Weill Cornell Medicine

Weill Cornell Medicine Caryl and Israel Englander Institute for Precision Medicine

Novel algorithms and applications of Linked-Read

genomics and metagenomics

Iman Hajirasouliha

Assistant Professor of Computational Genomics

www.imanh.org

Human genome variation

Structural Variations and Diseases

Majority of Chronic Myelogenous Leukemia (CML) caused by a single SV.

A piece of chromosome 9 and a piece of chromosome 22 break off.

The pieces on different chromosomes trade places.

Structural Variations and Diseases

Photo of a normal left eye Patient with retinitis pigmentosa (RP)

Disease caused by an insertion of a 353 bases sequence in MAK gene. (Tucker et al. 2011)

Chromosome 6 (~ 170 million bases)

Whole genome (3 billion bases)

Next Generation Sequencing (NGS)

BIG amount of sequencing DATA

Terabyte per day for Illumina/HiSeq 2500

Fast and cheap!

International Cancer Genome Consortium

Standard short-read sequencing

Determining Sequenced Genomes

- 1) Reference based methods
- 2) De novo assembly of short-reads

Paired-end reads are mapped to the reference

Concordant mapping Discordant mapping

Determining Sequenced Genomes

- Read pair analysis
 - Deletions, small novel insertions, inversions, transposons
 - Size and breakpoint resolution dependent to insert size
- Read depth analysis
 - Deletions and duplications only
 - Relatively poor breakpoint resolution
- Split read analysis
 - Small novel insertions/deletions, and mobile element insertions
 - 1bp breakpoint resolution
- Local and *de novo* assembly
 - SV in unique segments
 - 1bp breakpoint resolution

Limitations of short-read sequencing

NGS produce "short reads" (e.g. 50bp to 150bp)

The human genome is repetitive!

Ignoring repeats is not an option!

Cause of the disease was an insertion of a repetitive element.

The software used for mapping short reads to the genome trimmed off repeat sequences and MAK initially appeared normal.*

Patient with retinitis pigmentosa

* Todd J. Treangen & Steven L. Salzberg, Nature Review Genetics 2011

Challenges to determine sequenced genomes and metagenomes

Structural Variations, including those within repetitive regions or complex events.

The reference genome is incomplete or often nonexistent for metagenomes.

Early contributions in repetitive SV discovery using multi-mapped short-reads

Based on a combinatorial approach (i.e. maximum parsimony^{*}) for handling repeats and ambiguity in mappings

Objective: find the minimum number of breakpoints that explains all discordant reads.

Clustering discordant reads while allowing multi-mapped reads

Objective: find the minimum number of breakpoints that explains all discordant reads.

Maximal Cluster:

All discordant read mapping that support the same breakpoint.

Minimum Set Cover:

Finds an approximated solution.

13

The 1000 Genomes Yoruban Trio (validated/unvalidated deletions)

Higher sensitivity than unique-location based methods Higher false discovery rate

Majority of SVs detected by PacBio long-reads are **novel**

Beyond short-read sequencing

Long Read:

- PacBio
- ONT
 Expensive, low throughput, high DNA input
 But they are real long-reads!

Linked-Read (or read cloud technologies):

- Moleculo (Illumina)
- 10x Genomics

Cheaper, high throughput, low DNA input **But they are synthetic long-reads!**

Linked-Read Technologies (e.g. 10x Genomics)

Knowing that the reads "should" form clusters, can we handle ambiguity in read mappings and SV detection better?

Linked Read Sequencing

10-100 kbp Molecules/Fragments Reads + BCs Read Cloud

10x Genomics model

2. Distribution of barcode: Poisson

A new set of algorithmic challenges

 Typically each barcode matches reads from 2-20 long fragments of DNA.

2. Each long fragment of DNA is covered only sparsely by short reads.

10x Genomics application

Large structural variation calling

70 kb Deletion

Part 1: SV detection in whole genome Linked-Read data with VALOR₂

Inversions and Duplications

New Results

Characterization of segmental duplications and large inversions using Linked-Reads

Fatih Karaoglanoglu, Camir Ricketts, Marzieh Eslami Rasekh, Ezgi Ebren, 💿 Iman Hajirasouliha, 🕞 Can Alkan **doi:** https://doi.org/10.1101/394528

This article is a preprint and has not been peer-reviewed [what does this mean?].

Linked-Read SV Detection - VALOR₂

 Detection of balanced SVs with no gain or loss of genomic segment (e.g. inversions) is particularly a challenging task.

 Novel algorithm to characterize large (>40Kbp) interspersed segmental duplications and (>80Kbp) inversions

Definitions

- Molecule/long fragment: a large molecule (10-100 Kbp) that was barcoded and pooled using the 10x Genomics platform. Here we refer to the physical entity.
- Submolecule: a molecule identified in silico by the VALOR₂ algorithm by analyzing read map locations.
- Candidate split: a pair of submolecules with the same barcode that potentially signal a SV event.
- Split molecule pair: a pair of candidate splits with different barcodes that potentially signal the same SV event.

Split molecule signatures

INVERSION

INTERSPERSED DUPLICATION

VALOR₂:

- Reconstruct molecule locations
- Find pairs of recovered molecules with same barcode which are shorter than average size, but at expected length when combined.
- Find pairs of compatible split molecules with different barcodes.
- Find maximal quasi cliques on the graph with nodes of split molecule pairs and edges between compatible molecules.
- For each found clique update support information using read pairs and split molecule count.

Valor₂: Maximal quasi clique problem

• Here a quasi clique is defined as an approximate clique with V vertices and $\gamma \cdot \binom{|V|}{2}$ edges

Simulation experiments

Table 1. Prediction performance evaluation using simulated structural variants.

Variant	Tool	# Simulated	# Predicted	True	False	Precision	Recall
Duplication (direct)	VALOR ₂	78	66	61	5	0.92	0.78
Duplication (inverted)	VALOR ₂	56	51	49	2	0.96	0.88
Inversion	VALOR ₂	94	65	64	1	0.98	0.76
	LUMPY	94	42	44	4	0.90	0.47
	DELLY	94	896	79	761	0.15	0.84
	Long Ranger	94	92	68	27	0.71	0.72

$$ext{Precision} = rac{tp}{tp+fp}$$
 $ext{Recall} = rac{tp}{tp+fn}$

Large Inversions - NA12878

Table 3. Inversion prediction performance evaluation in the NA12878 genomeusing InvFEST database.

	Called	InvFEST-Valid.	InvFEST-Pred.	InvFEST-All
VALOR ₂	135	6	5	17
Long Ranger	476	1	10	14
LUMPY	7	0	0	0
DELLY	2,340	1	6	24

Segmental Duplications – NA12878

\mathbf{Chr}	Start	End	Type	Target	No. of genes
1	$120,\!600,\!786$	$120,\!692,\!870$	Direct	1q21.1	1
1	$144,\!832,\!884$	$145,\!751,\!706$	Direct	1p22.3	25
1	$145,\!062,\!336$	$145,\!116,\!024$	Direct	1p11.2	
16	$86,\!451,\!165$	$86,\!498,\!200$	Direct	16q11.2	
17	$21,\!522,\!544$	$21,\!551,\!840$	Direct	17 p11.2	
1	$17,\!019,\!657$	17,111,181	Inverted	1q42.3	4
1	$145,\!983,\!326$	$146,\!027,\!347$	Inverted	1p22.3	3
4	15,160	$67,\!199$	Inverted	4q35.2	2
8	$2,\!189,\!297$	$2,\!290,\!508$	Inverted	8p23.2	
10	$46,\!965,\!140$	$47,\!022,\!150$	Inverted	10q11.22	2
11	$4,\!250,\!956$	$4,\!331,\!367$	Inverted	11p15.4	
16	$21,\!542,\!145$	$21,\!593,\!639$	Inverted	16p12.2	
16	$22,\!543,\!245$	22,709,969	Inverted	16p12.2	2
Х	$153,\!423,\!995$	$153,\!485,\!001$	Inverted	Xq28	3

The CHM1 genome

• Using a haploid human genome cell line (CHM1)

Overall, VALOR2 characterized

- 133 inversions (>80 Kbp)
- 14 inverted segmental duplications
- 22 direct segmental duplications (>40 Kb).

Part 2: Metagenomics using Linked-Read data

A new set of algorithmic challenges

 Typically each barcode matches reads from 2-20 long fragments of DNA.

2. Each long fragment of DNA is covered only sparsely by short reads.

Problem: Linked-Read Deconvolution

The deconvolution of reads with a single barcode into clusters that correspond to a single long fragment of DNA.

Any idea?

Problem: Linked-Read Deconvolution

Linked-Read Deconvolution when a reference is available

Linked-read Deconvolution when a reference is not available (metagenomics application?)

 Our approach also further uses some techniques from the field of topic modeling in Natural Language Processing (NLP).

Our graph based method

Key Observation: reads from the same fragment would tend to overlap with similar sets of reads that had different barcodes.

Our graph based method

We obtain reads with the same barcode grouped into a read-cloud

For each read cloud reads are mapped to other read-clouds

A bipartite graph is constructed between reads and read-clouds

A graph between reads is constructed

Reads are clustered into groups

primary real data sets from two microbial mock communities

- **Dataset 1: 5 bacterial species**: *E. coli, Enterobacter cloacae, Micrococcus luteus, Pseudomonas antarctica,* and *Staph. epidermis.*
- Dataset 2: 8 bacterial species and 2 fungi: Bacillus subtilis, Cryptococcus neoformans, Enterococcus faecalis, E. coli, Lactobacillus fermentum, Listeria monocytogenes, Psuedomonas aeruginosa, Sachharomyces cerevisiae, Salmonella enterica, and Staphylococcus aureus.
- Roughly 1ng of high molecular weight, processed using a 10x Chromium instrument, sequenced on an Illumina Hiseq with 2x150 paired-end reads.

Experimental Results

- Minerva was able to identify subgroups in barcodes that largely corresponded to individual fragments of DNA. i.e. Enhanced Barcodes.
- We quantified this using two measures:
 Shannon diversity index H = ∑ p_i log p_i
 - Purity P = max(\vec{p})

where p_i indicates the proportion of an enhanced barcode that belongs to each fragment.

Minerva deconvolves barcodes

(Left) Purity for enhanced and standard barcodes(Right) Shannon index in dataset one for enhanced and standard barcodes

Minerva improves taxonomic assignments

- Minerva can improve the specificity of short read taxonomic assignments obtained from Kraken, a popular tool.
- All reads from the same long-fragment must have the same taxonomic rank!
- We were able to rescue a large number of reads from unspecific taxonomic assignments.

Minerva improves taxonomic assignments

Read Clouds Enable Improved Taxonomy

Original Rank	Promoted Rank	Enhanced	Standard	Difference	Ratio
Bacteria	Enterobacter cloacae	3	2	1	1.5
Proteobacteria	$Enterobacter\ cloacae$	24	17	7	1.41
Gammaproteobacteria	$Enterobacter\ cloacae$	21	13	8	1.62
Enterobacterales	$Enterobacter\ cloacae$	87	72	15	1.21
Enterobacteriaceae	$Enterobacter\ cloacae$	765	642	123	1.19
Bacteria	Escherichia coli	9	6	3	1.5
Proteobacteria	Escherichia coli	8	7	1	1.14
Enterobacterales	Escherichia coli	17	13	4	1.31
Enterobacteriaceae	Escherichia coli	9221	7846	1375	1.18
Escherichia	Escherichia coli	201	198	3	1.02
Gammaproteobacteria	Pseudomonas antarctica	3	2	1	1.5
Pseudomonas	Pseudomonas antarctica	256	200	56	1.28

Applications of Enhanced Barcodes (future work)

1. It is useful to group enhanced barcodes that likely came from the same genome.

We used a clustering algorithm based on Latent Dirichlet Allocation (LDA), a classic model in NLP.

 This technique can be also used to improve de novo assembly algorithms.

Applications of Enhanced Barcodes (future work)

Thank you!

Postdoc, graduate student, internship positions available!

Weill Cornell Medicine

Weill [†] Cornell Medicine

Englander Institute

Weill Cornell Medicine

Camir Ricketts (Tri-CBM) David Danko (Tri-CBM) Dmitrii Meleshko (Tri-CBM) Chris Mason Daniela Bezdan

10x Genomics

Stephen Williams Patrick Marks

Bilkent

Can Alkan Fatih Karaognaloglu

The EIPM Team

Alicia Alonso Olivier Elemento Rob Kim Andrea Sboner David Wilkes