,000,000 – this is 
our “per million” scaling factor.
2.Divide the read counts by the “per million” scaling factor. This normalizes for 
sequencing depth, giving you reads per million (RPM)
3.Divide the RPM values by the length of the gene, in kilobases. This gives you RPKM.

TPM:
1.Divide the read counts by the length of each gene in kilobases. This gives you reads 
per kilobase (RPK).
2.Count up all the RPK values in a sample and divide this number by 1,000,000. This 
is your “per million” scaling factor.
3.Divide the RPK values by the “per million” scaling factor. This gives you TPM.

https://www.rna-seqblog.com/rpkm-fpkm-and-tpm-clearly-explained/



TPM normalizes data across 
replicates better



Accurate gene quantification requires greater depth 
than gene discovery

Toung et al, 2011
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Tools & 
Standards



RNA-Seq and all its flavors

create excitement



Differential expression by 

gene, exon, splice isoform, 

allele, & transcript

Algorithms: STAR, r-make, ASE, 

limma-voom, RSEM

3

reads

alignments

Sorted 

BAMs

GENCODE 

annotation

queries 

R
e
a

d
s
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p

Alignment on HPC nodes

References

hg19

RefSeq

miRBase

rRNA

Adapters

Find ncRNAs and new genes

Algorithms: r-make, Aceview

4

Sequencing Data

Gene fusion detection

Algorithms: r-make, Snowshoes

5

Genetic variation (SNVs and 

indels)

Algorithms: STAR/GATK, r-make

2

Predict polyA sites & gain/loss 

of miRNA binding sites

Algorithms: r-make, BAGET 

AlexaSeq, TargetScan

6

Viruses/Bacteria/Other 

Algorithm: MG-RAST

Remaining Reads
TCTGCTTTAGGATAGATCGATAGCTAGTTCAT   

CTGCTTTAGGATAGATCGATAGCTAGTTCATC

TCTGCTTTAGGATAGATCGATAGCTAGTTCAT

7

1

RNA-seq = Love

R-make tools



But!

There is some noise



What is the source of the wiggles?

Genes

ESTs

Liver

Kidney

Adult Brain

Fetal Hippocampus

Fetal Amygdala



The Dirty Dozen: >= 12 Sources of Technical Noise in RNA-Seq

(1) RNA integrity: Sample purity or degradation

(2) Sample RNA complexity: polyA RNA, total RNA, miRNA

(3) cDNA synthesis: random hexamer vs. polyA-primed

(4) Library isolation: Gel excision vs. column

(5) Technical Errors: Machine, Site, Lane, Technician, Library Size

(6) Amplification Cycles or Methods: NuGen, Tn5, Phi29

(7) Input amount: (1, 10, 100, 1000 cells)

(8) Algorithms: for alignment and assembly

(9) Fragment size distribution: Paired-End, Single-End (adaptors)

(10) Ligation Efficiency: Multiplexing/Barcoding and RNA ligases

(11) Depth of Sequencing: cost/benefit point

(12) RNA fragmentation: cation, enzymatic



Comparison of HITS-CLIP and its latest variants, PAR-CLIP and iCLIP

HITS-CLIP: genome-wide 

means of mapping protein–RNA 

binding sites in vivo.

PAR-CLIP: identifying the 

binding sites of cellular RNA-

binding proteins (RBPs) and 

microRNA-containing 

ribonucleoprotein complexes 

(miRNPs) in tissue culture 

cells.

iCLIP: transcriptome-wide 

mapping of protein-RNA 

interactions with individual 

nucleotide resolution.



Which type of RNA?
Type Abbreviation Function Organisms

7SK	RNA	 7SK	 negatively	regulating	CDK9/cyclin	T	complex	 metazoans

Signal	recognition	particle	RNA	 7SRNA Membrane	integration	 All	organisms	

Antisense	RNA	 aRNA	 Regulatory All	organisms	

CRISPR	RNA	 crRNA	 Resistance	to	parasites Bacteria	and	archaea	

Guide	RNA	 gRNA	 mRNA	nucleotide	modification	 Kinetoplastid	mitochondria	

Long	noncoding	RNA	 lncRNA XIST	(dosage	compensation),	HOTAIR	(cancer) Eukaryotes	

MicroRNA	 miRNA	 Gene	regulation	 Most	eukaryotes	

Messenger	RNA	 mRNA	 Codes	for	protein	 All	organisms

Piwi-interacting	RNA	 piRNA	 Transposon	defense,	maybe	other	functions	 Most	animals	

Repeat	associated	siRNA	 rasiRNA	 Type	of	piRNA;	transposon	defense	 Drosophila	

Retrotransposon	 retroRNA self-propagation Eukaryotes	and	some	bacteria	

Ribonuclease	MRP	 RNase	MRP	 rRNA	maturation,	DNA	replication	 Eukaryotes	

Ribonuclease	P	 RNase	P	 tRNA	maturation	 All	organisms	

Ribosomal	RNA	 rRNA	 Translation	 All	organisms

Small	Cajal	body-specific	RNA	 scaRNA	 Guide	RNA	to	telomere	in	active	cells Metazoans

Small	interfering	RNA	 siRNA	 Gene	regulation	 Most	eukaryotes	

SmY	RNA	 SmY	 mRNA	trans-splicing	 Nematodes	

Small	nucleolar	RNA	 snoRNA	 Nucleotide	modification	of	RNAs	 Eukaryotes	and	archaea	

Small	nuclear	RNA	 snRNA	 Splicing	and	other	functions	 Eukaryotes	and	archaea	

Trans-acting	siRNA	 tasiRNA	 Gene	regulation	 Land	plants	

Telomerase	RNA	 telRNA Telomere	synthesis	 Most	eukaryotes	

Transfer-messenger	RNA	 tmRNA	 Rescuing	stalled	ribosomes	 Bacteria	

Transfer	RNA	 tRNA	 Translation	 All	organisms

Viral	Response	RNA	 viRNA Anti-viral	immunity C	elegans

Vault	RNA	 vRNA	 self-propagation Expulsion	of	xenobiotics

Y	RNA	 yRNA RNA	processing,	DNA	replication	 Animals	

Zumbo and Mason 

Genome Analysis: Current Procedures and Applications, 2014.



RNAs can have 
structure/function all their own

• mFOLD/sFOLD

• RNAMotifScan

• RNAfold



And - which one do we use?
Technologies Bifurcate into two main realms:

Platform Instrument Template	Preparation Chemistry Avearge	Length Longest	Read
Illumina HiSeq2500 BridgePCR/cluster Rev.	Term.,	SBS 100 150

Illumina HiSeq2000 BridgePCR/cluster Rev.	Term.,	SBS 100 150

Illumina MiSeq BridgePCR/cluster Rev.	Term.,	SBS 250 300

GnuBio GnuBio emPCR Hyb-Assist	Sequencing 1000* 64,000*
Life	Technologies SOLiD	5500 emPCR Seq.	by	Lig. 75 100

LaserGen LaserGen emPCR Rev.	Term.,	SBS 25* 100*

Pacific	Biosciences RS Polymerase	Binding Real-time 1800 15,000

454 Titanium emPCR PyroSequencing 650 1100

454 Junior emPCR PyroSequencing 400 650

Helicos Heliscope none Rev.	Term.,	SBS 35 57

ZS	Genetics N/A Atomic	Lableing Electron	Microscope N/A N/A

Halcyon	Molecular N/A N/A Direct	Observation	of	DNA N/A N/A

Platform Instrument Template	Preparation Chemistry Avearge	Length Longest	Read

IBM	DNA	Transistor N/A none Microchip	Nanopore N/A N/A

Nabsys N/A none Hyb-Assisted	Nanopore	(HANS) N/A N/A

Life	Technologies PGM emPCR Semi-conductor 150 300

Life	Technologies Proton emPCR Semi-conductor 300* 500*
Life	Technologies Proton	2 emPCR Semi-conductor 400* 800*

Oxford	Nanopore MinION none Protein	Nanopore 1000* 10,000*
Oxford	Nanopore GridION	2K none Protein	Nanopore 1000* 500,000*
Oxford	Nanopore GridION	8K none Protein	Nanopore 1000* 500,000*

*Values	are	estimates	from	companies	that	have	not	yet	released	actual	data

Optical	Sequencing

Electrical	Sequencing





There is some hope from at least five places:

1. ABRF-NGS Study Consortium
2. FDA’s SEQC (MAQC-III) Group

3. ENCODE’s RGASP
4. RIKEN’s FANTOM

5. NIST’s ERCCs
6. GEUVADIS Consortium

But only the first two have data to address 
technical questions of RNA-Seq



What are ERCCs?

ERCC Spike-In Mixes 
with synthetic RNAs

From Ambion
(ERCC=External RNA 
Control Consortium)

“Ambion® ERCC Spike-In Control Mixes are commercially available, pre-formulated blends of 92 

transcripts, derived and traceable from NIST-certified DNA plasmids. The transcripts are 

designed to be 250 to 2,000 nt in length, which mimic natural eukaryotic mRNAs. 

With two spike-in mix formulations (Spike-In Mix 1 and Spike-In Mix 2), various measurements can 

be examined to assess different parameters in an experiment or across experiments. 

Measurements are determined via known molar concentrations for each transcript within a spike-

in mix and through association of the two mixes (using a combination of ratios across 4 

different subgroups of the 92 transcripts). Furthermore, expression fold-change ratios between 

two samples can be calculated with a high degree of confidence using the highly concordant 

relationship between ExFold RNA Spike-In 1 and ExFold RNA Spike-In 2.”



From any species of RNA (left), you can examine it 
relative to another RNA molecular at a different 

concentration (x-axis), covering a 220 dynamic range

Range: 220



Samples of the MAQC, SEQC and ABRF-NGS Study



6 ERCC 

Mix1 Tubes

(E)

6 ERCC 

Mix2 Tubes

(F)

50 uL 50 uLA B

C D

900 uL 900 uL

SEQC Samples = 
MAQC A,B,C,D with ERCC spike-ins



ABRF Next Generation Sequencing Study

Li S, et al. Nat Biotechnol. 2014 Sep;32(9):915-925. 
doi: 10.1038/nbt.2972. Epub 2014 Aug 24. PMID: 25150835

Current Results
Phase I: RNA Standards



Special issue printed and hosted site

http://www.nature.com/nbt/focus/seqc/index.html



ABRF-NGS study



Gene coverage distributions reveal platform- and prep-specific effects
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Error models 
highly variable among 

platforms

454: Roche 454 GS FLX+
ILMN: Illumina HiSeq 2000/2500
PAC: Pacific Biosciences RS I
PGM: Ion Personal Genome Machine
PRO: Ion Torrent Proton



Genes detection is log-linear;
Junction detection is length-dependent



Junctions detection efficiency highly 
variable; agreement common

Note: Only use a subset of reads among platforms 
to normalize the scale

Most of the known junctions are 
shared by at least 3 platforms



Sequencing depth is important to 
discover low abundance transcripts 



Inter-platform differential gene 
expression show 88-97% agreement

Shared sets of 

greater than 1000 

genes are indicated 

in red, 

100-999 yellow, 

<100 blue.

Unique DEGs:

454      - 3.0%

POLYA - 9.2%

RIBO    - 8.8%

PRO     - 11.9%

PGM    - 3.9% 



Proportional venn diagrams don’t 
always add clarity, but they are pretty



Gene regions distribution varies between protocols
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Entropy is usually a source of fear



"Fear is the main source of  superstition,

and one of the main sources of   cruelty. 

To conquer fear is the beginning of  wisdom." 

– Bertrand Russell
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Can we remove superstition?

HEAT
99oC for 

10 minutes

SONICATION
6 x 55 seconds 

at 5%DC,  I
intensity 3 

100 c/b

RNAse 
RNAse A 
1 ng/uL

Until RIN <2



Degraded RNA looks great!

454 ILMN PAC PGM PRO



Degraded RNA highly correlates with 
intact RNA gene expression

(AR)
(AS)
(AH)
(BR)

Illumina Ribo-depletion protocol



Ameliorating Inter-site Variation

SEQC 

samples
Each site has 

4 replicates

ILM1 ILM2

Replicate 5

ILM3

Replicate 5

ILM4 ILM5

Replicate 5

ILM6

Replicate 5 libraries 

were vendor supplied

HiSeq 2000



Ameliorating Inter-site Variation

SEQC 

samples
Each site has 

4 replicates

ILM1 ILM2

Replicate 5

ILM3

Replicate 5

ILM4 ILM5

Replicate 5

ILM6

Replicate 5 libraries 

were vendor supplied
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Determine sequencing variation sources
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Annotations



Your exome is not 62Mb

The 62 Mb “exome capture” is 

really the 1/3 exome capture

Aceview UCSC Vega ENSEMBL Refseq

Aceview 178

UCSC 76 81

Vega 51 42 58

ENSEMBL 64 60 43 70

RefSeq 60 61 37 57 62

Zumbo and Mason, Genome Analysis: Current Procedures and Applications, 2013



New human genes 
are still being found

The Next 500 Years

https://www.gencodegenes.org/

https://www.gencodegenes.org/


Annotations are a shifting sand, but so is the genome

https://www.gencodegenes.org/human/releases.html
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Epitranscriptome





The four-base genome 
is just the beginning



There are many RNA-mods as well:

Chuan He



Methylation is important for methyl-6 adenosine (m6A) in 
RNA, and is more prominent in brain & adults

Meyer et al., Cell, 2012



A new method: MeRIP-Seq

Meyer et al., Cell, 2012



Conservations of signal and sites in 
>10,000 orthologous  genes 

Meyer et al., Cell, 2012



m6A levels may also change splicing 
patterns in genes

Dominissini et al., Nature, 2012



RNA modifications give a new layer of cellular regulation

Li and Mason, ARGHG, 2014



Many putative roles for m6A in RNA

Paz-Yaakov et al, 2010

Saletore, Chen-Kiang, and Mason, RNA Biology, 2013.



New layer of regulation to study



Abbreviation Chemical	name

m1acp3Y 1-methyl-3-(3-amino-3-carboxypropyl)	pseudouridine

m1A 1-methyladenosine

m1G 1-methylguanosine

m1I 1-methylinosine

m1Y 1-methylpseudouridine

m1Am 1,2'-O-dimethyladenosine

m1Gm 1,2'-O-dimethylguanosine

m1Im 1,2'-O-dimethylinosine

m2A 2-methyladenosine

ms2io6A 2-methylthio-N6-(cis-hydroxyisopentenyl)	adenosine

ms2hn6A 2-methylthio-N6-hydroxynorvalyl	carbamoyladenosine

ms2i6A 2-methylthio-N6-isopentenyladenosine

ms2m6A 2-methylthio-N6-methyladenosine

ms2t6A 2-methylthio-N6-threonyl	carbamoyladenosine

s2Um 2-thio-2'-O-methyluridine

s2C 2-thiocytidine

s2U 2-thiouridine

Am 2'-O-methyladenosine
Cm 2'-O-methylcytidine
Gm 2'-O-methylguanosine

Im 2'-O-methylinosine
Ym 2'-O-methylpseudouridine

Um 2'-O-methyluridine
Ar(p) 2'-O-ribosyladenosine	(phosphate)

Gr(p) 2'-O-ribosylguanosine	(phosphate)

acp3U 3-(3-amino-3-carboxypropyl)uridine

m3C 3-methylcytidine

m3Y 3-methylpseudouridine

m3U 3-methyluridine

m3Um 3,2'-O-dimethyluridine

imG-14 4-demethylwyosine

s4U 4-thiouridine

chm5U 5-(carboxyhydroxymethyl)uridine

mchm5U 5-(carboxyhydroxymethyl)uridine	methyl	ester

inm5s2U 5-(isopentenylaminomethyl)-	2-thiouridine

inm5Um 5-(isopentenylaminomethyl)-	2'-O-methyluridine

inm5U 5-(isopentenylaminomethyl)uridine

nm5s2U 5-aminomethyl-2-thiouridine

ncm5Um 5-carbamoylmethyl-2'-O-methyluridine

ncm5U 5-carbamoylmethyluridine

cmnm5Um 5-carboxymethylaminomethyl-	2'-O-methyluridine

cmnm5s2U 5-carboxymethylaminomethyl-2-thiouridine

cmnm5U 5-carboxymethylaminomethyluridine

cm5U 5-carboxymethyluridine

f5Cm 5-formyl-2'-O-methylcytidine

f5C 5-formylcytidine

hm5C 5-hydroxymethylcytidine

ho5U 5-hydroxyuridine

mcm5s2U 5-methoxycarbonylmethyl-2-thiouridine

mcm5Um 5-methoxycarbonylmethyl-2'-O-methyluridine

mcm5U 5-methoxycarbonylmethyluridine

mo5U 5-methoxyuridine

m5s2U 5-methyl-2-thiouridine

mnm5se2U 5-methylaminomethyl-2-selenouridine

mnm5s2U 5-methylaminomethyl-2-thiouridine

mnm5U 5-methylaminomethyluridine

m5C 5-methylcytidine

m5D 5-methyldihydrouridine

m5U 5-methyluridine

tm5s2U 5-taurinomethyl-2-thiouridine

tm5U 5-taurinomethyluridine

m5Cm 5,2'-O-dimethylcytidine

m5Um 5,2'-O-dimethyluridine

preQ1 7-aminomethyl-7-deazaguanosine

preQ0 7-cyano-7-deazaguanosine

m7G 7-methylguanosine

G+ archaeosine

D dihydrouridine

oQ epoxyqueuosine
galQ galactosyl-queuosine

OHyW hydroxywybutosine
I inosine

imG2 isowyosine

k2C lysidine

manQ mannosyl-queuosine

mimG methylwyosine

m2G N2-methylguanosine

m2Gm N2,2'-O-dimethylguanosine

m2,7G N2,7-dimethylguanosine

m2,7Gm N2,7,2'-O-trimethylguanosine

m2
2G N2,N2-dimethylguanosine

m2
2Gm N2,N2,2'-O-trimethylguanosine

m2,2,7G N2,N2,7-trimethylguanosine

ac4Cm N4-acetyl-2'-O-methylcytidine

ac4C N4-acetylcytidine

m4C N4-methylcytidine

m4Cm N4,2'-O-dimethylcytidine

m4
2Cm N4,N4,2'-O-trimethylcytidine

io6A N6-(cis-hydroxyisopentenyl)adenosine

ac6A N6-acetyladenosine

g6A N6-glycinylcarbamoyladenosine

hn6A N6-hydroxynorvalylcarbamoyladenosine

i6A N6-isopentenyladenosine

m6t6A N6-methyl-N6-threonylcarbamoyladenosine

m6A N6-methyladenosine

t6A N6-threonylcarbamoyladenosine

m6Am N6,2'-O-dimethyladenosine

m6
2A N6,N6-dimethyladenosine

m6
2Am N6,N6,2'-O-trimethyladenosine

o2yW peroxywybutosine
Y pseudouridine

Q queuosine
OHyW undermodified	hydroxywybutosine

cmo5U uridine	5-oxyacetic	acid

mcmo5U uridine	5-oxyacetic	acid	methyl	ester

yW wybutosine

imG wyosine

Table	1	-	List	of	Base	Modifications	Covered	by	Claims

m6A is just 1 of the 107 

known RNA modifications

from the 

RNA Modification Database





RNA m6A defects perturb germline development

Zheng et al., Mol. Cell, 2013



Dysregulated m6A affects many 
epigenetic modifiers



Information also pass between generations in RNA
Evidence of a Trans-generational Anti-viral RNAi response

Rechavi et al, 2011



Epigenome Epitranscriptome Epiproteome (PTM)

DNA RNA Protein
transcription translation

RT

ACGT

viRNA

I N H E R I T A N C E   or   T R A N S M I S S I O N

prions

iDNA

mC,hmC, 8oxoG, m6A

(sn/sno/g)RNA (t/r/tm)RNA

(lnc/nc/mi/piwi/si/vi)RNA

scRNA

RbP

Ribozymes Prions

iRNA iProtein

mC,hmC, 8oxoG, m6A, … m6A, 5’G,polyA, … Acet, Phos, Citr, SUMO, … 

from Saletore et al., Genome Biology, 2012



The Era of Single Cells



It used to be very hard to look at 
individual cells



But now it’s very easy – Fluidigm C1



10X Genomics Single-Cell 



The explosion of scRNA-seq 
experiments

Svennson et al., 2017



Single cell capture and RNA 
chemistry using nanodroplets

• Drop-seq

http://mccarrolllab.com/dropseq/

Macosko et al., Cell 2015

Beads

Cells + Enzymes Oil

http://mccarrolllab.com/dropseq/


Single cell capture and RNA 
chemistry using nanodroplets

http://mccarrolllab.com/dropseq/

Macosko et al., Cell 2015

Beads

Cells + Enzymes Oil

Barcoded beads

http://mccarrolllab.com/dropseq/


Unique Molecular Identifiers 
(UMIs)

Islam et al., Nature Methods 2014

Barcoded beads



Clear increase over time

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7698659/





1.3 million neurons catalogued



1.3 million mouse embryonic brain 
cells, 10X Chromium

10x Genomics | LIT000015 Chromium™ Million Brain Cells Application Note



www.humancellatlas.org



Beyond single cell RNA-seq
Single nuclei sequencing scNuc-seq

Epigenomics
scBS-seq, scRRBS-seq, 
scCHIP-seq, scATAC-seq, scDNase-seq

Genomics Whole genome, exome

Multiple simultaneous measurements

RNA + DNA DR-seq, G&T-seq

RNA + methylation scM&T-seq, scMT-seq

RNA + DNA + methylation scTrio-seq

RNA + protein + chromatin DOGMA-seq

RNA + protein index sorting, CITE-seq

RNA + genome editing Perturb-seq, CRISP-seq, CROP-seq















scATAC/RNA-seq

https://www.10xgenomics.com/products/single-cell-multiome-atac-plus-gene-expression



https://science.sciencemag.org/content/361/6409/1380



DOGMA-seq

https://www.nature.com/articles/s41587-021-00927-2

scATAC-seq (single-cell assay for transposase accessible chromatin 

by sequencing), plus select antigen profiling by sequencing (ASAP-

seq), and optional capture of mitochondrial DNA for clonal tracking.



Analysis:
Structure of a generic pipeline

Camara, Current Opinions in Systems Biology, 2018



Counting Molecules

Smith et al., Genome Research 2017

• Counting reads
• featureCounts, etc.

• Counting UMIs
• Unique 

o does not account for PCR and 
sequencing errors

• Directional adjacency graph (UMI-
tools)

• Bayesian (dropEst)

• Proprietary (SevenBridges for BD 
Precise)



1. Infer which barcodes come from valid cells –
UMI-tools

2. Extract cell barcodes and UMIs from R1 and 
add to R2 – UMI-tools

3. Align to reference genome (GRCh38) – STAR

4. Assign reads to genes (Ensembl/gencode) –
featureCounts

5. Count unique UMIs per gene – UMI-tools

6. QC – fastqc, picard, multiqc, custom scripts

Commonly used open-source tools



Structure of a generic pipeline

Camara, Current Opinions in Systems Biology, 2018



Normalization challenges

Kolodziejczyk et al., Briefings in Functional Genomics 

2017



Normalization + Differential 
Expression Analysis

Soneson and Robinson, Nature Methods 2018



Structure of a generic pipeline

Camara, Current Opinions in Systems Biology, 2018



Gene Expression Imputation

Satija et al., Nature Biotechnology 2015



Gene Expression Imputation

Zhang and Zhang, Biorxiv 2017



Structure of a generic pipeline

Camara, Current Opinions in Systems Biology, 2018



Clustering Cells
SC3:  consensus clustering of single-cell RNA-seq 

data

Kiselev et al., Nature Methods 2017



Differential Expression Analysis
SC3:  consensus clustering of single-cell RNA-seq data

Kiselev et al., Nature Methods 2017



Clustering Cells

Jiang et al., Genome Biology 2016

GiniClust: detecting rare cell types from 

single-cell gene expression data with Gini 

index



Structure of a generic pipeline

Camara, Current Opinions in Systems Biology, 2018



• “Pseuodotime” introduced in 
Trapnell et al., Nature 
Biotechnology 2014 (Monocle)

• Steps:
1. (Optional) Choose genes that 

define a biological process

2. Reduce dimensionality

3. Order cells

Single Cell Trajectory Inference

http://cole-trapnell-lab.github.io/monocle-release/



Single Cell Trajectory Inference

Cannoodt et al., 2016



• “Pseuodotime” 
introduced in 
Trapnell et al., 
Nature 
Biotechnology 
2014 (Monocle)

• Steps:
1. (Optional) Choose 

genes that define 
a biological 
process

2. Reduce 
dimensionality

Single Cell Trajectory Inference

Qiu et al., Nature Methods 2017

Differential Expression Analysis using Monocle



Simulating scRNA-seq data

Zappia et al., Genome Biology 2017

PowSimR

Splatter

Vieth et al., Bioinformatics 2017



Dynverse

https://github.com/dynverse/dynverse



Database of scRNA-seq data sets

https://bioinfo.uth.edu/scrnaseqdb/index.php?r=site/index



Questions?


