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What is Precision Medicine?

The right drug…

…to the right patient …

…at the right time!
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Precision Medicine benefits from advancements in 
sequencing technology (NGS)

A very brief (and incomplete) history of genomics sequencing

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

1st draft 
Human 

Genome 
Reference 
Sequence

2nd draft 
Human 

Genome 
Reference 
Sequence

First Massively 
Parallel 

Sequencing 
Technology

HapMap Project

ENCODE Project: Phase 1

• 3.1 billion nucleotides (DNA) 
sequenced and assembled (chr1, 
chr2, …, chr22, chrX, chrY) from a 
few individuals
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with pathogenic variants in these genes can now take preventive action 
through monitoring and prophylactic surgical procedures8 and those 
with active breast cancer are candidates for targeted treatments9,10. 
In addition, large collaborative programmes led by the US National 
Institutes of Health (NIH)-supported Clinical Genome (ClinGen) 
Resource11 and the Global Alliance for Genomics and Health have 
begun to tackle the development of reliable resources for systemati-
cally defining the pathogenicity of all human variation through broad 
and targeted efforts.

When optimized, the infrastructure that supports the precision-
medicine ecosystem efficiently manages and integrates the flow of 
material, knowledge and data needed to generate, validate, store, refine 
and apply clinical interpretations (Fig. 1). Biobanks link samples with 
patient data to support discovery. Research databases record the data, 
calculations and results that provide evidence for clinical interpreta-
tions. Clinical-knowledge-sharing networks enable the refinement of 
interpretations. Clinical laboratories and their information systems 
facilitate the consolidation of interpretations into reports and alerts. 
Electronic health records (EHRs) and associated systems help clini-
cians to apply results, both when they are received and as the patient’s 
condition and knowledge of the variants evolve. Patient-facing infra-
structure or ‘portals’ provide individuals with access to their genetic 
data and — if appropriate — the ability to decide how they should be 
used, including whether to participate in research. At present, much 
of this infrastructure is at a very early stage of development. However, 
the infrastructural foundation for precision medicine is beginning to 
emerge. In this Review, we explore its crucial components.

The patient viewpoint
The role of the patient in supporting precision medicine is becoming 
increasingly important. Patients are obtaining a growing number of 
genetic results in the course of their care. Typically, clinicians involved 
in their treatment order such tests for them. However, patients are also 
now able to access direct-to-consumer testing, sometimes through the 
help of someone who is not directly involved in their care. To ensure 
that precision medicine is tailored to the unique genetic make-up of 
each patient, we must gather as much information as possible from indi-
vidual patients. Yet there are risks associated with widespread sharing 
of patient data. To gain access to these data, researchers must actively 
engage patients, teach them about the benefits of data sharing and help 
them to weigh up the risks and benefits. This can be done by making 
the process of obtaining consent more effective.

There are two major forms of consent that are relevant: consent for 
receiving medical treatment or procedures; and consent for releas-
ing data or samples for use in research.  In both cases, the risks and 
benefits must be conveyed to the patient. However, the conventional 
distinction is that obtaining consent for treatment focuses on benefits 
to the individual whereas obtaining consent for research focuses on 
generalizable knowledge12. Increasingly, the line between clinical care 
and research is blurring; participation in research studies can lead to a 
direct improvement in outcome for the patient13,14, and the continuous 
capture of clinical-care data has been proved an effective way to inform 
generalizable knowledge15. As a result, efforts are under way to ask all 
patients who enter the clinical-care setting to sign a form that permits 
their data to be used in research16–19. In addition, those signing clini-
cal genetic-testing consent forms now commonly agree to share their 
data broadly to help advance knowledge11. Nevertheless, there is still a 
need for more uniform consenting processes. It is difficult to generate 
consent forms in language that is both easy to understand and robustly 
conveys the main issues associated with genetic testing. Sharing such 
language across institutions could be helpful in this context. Harmoniz-
ing consent language across providers, laboratories and biobanks would 
make it easier to administer and adhere to those agreements. Recently, 
the Regulatory and Ethics Working Group of the Global Alliance for 
Genomics and Health published a framework for the responsible shar-
ing of genomic and health-related data20. The group has also created 

consent tools and policies to aid the development of standardized 
approaches to obtaining consent and that support data sharing in the 
global community. Consistent with the Global Alliance for Genomics 
and Health framework, ClinGen has developed standardized consent-
ing approaches (http://clinicalgenome.org/data-sharing/) for use in the 
clinical-care setting, which will enable sharing of genetic-test results 
and accompanying phenotypic data in the absence of research-study 
enrolment.

Some patients are extremely interested in supporting research and 
are willing to take proactive steps to facilitate the sharing of genetic 
information. The Global Network of Personal Genome Projects recruits 
volunteers who are prepared to share their genomic data and medical 
histories publicly. ClinGen manages the GenomeConnect patient por-
tal, built on the Patient Crossroads platform, which allows individu-
als to share health and genetic information to form communities. The 
Platform for Engaging Everyone Responsibly (PEER), supported by 
the Genetic Alliance, enables individuals to control sharing, privacy 
and access preferences for their health and genomic data with a high 
degree of precision.

The clinician viewpoint
Clinicians gain access to patients’ genetic information through tests. 
Tests have two components: a technical component that focuses on 
identifying which variants are present in the patient; and an interpretive 
component in which the implications of identified variants are assessed. 
In most scenarios, genetic testing is performed to determine either 
the cause of a specific indication or the most appropriate treatment21. 
However, exome and genome data can be reused to perform multiple 

Figure 1 | The precision-medicine ecosystem. The precision-medicine 
ecosystem contains building blocks that optimally connect patients, clinicians, 
researchers and clinical laboratories to one another. Patients and clinicians 
access information through portals or EHRs. The ecosystem can include 
displays or CDS augmented by curated knowledge that is supplied and shared 
by multiple stakeholders. Case-level databases and biobanks receive case data 
and samples from clinical and research workflows. Researchers benefit from 
all of these information sources and also contribute to knowledge sources. 
Clinical laboratories leverage data and inform the clinical community as they 
assess genomic variation and its impact on human health.
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Transcriptome profiling

transcription translation

Transcriptome profiling goal is to characterize RNA in a tissue or cell.

The ‘simpler’ structure of RNA allows to employ most techniques used for DNA 
analysis – hybridization, polymerase chain reaction, etc.
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Amino Acids
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Genome Era (1990s – 2000s)

~ 1991 Expressed Sequence Tags 
(ESTs) sequencing (500-800 
nucleotides)

~ 1995 Series Analysis of Gene 
Expression (SAGE) (9-12 nucleotides)

~ 1999 Microarray

Science 21 Jun 1991; Vol. 252:Issue 5013: 1651-6

Science 20 Oct 1995:Vol. 270, Issue 5235, pp. 484-487

that class discovery could be tested by class
prediction: If putative classes reflect true
structure, then a class predictor based on
these classes should perform well.

To test this hypothesis, we evaluated the
clusters A1 and A2. We constructed predic-
tors to assign new samples as “type A1” or
“type A2.” Predictors that used a wide range
of different numbers of informative genes
performed well in cross-validation. For ex-
ample, a 20-gene predictor gave 34 accurate
predictions with high prediction strength, one
error, and three uncertains (34 ). The one
“error” was the assignment of the sole AML
sample in class A1 to class A2, and two of the
three uncertains were ALL samples in class
A2. The cross-validation thus not only
showed high accuracy, but actually refined
the SOM-defined classes: With one excep-
tion, the subset of samples accurately classi-
fied in cross-validation were those perfectly
subdivided by the SOM into ALL and AML

classes. The results suggest an iterative pro-
cedure for refining clusters, in which an SOM
is used to initially cluster the data, a predictor
is constructed, and samples not correctly pre-
dicted in cross-validation are removed. The
edited data set could then be used to generate
an improved predictor to be tested on an
independent data set (35).

We then tested the class predictor of the
A1-A2 distinction on the independent data set.
In the general case of class discovery, predic-
tors for novel classes cannot be assessed for
“accuracy” on new samples, because the “right”
way to classify the independent samples is not
known. Instead, however, one can assess
whether the new samples are assigned a high
prediction strength. High prediction strengths
indicate that the structure seen in the initial data
set is also seen in the independent data set. The
prediction strengths, in fact, were quite high:
The median PS was 0.61, and 74% of samples
were above threshold (Fig. 4B). To assess these

results, we performed the same analyses with
random clusters. Such clusters consistently
yielded predictors with poor accuracy in cross-
validation and low prediction strength on the
independent data set (Fig. 4B). On the basis of
such analysis (36), the A1-A2 distinction can
be seen to be meaningful, rather than simply a
statistical artifact of the initial data set. The
results thus show that the AML-ALL distinc-
tion could have been automatically discovered
and confirmed without previous biological
knowledge.

We then sought to extend the class dis-
covery by searching for finer subclasses of
the leukemias. We used a SOM to divide the
samples into four clusters (denoted B1 to
B4). We subsequently obtained immunophe-
notype data on the samples and found that the
four classes largely corresponded to AML,
T-lineage ALL, B-lineage ALL, and B-lin-
eage ALL, respectively (Fig. 4C). The four-
cluster SOM thus divided the samples along

Fig. 3. (A) Prediction strengths. The scatter-
plots show the prediction strengths (PSs) for
the samples in cross-validation (left) and on the
independent sample (right). Median PS is de-
noted by a horizontal line. Predictions with PS
! 0.3 are considered as uncertain. (B) Genes
distinguishing ALL from AML. The 50 genes
most highly correlated with the ALL-AML class
distinction are shown. Each row corresponds to
a gene, with the columns corresponding to
expression levels in different samples. Expres-
sion levels for each gene are normalized across
the samples such that the mean is 0 and the SD
is 1. Expression levels greater than the mean
are shaded in red, and those below the mean
are shaded in blue. The scale indicates SDs
above or below the mean. The top panel shows
genes highly expressed in ALL, the bottom panel shows genes more
highly expressed in AML. Although these genes as a group appear
correlated with class, no single gene is uniformly expressed across the class,

illustrating the value of a multigene prediction method. For a complete list
of gene names, accession numbers, and raw expression values, see www.
genome.wi.mit.edu/MPR.
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Molecular Classification of
Cancer: Class Discovery and
Class Prediction by Gene
Expression Monitoring

T. R. Golub,1,2*† D. K. Slonim,1† P. Tamayo,1 C. Huard,1

M. Gaasenbeek,1 J. P. Mesirov,1 H. Coller,1 M. L. Loh,2

J. R. Downing,3 M. A. Caligiuri,4 C. D. Bloomfield,4

E. S. Lander1,5*

Although cancer classification has improved over the past 30 years, there has
been no general approach for identifying new cancer classes (class discovery)
or for assigning tumors to known classes (class prediction). Here, a generic
approach to cancer classification based on gene expression monitoring by DNA
microarrays is described and applied to human acute leukemias as a test case.
A class discovery procedure automatically discovered the distinction between
acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL) without
previous knowledge of these classes. An automatically derived class predictor
was able to determine the class of new leukemia cases. The results demonstrate
the feasibility of cancer classification based solely on gene expression moni-
toring and suggest a general strategy for discovering and predicting cancer
classes for other types of cancer, independent of previous biological knowledge.

The challenge of cancer treatment has been to
target specific therapies to pathogenetically
distinct tumor types, to maximize efficacy
and minimize toxicity. Improvements in can-
cer classification have thus been central to
advances in cancer treatment. Cancer classi-
fication has been based primarily on morpho-
logical appearance of the tumor, but this has
serious limitations. Tumors with similar his-
topathological appearance can follow signif-
icantly different clinical courses and show
different responses to therapy. In a few cases,
such clinical heterogeneity has been ex-
plained by dividing morphologically similar
tumors into subtypes with distinct pathogen-
eses. Key examples include the subdivision
of acute leukemias, non-Hodgkin’s lympho-
mas, and childhood “small round blue cell
tumors” [tumors with variable response to
chemotherapy (1) that are now molecularly
subclassified into neuroblastomas, rhabdo-
myosarcoma, Ewing’s sarcoma, and other
types (2)]. For many more tumors, important
subclasses are likely to exist but have yet to

be defined by molecular markers. For exam-
ple, prostate cancers of identical grade can
have widely variable clinical courses, from
indolence over decades to explosive growth
causing rapid patient death. Cancer classifi-
cation has been difficult in part because it has
historically relied on specific biological in-
sights, rather than systematic and unbiased
approaches for recognizing tumor subtypes.
Here we describe such an approach based on
global gene expression analysis.

We divided cancer classification into two
challenges: class discovery and class predic-
tion. Class discovery refers to defining pre-
viously unrecognized tumor subtypes. Class
prediction refers to the assignment of partic-
ular tumor samples to already-defined class-
es, which could reflect current states or future
outcomes.

We chose acute leukemias as a test case.
Classification of acute leukemias began with
the observation of variability in clinical out-
come (3) and subtle differences in nuclear
morphology (4 ). Enzyme-based histochemi-
cal analyses were introduced in the 1960s to
demonstrate that some leukemias were peri-
odic acid-Schiff positive, whereas others
were myeloperoxidase positive (5). This pro-
vided the first basis for classification of acute
leukemias into those arising from lymphoid
precursors (acute lymphoblastic leukemia,
ALL) or from myeloid precursors (acute my-
eloid leukemia, AML). This classification
was further solidified by the development in
the 1970s of antibodies recognizing either
lymphoid or myeloid cell surface molecules
(6 ). Most recently, particular subtypes of

acute leukemia have been found to be asso-
ciated with specific chromosomal transloca-
tions—for example, the t(12;21)(p13;q22)
translocation occurs in 25% of patients with
ALL, whereas the t(8;21)(q22;q22) occurs in
15% of patients with AML (7 ).

Although the distinction between AML
and ALL has been well established, no single
test is currently sufficient to establish the
diagnosis. Rather, current clinical practice
involves an experienced hematopathologist’s
interpretation of the tumor’s morphology,
histochemistry, immunophenotyping, and cy-
togenetic analysis, each performed in a sep-
arate, highly specialized laboratory. Although
usually accurate, leukemia classification re-
mains imperfect and errors do occur.

Distinguishing ALL from AML is critical
for successful treatment; chemotherapy regi-
mens for ALL generally contain corticoste-
roids, vincristine, methotrexate, and L-asparagi-
nase, whereas most AML regimens rely on a
backbone of daunorubicin and cytarabine (8).
Although remissions can be achieved using
ALL therapy for AML (and vice versa), cure
rates are markedly diminished, and unwarrant-
ed toxicities are encountered.

We set out to develop a more systematic
approach to cancer classification based on the
simultaneous expression monitoring of thou-
sands of genes using DNA microarrays (9). It
has been suggested (10) that such microar-
rays could provide a tool for cancer classifi-
cation. Microarray studies to date (11), how-
ever, have primarily been descriptive rather
than analytical and have focused on cell cul-
ture rather than primary patient material, in
which genetic noise might obscure an under-
lying reproducible expression pattern.

We began with class prediction: How
could one use an initial collection of samples
belonging to known classes (such as AML
and ALL) to create a “class predictor” to
classify new, unknown samples? We devel-
oped an analytical method and first tested it
on distinctions that are easily made at the
morphological level, such as distinguishing
normal kidney from renal cell carcinoma
(12). We then turned to the more challenging
problem of distinguishing acute leukemias,
whose appearance is highly similar.

Our initial leukemia data set consisted of
38 bone marrow samples (27 ALL, 11 AML)
obtained from acute leukemia patients at the
time of diagnosis (13). RNA prepared from
bone marrow mononuclear cells was hybrid-
ized to high-density oligonucleotide microar-
rays, produced by Affymetrix and containing
probes for 6817 human genes (14 ). For each
gene, we obtained a quantitative expression
level. Samples were subjected to a priori
quality control standards regarding the
amount of labeled RNA and the quality of the
scanned microarray image (15).

The first issue was to explore whether

1Whitehead Institute/Massachusetts Institute of
Technology Center for Genome Research, Cambridge,
MA 02139, USA. 2Dana-Farber Cancer Institute and
Harvard Medical School, Boston, MA 02115, USA. 3St.
Jude Children’s Research Hospital, Memphis, TN
38105, USA. 4Comprehensive Cancer Center and Can-
cer and Leukemia Group B, Ohio State University,
Columbus, OH 43210, USA. 5Department of Biology,
Massachusetts Institute of Technology, Cambridge,
MA 02142, USA.

*To whom correspondence should be addressed. E-
mail: golub@genome.wi.mit.edu; lander@genome.wi.
mit.edu.
†These authors contributed equally to this work.
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RNA-Seq Experiment

Data management:

Mapping the reads
Creating summaries

Downstream analysis: the interesting stuff
Differential expression, chimeric transcripts, novel 
transcribed regions, etc.



Roadmap for RNA-seq analyses
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and resources for the bioinformatics analysis of RNA-
seq data. We do not aim to provide an exhaustive com-
pilation of resources or software tools nor to indicate
one best analysis pipeline. Rather, we aim to provide a
commented guideline for RNA-seq data analysis. Figure 1
depicts a generic roadmap for experimental design and
analysis using standard Illumina sequencing. We also
briefly list several data integration paradigms that have
been proposed and comment on their potential and limi-
tations. We finally discuss the opportunities as well as
challenges provided by single-cell RNA-seq and long-
read technologies when compared to traditional short-
read RNA-seq.

Experimental design
A crucial prerequisite for a successful RNA-seq study is
that the data generated have the potential to answer the
biological questions of interest. This is achieved by first
defining a good experimental design, that is, by choosing
the library type, sequencing depth and number of repli-
cates appropriate for the biological system under study,

and second by planning an adequate execution of the se-
quencing experiment itself, ensuring that data acquisi-
tion does not become contaminated with unnecessary
biases. In this section, we discuss both considerations.
One important aspect of the experimental design is

the RNA-extraction protocol used to remove the highly
abundant ribosomal RNA (rRNA), which typically con-
stitutes over 90 % of total RNA in the cell, leaving the
1–2 % comprising messenger RNA (mRNA) that we are
normally interested in. For eukaryotes, this involves
choosing whether to enrich for mRNA using poly(A) se-
lection or to deplete rRNA. Poly(A) selection typically
requires a relatively high proportion of mRNA with min-
imal degradation as measured by RNA integrity number
(RIN), which normally yields a higher overall fraction of
reads falling onto known exons. Many biologically rele-
vant samples (such as tissue biopsies) cannot, however,
be obtained in great enough quantity or good enough
mRNA integrity to produce good poly(A) RNA-seq li-
braries and therefore require ribosomal depletion. For
bacterial samples, in which mRNA is not polyadenylated,

Fig. 1 A generic roadmap for RNA-seq computational analyses. The major analysis steps are listed above the lines for pre-analysis, core analysis
and advanced analysis. The key analysis issues for each step that are listed below the lines are discussed in the text. a Preprocessing includes
experimental design, sequencing design, and quality control steps. b Core analyses include transcriptome profiling, differential gene expression,
and functional profiling. c Advanced analysis includes visualization, other RNA-seq technologies, and data integration. Abbreviations: ChIP-seq
Chromatin immunoprecipitation sequencing, eQTL Expression quantitative loci, FPKM Fragments per kilobase of exon model per million mapped
reads, GSEA Gene set enrichment analysis, PCA Principal component analysis, RPKM Reads per kilobase of exon model per million reads, sQTL
Splicing quantitative trait loci, TF Transcription factor, TPM Transcripts per million

Conesa et al. Genome Biology  (2016) 17:13 Page 2 of 19

Clinical Research Genomics 2021

A. Conesa et al., Genome Biology. 17, 13 (2016).
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primarily accumulate at the 3’ end of transcripts in
poly(A)-selected samples, this might indicate low RNA
quality in the starting material. The GC content of
mapped reads may reveal PCR biases. Tools for quality
control in mapping include Picard [16], RSeQC [17] and
Qualimap [18].

Quantification
Once actual transcript quantification values have been
calculated, they should be checked for GC content and
gene length biases so that correcting normalization
methods can be applied if necessary. If the reference
transcriptome is well annotated, researchers could
analyze the biotype composition of the sample, which is
indicative of the quality of the RNA purification step.
For example, rRNA and small RNAs should not be
present in regular polyA longRNA preparations [10, 19].
A number of R packages (such as NOISeq [19] or EDA-
Seq [20]) provide useful plots for quality control of
count data.

Reproducibility
The quality-control steps described above involve indi-
vidual samples. In addition, it is also crucial to assess the
global quality of the RNA-seq dataset by checking on
the reproducibility among replicates and for possible
batch effects. Reproducibility among technical replicates
should be generally high (Spearman R2 > 0.9) [1], but no

clear standard exists for biological replicates, as this de-
pends on the heterogeneity of the experimental system.
If gene expression differences exist among experimental
conditions, it should be expected that biological repli-
cates of the same condition will cluster together in a
principal component analysis (PCA).

Transcript identification
When a reference genome is available, RNA-seq analysis
will normally involve the mapping of the reads onto the
reference genome or transcriptome to infer which tran-
scripts are expressed. Mapping solely to the reference
transcriptome of a known species precludes the discov-
ery of new, unannotated transcripts and focuses the ana-
lysis on quantification alone. By contrast, if the organism
does not have a sequenced genome, then the analysis
path is first to assemble reads into longer contigs and
then to treat these contigs as the expressed transcrip-
tome to which reads are mapped back again for quantifi-
cation. In either case, read coverage can be used to
quantify transcript expression level (Fig. 1b). A basic
choice is whether transcript identification and quantifi-
cation are done sequentially or simultaneously.

Alignment
Two alternatives are possible when a reference sequence
is available: mapping to the genome or mapping to the
annotated transcriptome (Fig. 2a, b; Box 3). Regardless

Fig. 2 Read mapping and transcript identification strategies. Three basic strategies for regular RNA-seq analysis. a An annotated genome is
available and reads are mapped to the genome with a gapped mapper. Next (novel) transcript discovery and quantification can proceed with or
without an annotation file. Novel transcripts are then functionally annotated. b If no novel transcript discovery is needed, reads can be mapped
to the reference transcriptome using an ungapped aligner. Transcript identification and quantification can occur simultaneously. c When no
genome is available, reads need to be assembled first into contigs or transcripts. For quantification, reads are mapped back to the novel reference
transcriptome and further analysis proceeds as in (b) followed by the functional annotation of the novel transcripts as in (a). Representative
software that can be used at each analysis step are indicated in bold text. Abbreviations: GFF General Feature Format, GTF gene transfer format,
RSEM RNA-Seq by Expectation Maximization

Conesa et al. Genome Biology  (2016) 17:13 Page 5 of 19

Clinical Research Genomics 2021

A. Conesa et al., Genome Biology. 17, 13 (2016).
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FPKM/RPKM: Fragment/Reads per 
Kilobase of exonic region per Million 
of reads

TPM: transcripts per million

Normalization strategies affect results 
of comparisons (ERCC-spike-ins)
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Single end

Paired end

1. Divide the total # reads by 1M=scaling factor
2. Divide the read/fragment counts by the scaling 

factor=RPM/FPM
3. Divide RPM by the length of the genes in KB=RPKM/FPKM

1. Divide the read/fragment counts by the length of the 
gene=RPK

2. Sum all RPK and divide by 1M=scaling factor
3. Divide RPK by the scaling factor=TPM
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Comparison of groups

Clinical Research Genomics 2021

differential expression methods. In order to evaluate the impact of the mapping software on
the DEGs identification, we analyzed four differential expression software using the six gener-
ated counting matrices. For Salmon, STAR and kallisto we analyzed two differential expression
software.

The mapper performance were obtained by considering the following DEG identification
methods: edgeR, DESeq, baySeq and NOIseq, to Tophat, Bowtie2 and BWA, to analyze
Salmon, STAR and kallisto were performed edgeR and NOISeq. DESeq and baySeq can be run
only with count data (Fig 1).

Differential expression

In this work we compared eight methods for the DEGs or transcripts identification. When
applying each software we focus on the most used approaches. Thus, we follow the guidelines
available in the manual, applying the default parameters, including the standardization

Fig 1. Overview of the pipeline presented in this work. The adopted biological samples to generate the qRT-PCR data were the same as those used to
generate the RNA-Seq data.

https://doi.org/10.1371/journal.pone.0190152.g001

RNA-Seq differential expression analysis: An extended review and a software tool

PLOS ONE | https://doi.org/10.1371/journal.pone.0190152 December 21, 2017 5 / 18

J. Costa-Silva, D. Domingues, F. M. Lopes, PLOS ONE. 12, e0190152 (2017).

We have identified that the impact of the mapping tool on the final results is minimal, indicating the DEGs identification method is the main choice for 
differential expression analysis in RNA-Seq data.
We did not identify among the evaluated methods a tool that obtained optimum results in all performance measures, for the evaluated experimental 
conditions. The NOIseq, DESeq2 and limma+vomm methods present the best individual results with 95%, 95% and 93% of Specificity and 80%, 84% and 
81% of True Positive Rate, respectively.

T. F. Khang, C. Y. Lau, PeerJ. 3, e1360 (2015).



Pathway analysis (gene set enrichment)
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Are a group of genes dys-regulated in a certain condition?

Clinical Research Genomics 2021

“The basic assumption is that although large changes 
in individual genes can have significant effects on 
pathways, weaker but coordinated changes in sets of 
functionally related genes (i.e., pathways) can also 
have significant effects. Therefore, the gene-level 
statistics for all genes in a pathway are aggregated 
into a single pathway-level statistic (e.g. the sum of 
all log-fold changes), which will then be evaluated.”

Introduction to differential gene expression analysis using RNA-seq Written by Friederike Dundar, Luce 
Skrabanek, Paul Zumbo https://chagall.med.cornell.edu/RNASEQcourse/Intro2RNAseq.pdf

https://chagall.med.cornell.edu/RNASEQcourse/Intro2RNAseq.pdf


What are chimeric transcripts?
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Transcripts that are not co-linear in the 
genome space
They can arise from:
genomic rearrangements, i.e. gene fusions

post-transcriptional events, i.e. trans-
splicing or cis-splicing

Clinical Research Genomics 2021



Why are they (gene fusions) important?
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Fusion genes are often oncogenes

Ex: BCR-ABL1 (Philadelphia chromosome) in Chronic 
myelogenous leukemia (CML) and Acute 
Lymphoblastic leukemia (ALL) t(9;22)(q34;q11)

Fusion involving a proto-oncogene with a strong promoter 
resulting in upregulation (lymphomas)

Ex: (IgH locus)-MYC in Burkitt's lymphoma (cMYC over-
expressed)

Hampton OA et al. Genome Res 2009

Breast Cancer

Clinical Research Genomics 2021



Why are they (trans-splicing events) important?
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Trans(cis)-splicing was initially found in lower eukariotes, such 
as trypanosomes and worms

Short sequences of nucleotides are trans-spliced to 
distant 5' of many protein coding genes

Recently, they were found in mammalian cells:

JAZF1-SUZ12 in endometrial stroma cells (Li et al. Science 
2008)

SLC45A3-ELK4 in prostate tissues (Rickman et al. Cancer 
Res 2009)

65% of protein-coding genes have distal 5' transcription start 
sites (ENCODE pilot) --> revised to ~50% the ENCODE 2012

Horiuchi, Takayuki, and Toshiro Aigaki.  Biology of the Cell 98, no. 2 (January 9, 2012): 135–140.
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How many different gene fusions do we know?

18

Cases: 66,479
Fusions: 10,277

Mitelman Database of Chromosome Aberrations and Gene Fusions in Cancer (2016). Mitelman F, Johansson B and 
Mertens F (Eds.), http://cgap.nci.nih.gov/Chromosomes/Mitelman

Clinical Research Genomics 2021

Mitelman Database of Chromosome Aberrations and Gene Fusions in Cancer (2021). Mitelman F, 
Johansson B and Mertens F (Eds.), https://mitelmandatabase.isb-cgc.org



Gene fusions are important for clinical treatment
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Amatu A, et al. ESMO Open 2016;1:e000023. doi:10.1136/esmoopen-2015-000023



… and diagnostic/prognostic purposes
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CANCER

Identification of a Disease-Defining Gene Fusion
in Epithelioid Hemangioendothelioma
Munir R. Tanas,1 Andrea Sboner,2 Andre M. Oliveira,3 Michele R. Erickson-Johnson,3

Jessica Hespelt,1 Philip J. Hanwright,1 John Flanagan,4 Yuling Luo,4 Kerry Fenwick,5

Rachael Natrajan,5 Costas Mitsopoulos,5 Marketa Zvelebil,5 Benjamin L. Hoch,6

Sharon W. Weiss,7 Maria Debiec-Rychter,8 Raf Sciot,9 Rob B. West,10 Alexander J. Lazar,11

Alan Ashworth,5 Jorge S. Reis-Filho,5 Christopher J. Lord,5 Mark B. Gerstein,2,12

Mark A. Rubin,13 Brian P. Rubin1*

Integrating transcriptomic sequencing with conventional cytogenetics, we identified WWTR1 (WW domain–
containing transcription regulator 1) (3q25) and CAMTA1 (calmodulin-binding transcription activator 1) (1p36)
as the two genes involved in the t(1;3)(p36;q25) chromosomal translocation that is characteristic of epithelioid
hemangioendothelioma (EHE), a vascular sarcoma. This WWTR1/CAMTA1 gene fusion is under the transcriptional
control of the WWTR1 promoter and encodes a putative chimeric transcription factor that joins the amino terminus
of WWTR1, a protein that is highly expressed in endothelial cells, in-frame to the carboxyl terminus of CAMTA1, a
protein that is normally expressed only in brain. Thus, CAMTA1 expression is activated inappropriately through a
promoter-switch mechanism. The gene fusion is present in virtually all EHEs tested but is absent from all other
vascular neoplasms, demonstrating it to be a disease-defining genetic alteration. A sensitive and specific break-
apart fluorescence in situ hybridization assay was also developed to detect the translocation and will assist in
the evaluation of this diagnostically challenging neoplasm. The chimeric WWTR1/CAMTA1 transcription factor
may represent a therapeutic target for EHE and offers the opportunity to shed light on the functions of two poorly
characterized proteins.

INTRODUCTION
Little is known about the biology of epithelioid hemangioendothelioma
(EHE), an enigmatic vascular (endothelial cell) sarcoma that was first
described relatively recently (1). EHE occurs over a wide age range,
affects both sexes equally, and can arise in soft tissue, bone, and vis-
ceral organs, in particular liver and lungs. The mainstay of treatment
for localized disease is surgical resection. However, EHE that occurs in
liver and lungs characteristically presents with multifocal disease and
is a significant cause of morbidity and mortality, because transplanta-
tion is often the only treatment option available. Furthermore, no
treatment options exist for patients with metastatic EHE, underscoring
the need to better understand the pathogenesis of this neoplasm.

In general, sarcomas are classified according to their line of differ-
entiation (that is, their resemblance to normal, nonneoplastic tissues).
EHE is classified as a vascular tumor because the neoplastic cells have

characteristics in common with normal, nonneoplastic endothelial
cells. Vascular differentiation in EHE is difficult to identify histologi-
cally, because the neoplastic cells do not organize themselves into well-
formed blood vessels. Instead, EHE is characterized by a proliferation
of round (epithelioid) cells that typically form cord-like structures em-
bedded within an edematous, proteoglycan-rich extracellular matrix
(Fig. 1A). Endothelial cell differentiation is documented only by the
expression of CD31 [also called platelet endothelial cell adhesion mol-
ecule (PECAM-1)] and CD34 (a cell surface glycoprotein involved in
cell-cell adhesion), which are also expressed by normal endothelial
cells (Fig. 1B), as well as by ultrastructural features supportive of en-
dothelial differentiation (2). Consequently, EHE is challenging to diag-
nose and was recognized as a distinct entity only within the last 30 years,
a product of careful histological evaluation and advancements made in
immunohistochemistry. The seminal paper first describing EHE as a
distinct cancer emphasized its ability to mimic carcinoma histological-
ly, which is a substantial diagnostic pitfall (1).

The advent of immunohistochemistry did not entirely resolve the
difficulty in diagnosing EHE. Other vascular neoplasms that are his-
tological mimics of EHE, including epithelioid hemangioma (a benign
vascular neoplasm) and epithelioid angiosarcoma (which has a more
aggressive clinical course than EHE), also express CD31 and CD34 anti-
gens. To date, no specific biomarker exists for EHE, and distinguish-
ing this cancer from other epithelioid vascular neoplasms (epithelioid
hemangioma and epithelioid angiosarcoma) is based solely on the
identification of characteristic histological features. Recently, the pres-
ence of a reciprocal t(1;3)(p36;q25) translocation—which results in the
short arm of chromosome 1, band 3, sub-band 6 (1p36) being fused to
the long arm of chromosome 3, band 2, sub-band 5 (3q25)—was found
in two of three EHEs with reported karyotypes (3, 4); however, the

1Department of Molecular Genetics and Anatomic Pathology, Lerner Research
Institute, Taussig Cancer Center, Cleveland Clinic, Cleveland, OH 44195, USA. 2Program
in Computational Biology and Bioinformatics and Department of Molecular Bio-
physics and Biochemistry, Yale University, New Haven, CT 06520, USA. 3Department of
Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA. 4Ad-
vanced Cell Diagnostics, Hayward, CA 94545, USA. 5The Breakthrough Toby Robins
Breast Cancer Research Centre, Institute of Cancer Research, London SW3 6JB, UK.
6Department of Anatomic Pathology, University of Washington, Seattle, WA 98195–6100,
USA. 7Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA
30322, USA. 8Department of Human Genetics, Katholieke Universiteit Leuven, Leuven
B-3000, Belgium. 9Department of Pathology, Katholieke Universiteit Leuven, Leuven B-3000,
Belgium. 10Pathology Department, Stanford University Medical Center, Stanford, CA 94305,
USA. 11Department of Pathology and Sarcoma Research Center, University of Texas M. D.
Anderson Cancer Center, Houston, TX 77030–4009, USA. 12Department of Computer Sci-
ence, Yale University, New Haven, CT 06520, USA. 13Department of Pathology and Lab-
oratory Medicine, Weill Cornell Medical College, New York, NY 10021, USA.
*To whom correspondence should be addressed: rubinb2@ccf.org
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distinct entities, which we anticipate will shape further investigation of
both cancers.

By identifying the WWTR1/CAMTA1 gene fusion in EHE, we can
begin to address the molecular underpinnings of this sarcoma. On the
basis of what is currently known about the two genes, we hypothesize
that the WWTR1/CAMTA1 fusion protein functions as a chimeric
transcription factor. WWTR1 encodes a transcriptional coactivator
that contains several protein binding domains but no DNA binding
domains. The protein is named after its WW domain, which refers to
two conserved tryptophan residues and is known to recognize other
transcription factors with a PPXY motif (for example, RUNX1 and
RUNX2). Wwtr1 acts as a developmental switch in murine mesen-
chymal stem cells, controlling whether they display an adipocytic or
osteogenic phenotype (12), and studies in mice suggest that the pro-
tein plays an important role in the pathogenesis of cystic kidney disease

(13, 14). WWTR1 is known to interact with DNA binding transcription
factors, including those of the Runx family in mice and thyroid tran-
scription factor 1 (TTF-1) in humans, which are important in the
development of bone (Runx2) and lung (TTF-1), respectively (6, 12).
WWTR1 is overexpressed in human breast cancer (15) and papillary
thyroid carcinoma (16).

CAMTA1 encodes a transcription factor that is found in all multi-
cellular organisms tested and is evolutionarily conserved fromArabidopsis
to humans. Evidence of CAMTA1’s role as a transcriptional regulatory
protein stems from studies performed in Drosophila and Arabidopsis
(7). Little is known about the protein’s function in mammalian cells,
but in humans, the gene is expressed almost exclusively within the brain
and has been implicated inmemory because high amounts ofCAMTA1
mRNA have been identified in memory-related regions (17). CAMTA1
has been implicated in cancer, primarily because of its location within

Fig. 3. Genomic breakpoints demonstrated by PCR and FISH: Incidence
of the WWTR1/CAMTA1 gene fusion in vascular neoplasms. (A) Schematic
representation of genomic DNA breakpoints in EHE. Ex, exon. (B and C)
DNA FISH. Diagrammatic representations of the fusion FISH assay (B) and
break-apart FISH assay (C). (D) DNA FISH fusion assay results in neoplastic
EHE cells (performed on one EHE sample). The two green signals rep-
resent WWTR1, which is not involved in the translocation. Two green
signals are present as a result of aneusomy of chromosome 3 (an extra
chromosome 3), which is unrelated to the translocation. The orange sig-
nal represents CAMTA1, which is present on the normal chromosome. The

yellow signal (composed of fused orange and green signals) represents
the WWTR1/CAMTA1 fusion at the genomic level. (E and F) Break-apart
probes showing rearrangements of WWTR1 (E) and CAMTA1 (F). Arrows
indicate the break-apart signals (split orange and green signals) in neoplas-
tic EHE cells. A normal cell containing two intact signals (yellow signals) is
shown for comparison in the lower left corner of (F). The break-apart as-
say for each gene was performed at least once on each specimen
(duplicate cores were evaluated on the tissue microarray). (G) Summary
of results for break-apart FISH assays in EHE and other vascular neoplasms.
NOS, not otherwise specified.
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Exclusively present in 
epitheliod
hemangioendothelioma
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Fusion supporting reads
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Concordant reads

Discordant reads

Fusion junction reads

Gene A

Gene B

Fusion Gene A-B

GCTTCTGTTCCTAGTCACAATTGCGGTTTGACC
TTGCGGTTTGACCTCTTCTGTTCCTAGTCACAA

TTCTGTTCCTAGTCACAA
TCTGTTCCTAGTCACAA
CTGTTCCTAGTCACAA
TGTTCCTAGTCACAA
GTTCCTAGTCACAA

TTGCGGTTTGACCTA
TTGCGGTTTGACCTAC
TTGCGGTTTGACCTACC
TTGCGGTTTGACCTACCA
TTGCGGTTTGACCTACCAC

Clinical Research Genomics 2021



Spectrum of fusions in cancer types
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Protein kinase fusions

Chromatin Modifier fusions

https://www.tumorfusions.org/
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“Targeted” fusion detection methods



FDA-approved drugs targeting oncogenic fusions in solid tumors

24
Clinical Research Genomics 2021

Adapted from Dr. James Solomon

Fusion target Therapy Indication FDA approval

ALK fusion Crizotinib Lung August 2011

Ceritinib Lung May 2017

Alectinib Lung November 2017

Brigatinib Lung May 2020

Lorlatinib Lung (second line) November 2018

FGFR fusion Erdafitinib Urothelial April 2019

Pemigatinib Cholangiocarcinoma April 2020

ROS1 fusion Crizotonib Lung March 2016

Entrectinib Lung August 2019

RET fusion Selpercatinib Lung
Thyroid

May 2020

Pralsetinib Lung September 2020

NTRK1/2/3 fusion Larotrectinib Solid tumor November 2018

Entrectinib Solid tumor August 2019

PDGFB fusion Imatinib DFSP November 2006

MET exon 14 skipping Capmatinib Lung May 2020



Tools for detecting fusion transcripts
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http://omictools.com/gene-fusion-detection-category

RNA-seq short-reads “only”
Bellerophontes
BreakFusion
chimeraScan
CRAC
deFuse
EricScript
FusionAnalyser
FusionCatcher
FusionFinder
FusionHunter
FusionQ
FusionSeq
Jaffa
MapSplice
PRADA
shortFuse
SnowShoes-FTD
SOAPFuse/Fusion
TopHat-Fusion
STAR-fusion

RNA-seq & DNA-seq
BreakTrans
Comrad
nFuse
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ABSTRACT

Background: Fusion transcripts are formed by ei-
ther fusion genes (DNA level) or trans-splicing events
(RNA level). They have been recognized as a promis-
ing tool for diagnosing, subtyping and treating can-
cers. RNA-seq has become a precise and efficient
standard for genome-wide screening of such aber-
ration events. Many fusion transcript detection al-
gorithms have been developed for paired-end RNA-
seq data but their performance has not been com-
prehensively evaluated to guide practitioners. In this
paper, we evaluated 15 popular algorithms by their
precision and recall trade-off, accuracy of support-
ing reads and computational cost. We further com-
bine top-performing methods for improved ensemble
detection.

Results: Fifteen fusion transcript detection tools
were compared using three synthetic data sets un-
der different coverage, read length, insert size and
background noise, and three real data sets with se-
lected experimental validations. No single method
dominantly performed the best but SOAPfuse gener-
ally performed well, followed by FusionCatcher and

JAFFA. We further demonstrated the potential of a
meta-caller algorithm by combining top performing
methods to re-prioritize candidate fusion transcripts
with high confidence that can be followed by experi-
mental validation.

Conclusion: Our result provides insightful recom-
mendations when applying individual tool or combin-
ing top performers to identify fusion transcript can-
didates.

INTRODUCTION

Fusion gene is a result of chromosomal insertion, deletion,
translocation or inversion that joins two otherwise sepa-
rated genes. Fusion genes are often oncogenes that play an
important role in the development of many cancers. Trans-
splicing is an event that two different primary RNA tran-
scripts are ligated together. Both fusion genes (DNA level)
and trans-splicing events (RNA level) can form fusion tran-
scripts. These events usually come from different types of
aberrations in post-transcription and chromosomal rear-
rangements: large segment deletion (e.g. the well-known
fusion TMPRSS2-ERG in prostate cancer (1)), chromo-
some translocation (e.g. the well-known fusion BCR-ABL1
in chronic myeloid leukemia (2) and EML4-ALK in non-

*To whom correspondence should be addressed. Tel: +412 624 5318; Fax: +412 624 2183; Email: ctseng@pitt.edu
Correspondence may also be addressed to Hsei-Wei Wang. Tel: +886 2 2826 7109; Fax: 886 2 2821 2880; Email: hwwang@ym.edu.tw
Correspondence may also be addressed to I-Fang Chung. Tel: +886 2 2826 7358; Fax: +886 2 2820 2508; Email: ifchung@ym.edu.tw
†These authors contributed equally to the work as the first authors.

C⃝ The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by-nc/4.0/), which
permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact
journals.permissions@oup.com
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Figure 4. Fusion transcript detection results for three real data sets. Figures are similar to Figure 2 . (A) and (D): Breast cancer data set; (B) and (E)
Melanoma data set; (C) and (F): Prostate cancer data set.
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Transcript Assembly
CuffLinks
Scripture 
Trinity
Trans-Abyss

Gene fusion annotation
Chimera
Pegasus

http://omictools.com/transcriptome-assembly-category
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An historical perspective of gene fusions

26

1914

Theodore 
Boveri

hypothesized 
that cancer 
originates 

from 
chromosomal 

damage  

1950s 

Improved 
cytogenetics
techniques

1960

Novel & 
Hungerford 

report a 
recurrent
minute 

chromosome 
in chronic 

mylogenous
leukemia 

(CML)

1970s

Chromosome
banding enables 
the identification 
of specific arms 

and regions. 
Several 

rearrangements 
are identified in 
hematological 
malignancies: 
CML, BL, APL, 

follicular 
lymphoma

1980s-1990s

The list of 
rearrangemen
ts and tumor 
types grows 

including most 
mesenchymal 
tumors: e.g. 

Ewing 
sarcoma, 
alveolar 

rhabdomyo-
sarcoma

Early 2000s
Most 

rearrangements 
were discovered 

mainly in 
hematological 

and 
mesenchymal 

neoplasms
compared to 

epithelial

2005
The first 
fusion

(TMPRSS2-
ERG) in a 
common
epithelial 

tumor 
(prostate 

cancer) was 
discovered 

(by 
bionformatic

s analysis)

2005 -
Present
Several 

thousands
fusion 
events 

have been 
characteri

zed, 
mainly 

from NGS 
approach

es

2018

Targeted 
therapy 

approved 
pan-

cancer for 
NTRK 

fusions

Mitelman, F. and Heim, S. (2015) How it all began, in Cancer Cytogenetics: Chromosomal and Molecular Genetic 
Aberrations of Tumor Cells, Fourth Edition (eds S. Heim and F. Mitelman), John Wiley & Sons, Ltd, Chichester, UK
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Spatial profiling
Measurements (such as gene expression) that maintain the spatial information.

S. G. Rodriques et al., Science. 363, 1463–1467 (2019).

P. L. Ståhl et al., Science. 353, 78–82 (2016).



Summary and Future directions
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• Massively Parallel Sequencing has enabled the discovery of additional fusion transcripts
• Specificity is the main challenge: too many false positives (FPs)!

• Longer reads: could help overcome the limitations of short reads
• Combination of tools may help further improve on the reduction of FPs

• “For the large bioinformatics community, development of a high-performing (accurate and 
fast) fusion detection tool or methods to combine top-performing tools remains an 
important and open question”

ans2077@med.cornell.edu

@asbonerw


