ristopher E. Mason, Ph Director, WorldQuant Initiative for Quantitative Prediction Department of Physiology and Biophysics & The Institute for Computational Biomedicine (ICB), Cancer Center, Feil Family Brain and Mind Research Insti at Weill Cornell Medicine,

of the Information Society Project, Yale Law

March 30th, 2021

Conflicts

Onegevity

Jacobs Institute Runway Program at Cornell Tech

- First of its kind academic/business hybrid program accepts new PhDs to commercialize cutting-edge research.
- Provides 1-3 years of support.
- Niamh is in 3rd cohort now accepting applications for 5th cohort.
- Mini MBA take business classes along with Cornell Tech master's students and have access to widespread business mentorship and investor network.

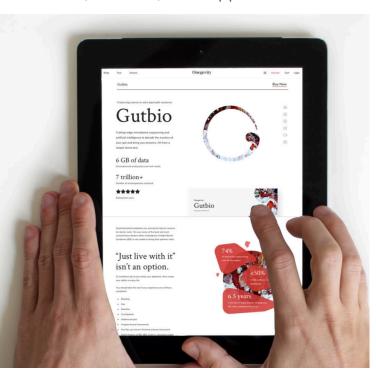
Hospital-acquired infection prevention powered by Al.

Biotia Provides Microbial Surveillance for Hospitals

On average, one in 25 people who check into a hospital get an infection— and one in nine die of that infection. These numbers are staggering and costing hospitals billions. Our team is taking advantage of the current genomics revolution to provide a service to hospitals to swab and sequence their high risk environments. We have a proprietary software and databases which we use to analyze these data and generate reports for hospitals to 1) monitor hygiene, 2) identify pathogens, and 3) track antibiotic resistance.

FDA EUA for NGS-capture assay

Home / The Scientist /


Twist Bioscience And Biotia Receive U.S. FDA Emergency Use Authorization For First Hybridization Capture-Based Next-Generation Sequencing SARS-CoV-2 Assay

Twist Bioscience and Biotia Receive U.S. FDA Emergency Use Authorization for First Hybridization Capture-Based Next-Generation Sequencing SARS-CoV-2 Assay

Twist Bioscience Corporation (NASDAQ: TWST), a company enabling customers to succeed through its offering of high-quality synthetic DNA using its silicon platform, and Biotia, Inc., a company that uses proprietary analytical software for infectious disease diagnostics, today received Emergency Use Authorization (EUA) from the U.S. Food and Drug Administration (FDA) for the SARS-CoV-2 Next-Generation Sequencing (NGS) Assay.

Test Your Gut's Microbiome

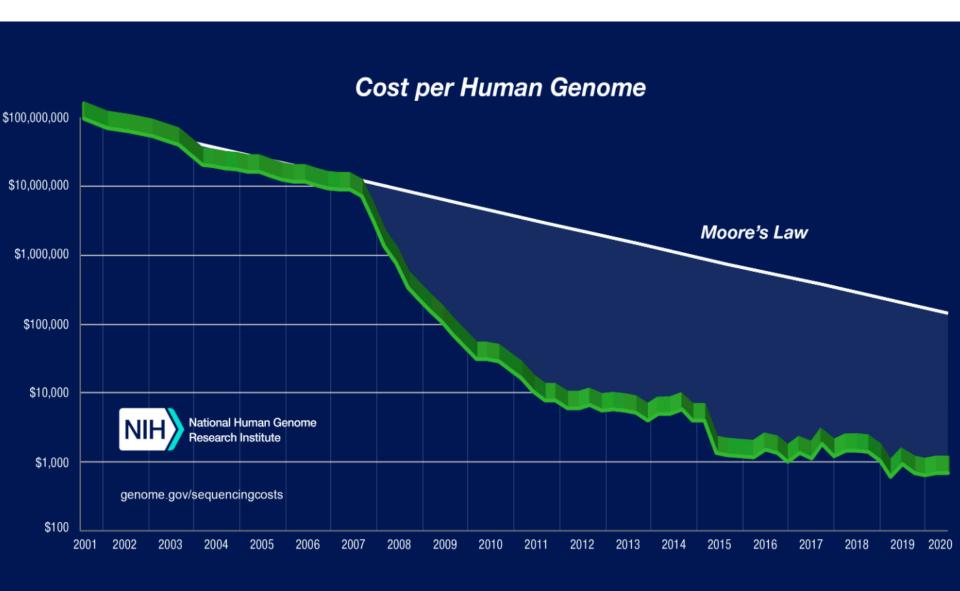
Gutbio™ is an at-home test designed to help individuals manage their gut health. The test examines the body's unique gut microbiome and offers Al driven personalized interventions for diet, exercise, and supplementation.

Micronutrients

Our analysis of your gut bacteria reveals the types of food you currently digest best.

Never is it more true that "you are what you eat" than in your gut microbiome. Your diet is a primary driver of diversity in your gut microbiome. Different gut microbiota specialize in the digestion of different foods, so what you eat on a regular basis largely determines which microbiota live in your gut.

If you eat a diet rich in plant fiber, for instance, you're likely to have high levels of Prevotella and other microbial species that thrive on fiber. If you consume a ketogenic diet, which tends to be low in plant fiber, those types of bacteria will be less common. It's generally best to consume a diet that encourages microbial diversity. Doing so will enable you to efficiently digest many different types of food while lowering your risk of diseases related to a nondiverse gut


Study, Clinical. Study Name: Here's an example of the headline of the study. Lab Med 2018;49(2):123-129.

Low Optimal Low Optimal Low Optimal Low Optimal Review the 3 interventions recommended to improve your imitation score.

(0)

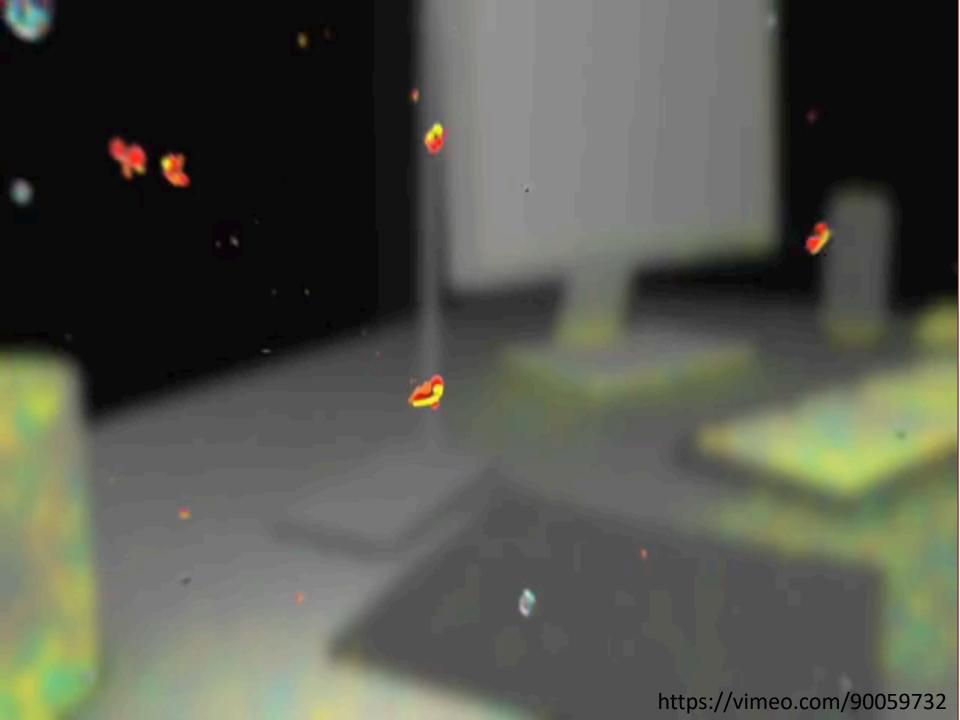
Background

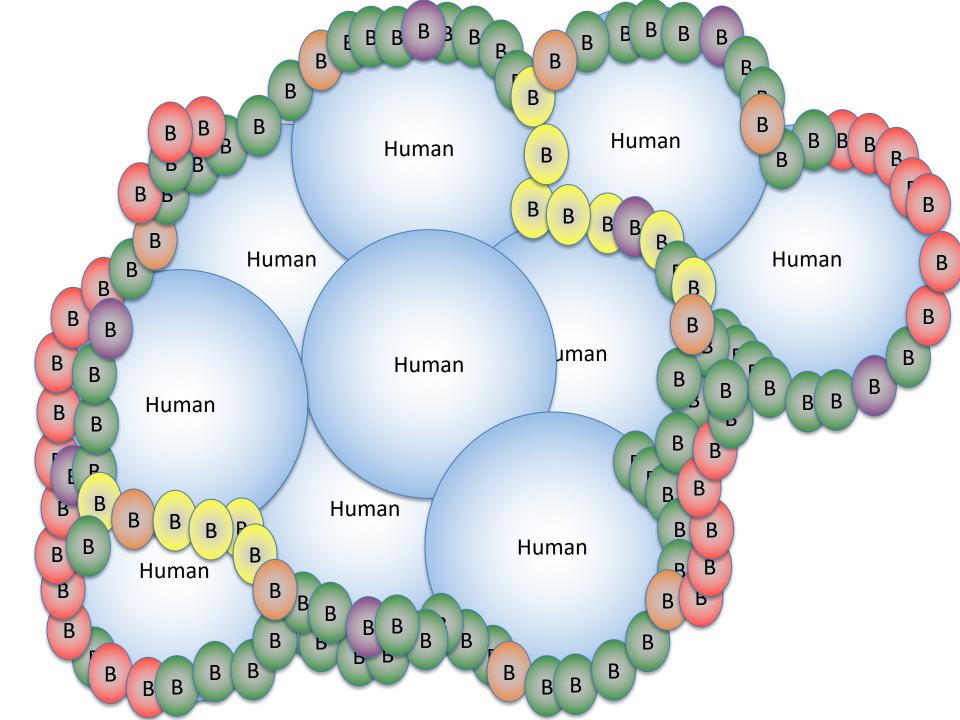
The fastest-ever technological pace

Every Day

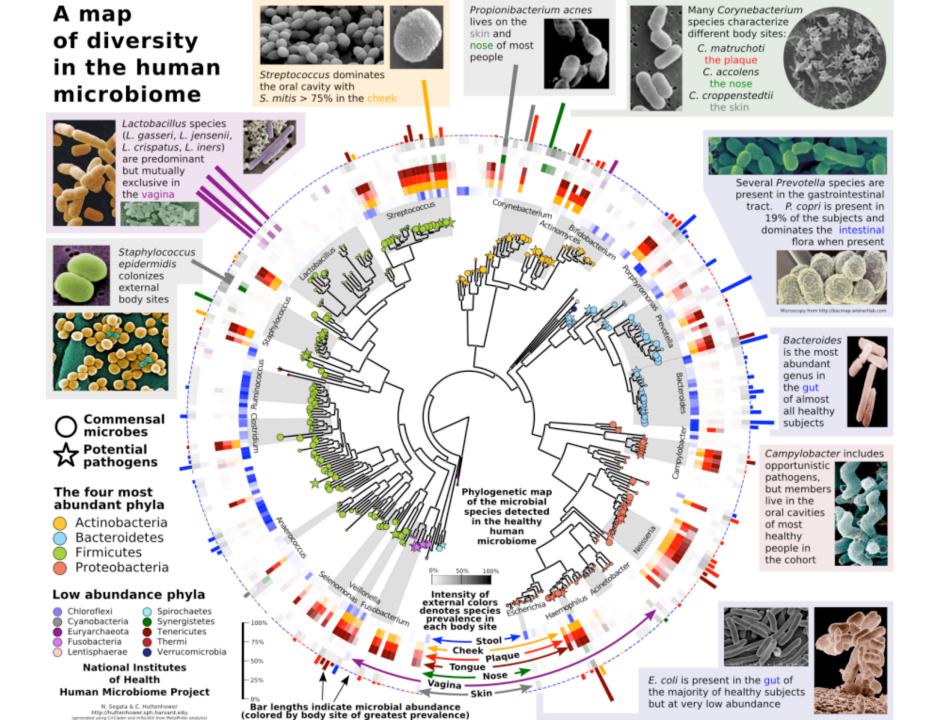
is the Best Day

But!


There is more than one genome:



In your body's cellular democracy, YOU are a minority party:


>50%-90% of your cells are bacterial cells

(Zhu et al., 2010, Sender et al, 2016)

Science Home

Current Issue

Previous Issues

Science Express

Science Products

My Scienc

Home > Science Magazine > 8 June 2012 > Hood, 336 (6086): 1209

Article Views

Summary

Full Text

Full Text (PDF)

VERSION HISTORY

336/6086/1209

Published Online June 6 2012

Science 8 June 2012:

Vol. 336 no. 6086 p. 1209

DOI: 10.1126/science.1225475

EDITORIAL

Tackling the Microbiome

Leroy Hood

36%

of the small molecules in your blood transit the microbiome

24% of the drugs with human targets, including members of all therapeutic classes, inhibited the growth of at least one strain *in vitro*

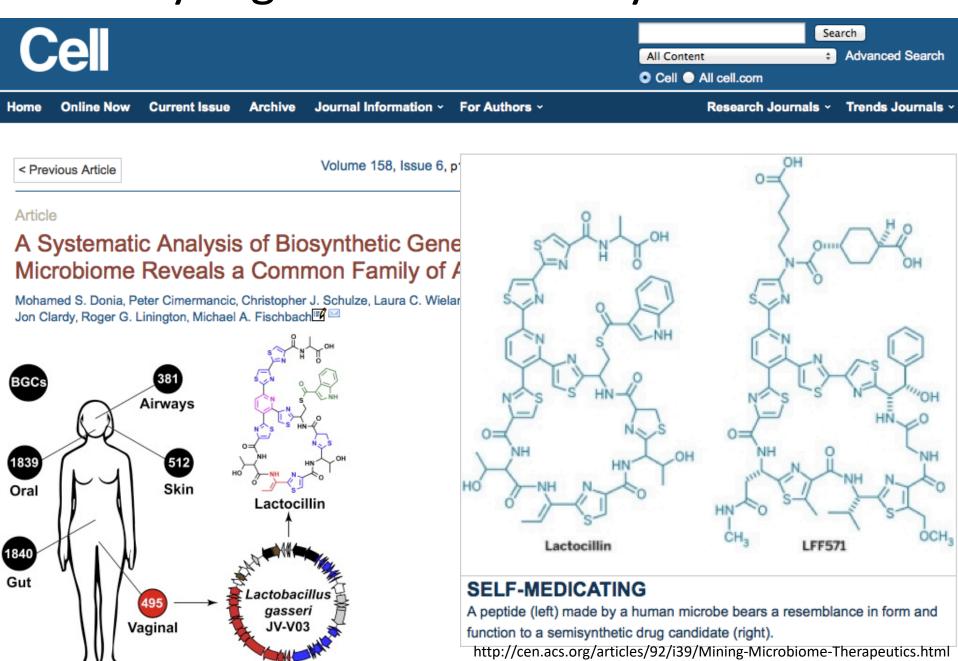
Article

Extensive impact of non-antibiotic drugs on human gut bacteria

Lisa Maier, Mihaela Pruteanu, Michael Kuhn, Georg Zeller [™], Anja Telzerow, Exene Erin Anderson, Ana Rita Brochado, Keith Conrad Fernandez, Hitomi Dose, Hirotada Mori, Kiran Raosaheb Patil [™], Peer Bork [™] & Athanasios Typas [™]

Nature 555, 623-628 (29 March 2018)

doi:10.1038/nature25979


Download Citation

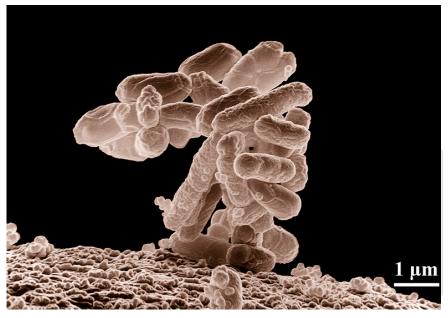
Received: 26 March 2017

Accepted: 08 February 2018

Published: 19 March 2018

Many organisms work on your behalf!

Fecal Microbiota Transplants (FMT)


Gastroenterol Hepatol (N Y). 2012 March; 8(3): 191-194

PMCID: PMC3365524

Fecal Transplantation for the Treatment of Clostridium difficile Infection

Lawrence J. Brandt, MD, MACG, AGAF, FASGE*

Author information ► Copyright and License information ►

Search ScientificAmerican.com

Sign In / Register

FDA Comes to Grips with Fecal Transplants

Efforts are under way to standardize fecal transplants, which helps re-establish healthy microbe populations in the guts of patients

By Beth Mole and Nature magazine

The POWER of POOP

promoting safe, accessible fecal microbiota transplant for all who need it

http://thepowerofpoop.com/

WELCOME TO POP ~

SUCCESS STORIES ~

E-PATIENTS ~

RESOURCES ~

FECAL TRANSPLANT FAQS

Success Stories

Leah's Success Using FMT for Arthritis

T. A. Buhr - June 4, 2016

Where do you live? Connecticut How old are you? 29 What percentage better are you? 90- 95% What was your diagnosis and what treatments did you try...

Family Helps Kate Fight Ulcerative Colitis with FMT

February 17, 2016

Tracy Mac's Story of FMT for Brain & Digestive Disorders

September 1, 2015

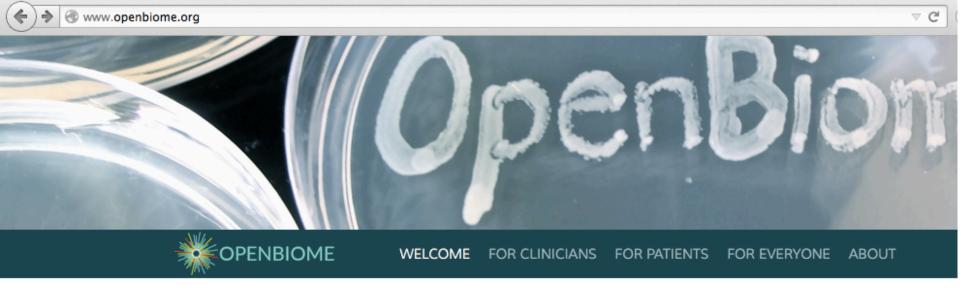
Tracy S's Story of FMT for C. diff

August 15, 2015

Yasmin's story

July 15, 2015

Check Out our "Best of" list of books & supplies



As funny as it may sound, Fecal
Transplants are now a part of medicine.
Our goal is to help answer your questions
and get you started on your journey.

95% success rate for *C. diff* 70-80% success rate for ulcerative colitus

- David Shepard, MD

http://thepowerofpoop.com/

Welcome to OpenBiome.

What we do

We work with clinicians to make FMT easier, cheaper, safer and more widely available. We do so by providing hospitals with screened, filtered, and frozen material ready for clinical use. This service eliminates the time, staff, protocols, and facilities needed to screen and prepare material from new donors for each treatment. With OpenBiome, all that's needed to deliver FMT is a doctor and an endoscope.

Why we're here

We founded OpenBiome, a nonprofit 501(c)(3) organization, after watching a friend and family member suffer through 18 months of C. difficile and 7 rounds of vancomycin before finally receiving a successful, life-changing Fecal Microbiota Transplantation (FMT). The remarkable efficacy of this treatment and the great lengths required to receive it convinced us that we needed to help expand access. After many discussions with local clinicians and the FDA, we launched OpenBiome in 2012 to make FMT faster and easier for patients and dectors alike

EXPLORE HOW IT WORKS START YOUR CAMPAIGN

Sign up Log in

OpenBiome's Give a Sh!t Campaign

Medford, Massachusetts, United States

size of poop | # of people treated 50g 100g 150g 200g 2509 300g 350g 400g 4509

THE MOST IMPORTANT THING YOU'LL DO ALL DAY!

Sharing

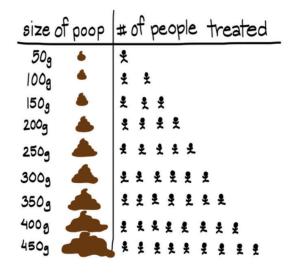
Caring

Sections ≡

Ad

Speaking of Science

You can earn \$13,000 a year selling your poop



THE MOST IMPORTANT THING YOU'LL DO ALL DAY!

Go

Archive

News & Comment | Research | Careers & Jobs | Current Issue | Archive | Audio & Video | For Authors

Comment

NATURE | COMMENT

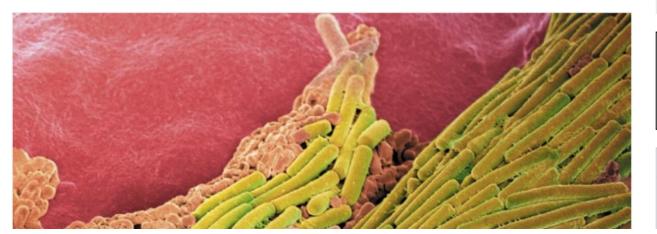
Policy: How to regulate faecal transplants

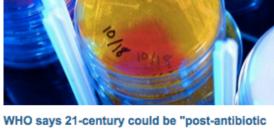
Mark B. Smith, Colleen Kelly & Eric J. Alm

Volume 506 > Issue 7488

19 February 2014

For medical use, human stool should be considered a tissue, not a drug, argue Mark B. Smith, Colleen Kelly and Eric J. Alm.




Rights & Permissions

Subject terms:

Policy · Therapeutics · Infection · Microbiology

Emergence of resistant bacteria means common infections and minor injuries can kill.

era"

Recent	Read	Commented	Emailed
Accusations pile up amid Japan's stem-cell controversy			

nature

Proceedings of the National Academy of Sciences of the United States of A

CURRENT ISSUE // ARCHIVE // NEWS & MULTIMEDIA // FOR AUTHORS // ABOUT PNAS

vol. 109 no. 2 >



Performing your original search "microbiome disease links science" in PNAS retrieves 80

Metagenomic systems biology of the human g reveals topological shifts associated with obes inflammatory bowel disease

Sharon Greenblum^a, Peter J. Turnbaugh^b, and Elhanan Borenstein^{a,c,d,1}

Author Affiliations

ARTICLE PREVIEW

view full access options

NATURE | LETTER

Sharon Greenblum, 594-599, doi: 10.1073/pnas

Diet rapidly and reproducibly alters the human gut microbiome

Lawrence A. David, Corinne F. Maurice, Rachel N. Carmody, David B. Gootenberg, Julie E. Button, Benjamin E. Wolfe, Alisha V. Ling, A. Sloan Devlin, Yug Varma, Michael A. Fischbach, Sudha B. Biddinger, Rachel J. Dutton & Peter J. Turnbaugh

Affiliations | Contributions | Corresponding author

Nature (2013) | doi:10.1038/nature12820

Received 18 April 2013 | Accepted 29 October 2013 | Published online 11 December 2013

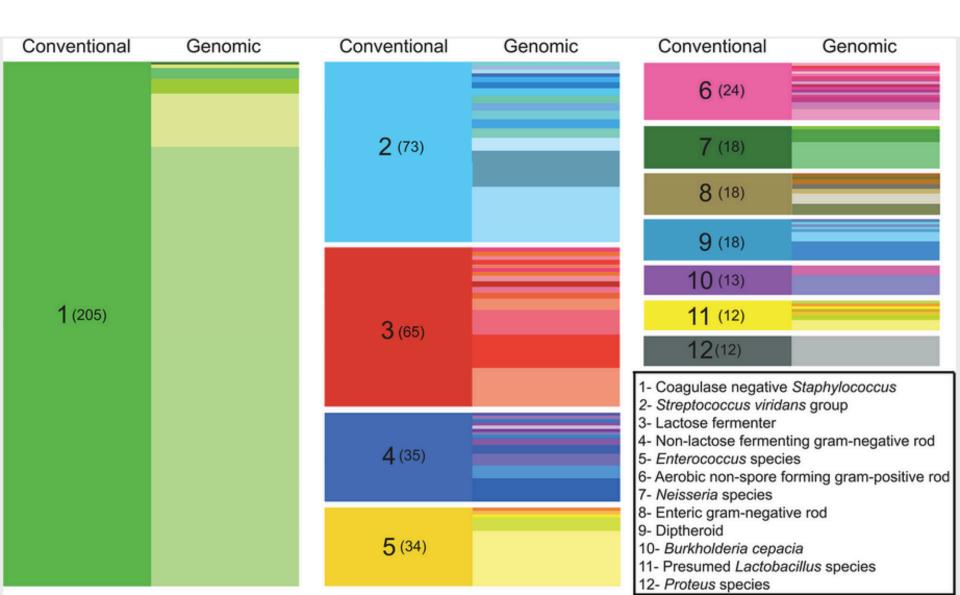
- Acne
- Antibiotic-associated diarrhea
- Asthma/allergies
- Autism
- Autoimmune diseases
- Cancer
- Dental cavities
- Depression and anxiety
- Diabetes
- Eczema
- Gastric ulcers
- Hardening of the arteries
- Inflammatory bowel diseases
- Malnutrition
- Obesity

learn.genetics.utah.edu/content/microbiome/disease/

Browse

Publish

About



RESEARCH ARTICLE

A Year of Infection in the Intensive Care Unit: Prospective Whole Genome Sequencing of Bacterial Clinical Isolates Reveals Cryptic Transmissions and Novel Microbiota

Published: July 31, 2015 • DOI: 10.1371/journal.pgen.1005413

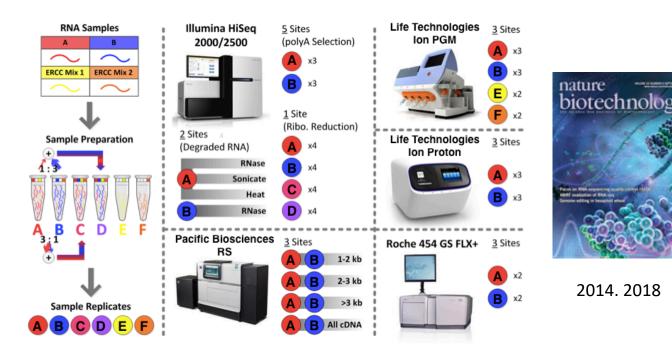
Genomic Classification gives more granularity of species present

But!

Are we any good at measuring?

Can we reach precision metagenomics?

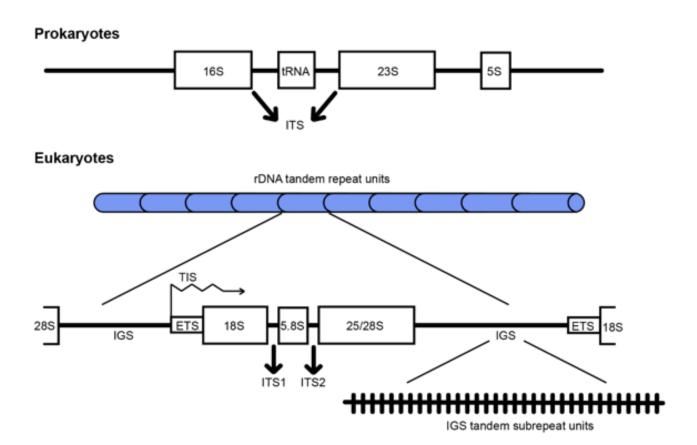
(1)


Measurements are lenses

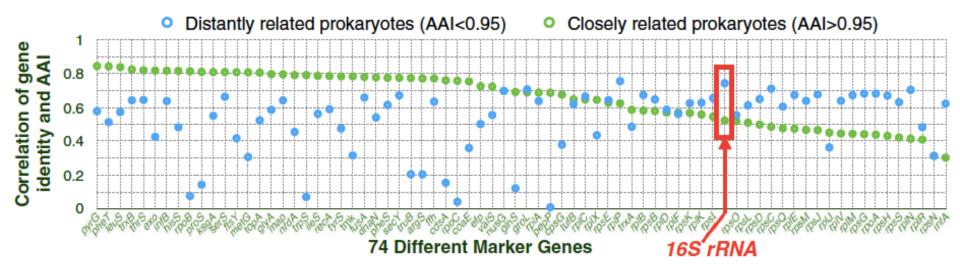
FDA's Mission and Personalized Medicine

- MicroArray Quality Control (MAQC) Project
 - MAQC-I: Differentially expressed genes (2006)
 - MAQC-II: Predictive models, GWA, CNV (2010)
 - MAQC-III (SEQC: Sequencing Quality Control), (2014)
 - SEQC-II/MAQC-IV: FDA's Precision and Personalized Medicine: 2014-2019

SEQC2: Metagenomics and epigenomics


Many methods for sequencing a sample

http://www.nature.com/nbt/focus/seqc/index.html



16S rRNA / 18S rRNA / ITS

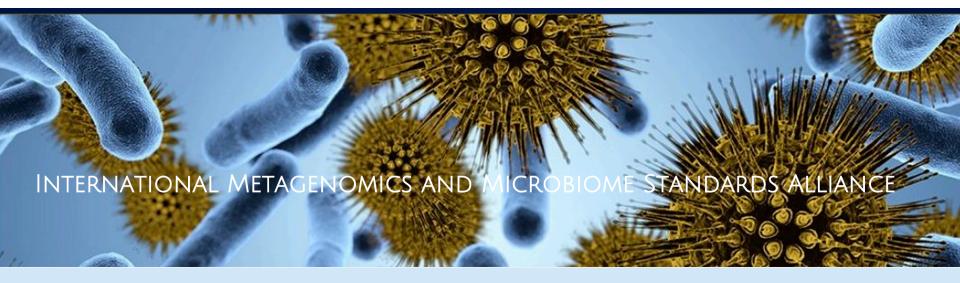
16S rRNA is limited

"16s rRNA predicts genome-wide levels of similarity very well for distantly related prokaryotes, but not for closely related ones."

Lan Y, Rosen G, Hershberg R. "Marker genes that are less conserved in their sequences are useful for predicting genomewide similarity levels between closely related prokaryotic strains." Microbiome. 2016.

Article | OPEN | Published: 31 July 2017

Large-scale differences in microbial biodiversity discovery between 16S amplicon and shotgun sequencing


Michael Tessler™, Johannes S. Neumann, Ebrahim Afshinnekoo, Michael Pineda, Rebecca Hersch, Luiz Felipe M. Velho, Bianca T. Segovia, Fabio A. Lansac-Toha, Michael Lemke, Rob DeSalle, Christopher E. Mason ™ & Mercer R. Brugler ™

Metagenomics can expand the microbiome to query across kingdoms

Data Type	16 S	185	ITS	Shotgun
Taxonomic Classification	Yes	Yes	Yes	Yes
Prokaryotes	Yes	No	No	Yes
Archaea	Yes	No	No	Yes
Eukaryotes	No	Yes	Yes	Yes
Parasites	No	Yes	No	Yes
Plasmids	No	No	No	Yes
Phages	No	No	No	Yes
Human Ancestry	No	No	No	Yes
Biosynthetic Gene Clusters	No	No	No	Yes
Antimicrobial Resistance (AMR) Markers	No	No	No	Yes
Kingdom Specificity	Yes	Yes	Yes	No
Approximate Raw Cost / Sample	\$100	\$100	\$125	\$300

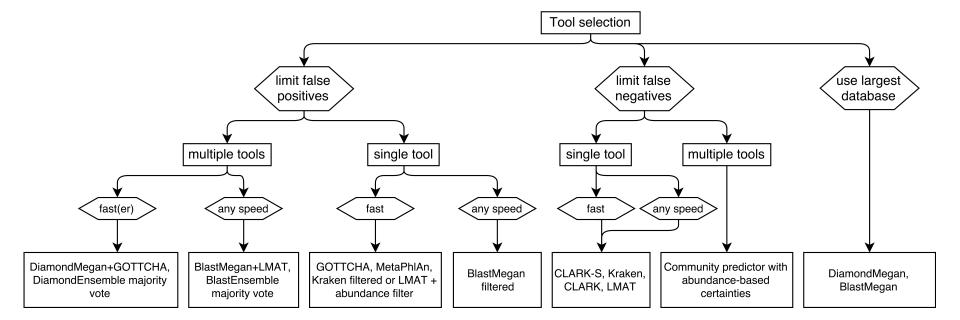
From https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5359768/

Many methods to analyze a metagenomic sample

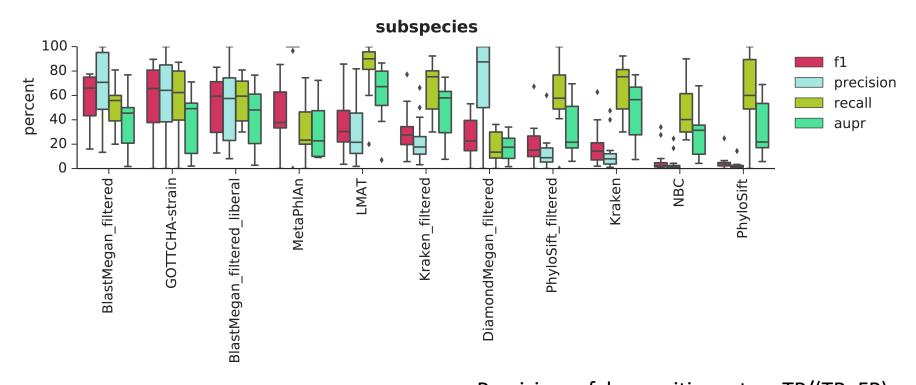
Bioinformatic Resources

IMMSA (2018):

At least 71 tools available for profiling microbial communities using WGS


microbialstandards.org/index.php/bioinformatic-resources

RESEARCH Open Access



Comprehensive benchmarking and ensemble approaches for metagenomic classifiers

Alexa B. R. McIntyre^{1,2,3}, Rachid Ounit⁴, Ebrahim Afshinnekoo^{2,3,5}, Robert J. Prill⁶, Elizabeth Hénaff^{2,3}, Noah Alexander^{2,3}, Samuel S. Minot⁷, David Danko^{1,2,3}, Jonathan Foox^{2,3}, Sofia Ahsanuddin^{2,3}, Scott Tighe⁸, Nur A. Hasan^{9,10}, Poorani Subramanian⁹, Kelly Moffat⁹, Shawn Levy¹¹, Stefano Lonardi⁴, Nick Greenfield⁷, Rita R. Colwell^{9,12}, Gail L. Rosen^{13*} and Christopher E. Mason^{2,3,14*}

Performance profiles across 35 datasets

Precision = false positive rate = TP/(TP+FP)

Recall = sensitivity = TP/(TP+FN)

F1 score = 2(precision*recall)/(precision+recall)

AUPR = area under the precision recall curve

With FDA/NIST International Standards Being Tested

Search NIST Q

■ NIST MENU

Material Measurement Laboratory

BIOSYSTEMS AND BIOMATERIALS DIVISION

About BBD	+	IMMSA I	Mission	Statement
-----------	---	---------	---------	-----------

Core Capabilities

Primary Focus Areas +

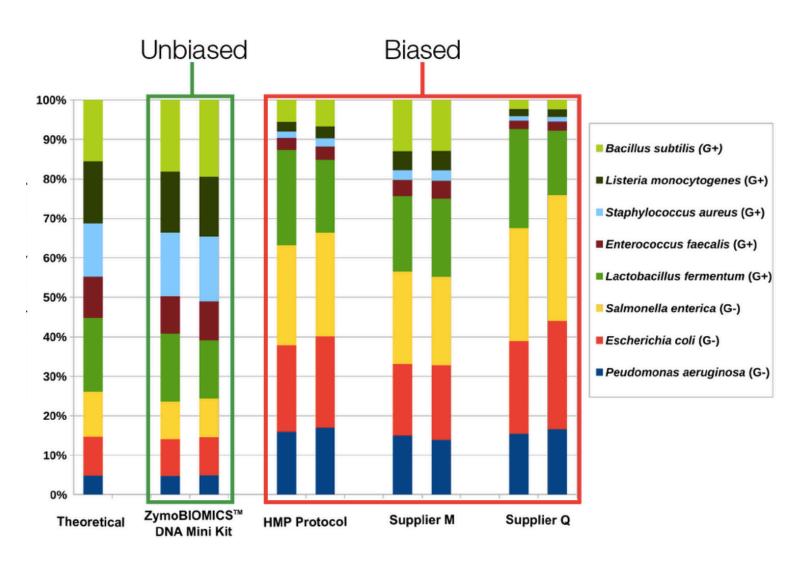
Resources +

The International Metagenomics and Microbiome Standards Alliance (IMMSA) is a non-hierarchical association of microbiome-focused researchers from industry, academia, and government. IMMSA was formed for the mutual benefit of the entire microbiome and metagenomics community and will focus specifically on coordinating cross-cutting efforts that address microbiome and metagenomic measurement challenges. IMMSA members are representative experts for all major microbiological ecosystems (e.g. human/animal, built, and environmental ecosystems) and are representative experts from various scientific disciplines; including, but not limited to, microbiology, genomics, epidemiology, bioinformatics and statistics.

While remaining non-hierarchical, IMMSA will consist of a governing board that oversees the activities of the alliance as well as defines and implements the major directives of the alliance. The founding governing board consists of a single representative from the four founding institutes:

- 1. Baylor College of Medicine: Russell Carmical
- 2. Weill Cornell Medicine: Christopher Mason
- 3. National Institute of Standards and Technology: Scott Jackson
- 4. University of Vermont (ABRF): Scott Tighe

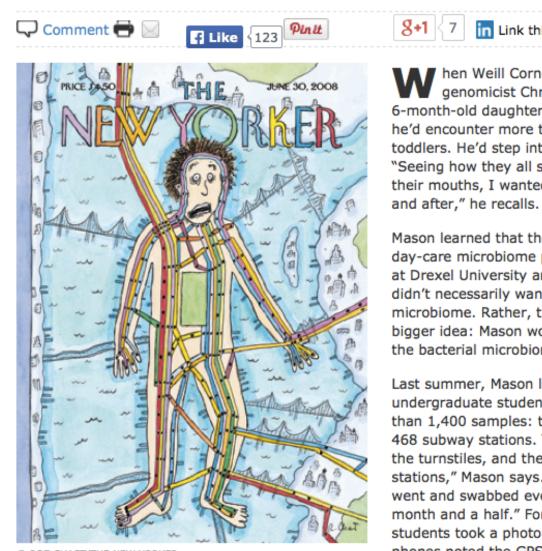
https://www.nist.gov/mml/bbd/immsa-mission-statement


Zymo Research: ZymoBIOMICS Microbial Community Standard

Species	GC %	Gram Stain	gDNA Abun. (%)
Pseudomonas aeruginosa	66.2	-	12
Escherichia coli	56.8	-	12
Salmonella enterica	52.2	-	12
Lactobacillus fermentum	52.8	+	12
Enterococcus faecalis	37.5	+	12
Staphylococcus aureus	32.7	+	12
Listeria monocytogenes	38.0	+	12
Bacillus subtilis	43.8	+	12
Saccharomyces cerevisiae	38.4	Yeast	2
Cryptococcus neoformans	48.2	Yeast	2

https://www.zymoresearch.com/zymobiomics-microbial-community-standard-ii-log-distribution

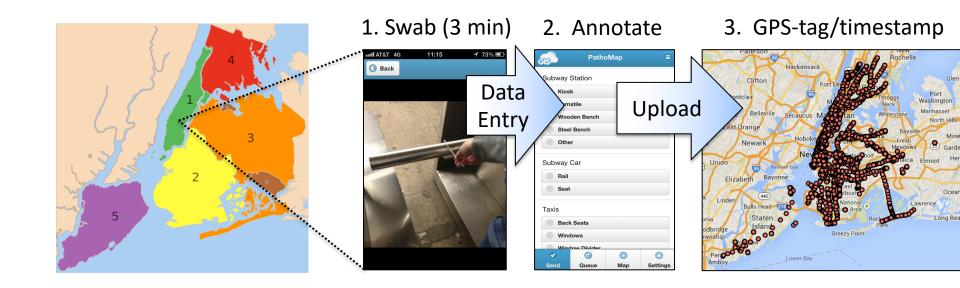
Zymo BioOMICs testing

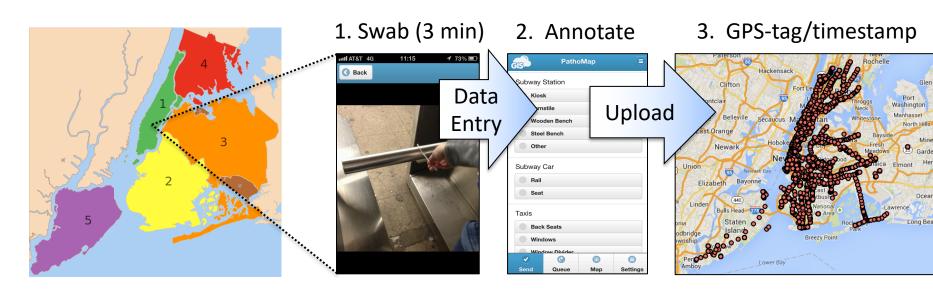


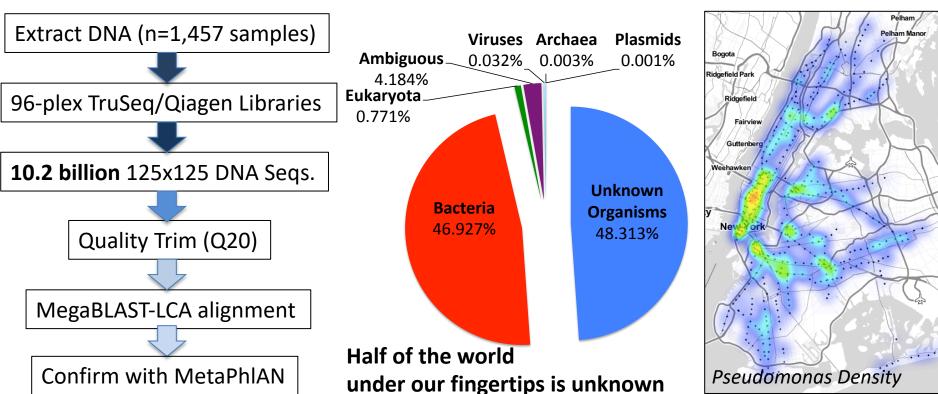
Metropolome

Researchers take advantage of rapid and cheap DNA sequencing technologies to map the bacterial microbiome of New York City.

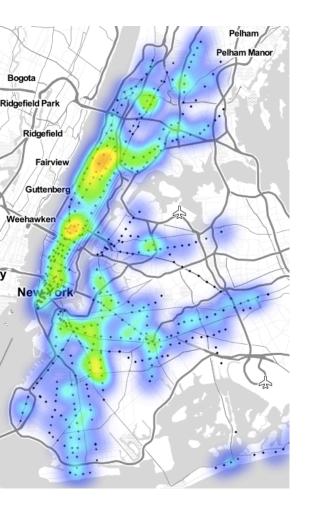
By Jef Akst | December 1, 2013




hen Weill Cornell Medical College genomicist Chris Mason would drop his 6-month-old daughter off at day care in 2011, he'd encounter more than a room filled with active toddlers. He'd step into a microbial nightmare. "Seeing how they all shared toys and put them in their mouths, I wanted to swab everything before


Mason learned that there was an ongoing day-care microbiome project, led by researchers at Drexel University and Brooklyn College. But he didn't necessarily want to study just the day care's microbiome. Rather, the experience sparked a bigger idea: Mason wondered if he could explore the bacterial microbiome of New York City.

Last summer, Mason led a team of five NYC undergraduate students in the collection of more than 1,400 samples: three from each of the city's 468 subway stations. "We did swabs of the kiosks, the turnstiles, and then trains at each one of the stations," Mason says. "They pretty much just went and swabbed every day all day for about a month and a half." For each sample collected, the students took a photo of the spot, and their smart phones noted the GPS location.



Species diversity varies by area of the city

Bogota Ridgefield Park Ridgefield Guttenberg Weehawken New York

Specific species Bogota Ridgefield Park Ridgefield 52 Fairview Guttenberg All species Weehawken 575 New York

Hurricane-Flooded

Enterococcus faecium

Staphylococcus aureus

Pseudoalteromonas haloplanktis

Hurricane Sandy

National Human Genome Research Institute

Research Funding Research at NHGRI Health Education Issues in Genetics Newsroom Careers & Training About For You -

Home > Web Site Offline

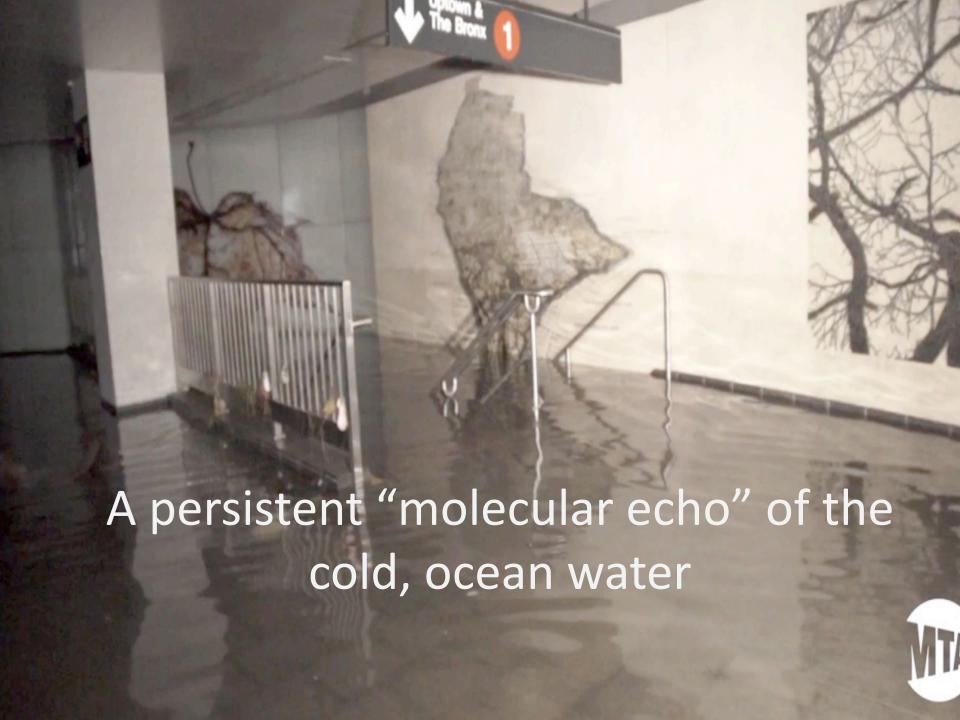
Web Site Offline

29 October 2012

Our web site is currenly offline due to emergency facilities issues related to severe weather from Hurricane Sandy. Please check back later.

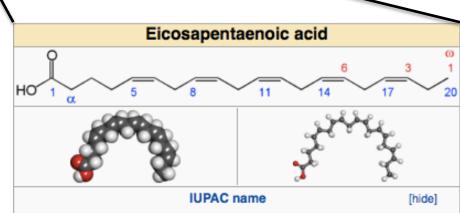
Our apologies for any inconvenience, and we are working to get services restored as soon as possible!

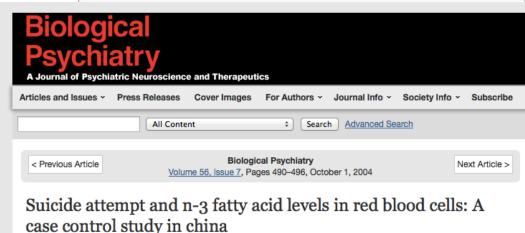
Hurricane Sandy



The Day After Tomorrow (2004)

A tale of two cities




Shewanella frigidimarina

An Antarctic species with the ability to produce eicosapentaenoic acid. It grows anaerobically by dissimilatory Fe (III) reduction.[1] Its cells are motile and rod shaped

EPA is obtained in the human diet by eating oily fish or fish oil, e.g. cod liver, herring, mackerel, and salmon.

Frolova, G. M.; Gumerova, P. A.; Romanenko, L. A.; Mikhailov, V. V. (2011). "Characterization of the lipids of psychrophilic bacteria Shewanella frigidimarina isolated from sea ice of the Sea of Japan". Microbiology 80 (1): 30–36

OUR CITIES: ▼

POPULAR

ADVERTISE

MORE

TRENDING:

PORTALS

NEW YORK BOTANICAL GARDEN

ROBERTA'S

Licking Subway Poles "Probably Fine," Says Expert

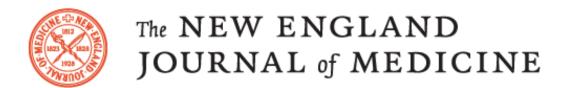
HOME

ARTICLES & MULTIMEDIA **

ISSUES *

SPECIALTIES & TOPICS **

FOR AUTHORS *


CME »

ORIGINAL ARTICLE

Randomized Trial of Peanut Consumption in Infants at Risk for Peanut Allergy

George Du Toit, M.B., B.Ch., Graham Roberts, D.M., Peter H. Sayre, M.D., Ph.D., Henry T. Bahnson, M.P.H., Suzana Radulovic, M.D., Alexandra F. Santos, M.D., Helen A. Brough, M.B., B.S., Deborah Phippard, Ph.D., Monica Basting, M.A., Mary Feeney, M.Sc., R.D., Victor Turcanu, M.D., Ph.D., Michelle L. Sever, M.S.P.H., Ph.D., Margarita Gomez Lorenzo, M.D., Marshall Plaut, M.D., and Gideon Lack, M.B., B.Ch. for the LEAP Study Team N Engl J Med 2015; 372:803-813 | February 26, 2015 | DOI: 10.1056/NEJMoa1414850

Replicated!

HOME

ARTICLES & MULTIMEDIA *

ISSUES *

SPECIALTIES & TOPICS *

FOR AUTHORS *

CME »

ORIGINAL ARTICLE

Effect of Avoidance on Peanut Allergy after Early Peanut Consumption

George Du Toit, M.B., B.Ch., Peter H. Sayre, M.D., Ph.D., Graham Roberts, D.M., Michelle L. Sever, M.S.P.H., Ph.D., Kaitie Lawson, M.S., Henry T. Bahnson, M.P.H., Helen A. Brough, M.B., B.S., Ph.D., Alexandra F. Santos, M.D., Ph.D., Kristina M. Harris, Ph.D., Suzana Radulovic, M.D., Monica Basting, M.A., Victor Turcanu, M.D., Ph.D., Marshall Plaut, M.D., and Gideon Lack, M.B., B.Ch., for the Immune Tolerance Network LEAP-On Study Team March 4, 2016 DOI: 10.1056/NEJMoa1514209

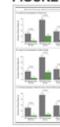
Share: F 💌 🍱 🛅

Abstract

Article

References

Citing Articles (1)

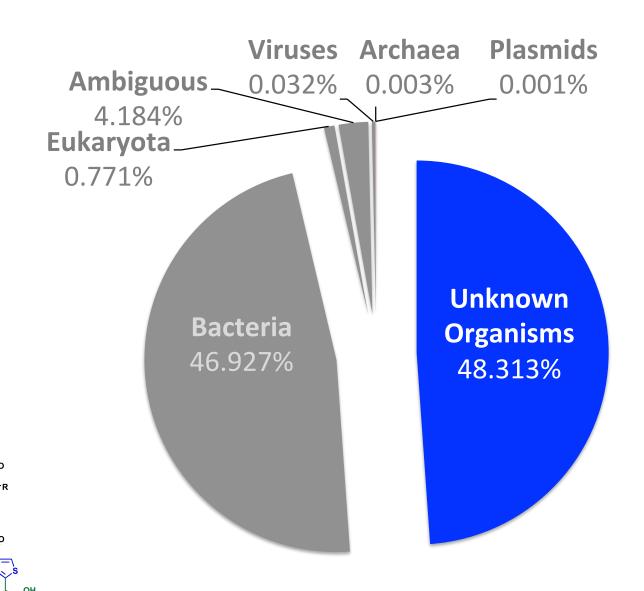

Metrics

BACKGROUND

In a randomized trial, the early introduction of peanuts in infants at high risk for allergy was shown to prevent peanut allergy. In this follow-up study, we investigated whether the rate of peanut allergy remained low after 12 months of peanut avoidance among participants who had consumed peanuts during the primary trial (peanut-consumption group), as compared with those who had avoided peanuts (peanut-avoidance group).

MEDIA IN THIS ARTICLE

FIGURE 1



Primary Outcome.

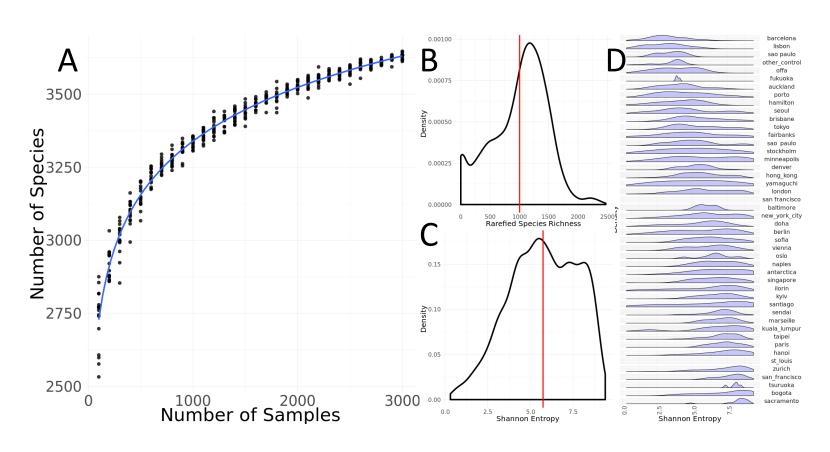
Note:

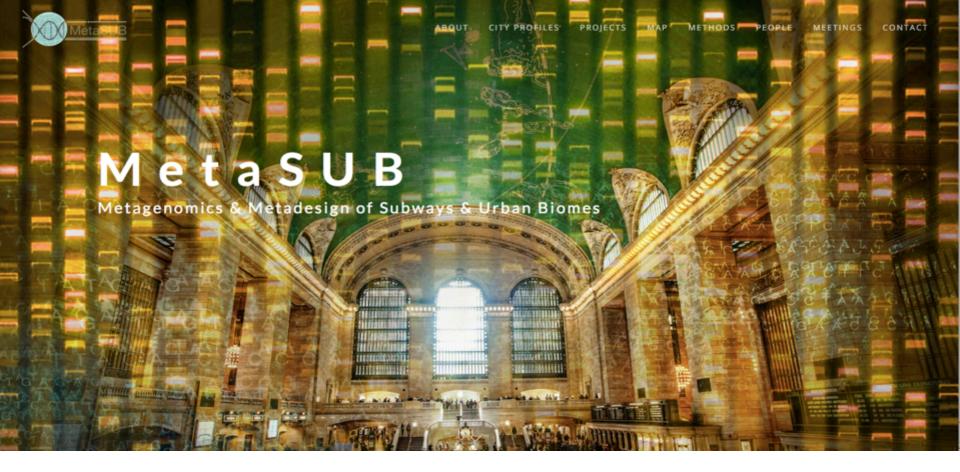
Does not apply during pandemics.

Who is there, and what are they making?

(2)What have we been missing?

Global Grand Challenges


WORLDQUYNT



ABOUT **CHALLENGES AWARDED GRANTS NEWS GRANT OPPORTUNITIES** Home / Awarded Grants Print Global Distribution and Epigenetic Stratification of Antimicrobial Resistance GRAND CHALLENGES EXPLORATIONS DRUG RESISTANCE BURDEN 1 MAY 2016 SHARE THIS AWARDED GRANT Christopher Mason of Weill Medical College of Cornell University in the U.S. will generate a global map of antimicrobial resistance by using biochemical and computational methods on available samples taken monthly over one year from 24 developed and developing cities across six continents. Each city will be sampled from both high-density (e.g. train stations) and low-density (e.g. parks) areas. They will sequence DNA isolated from two PRINCIPAL INVESTIGATOR samples per area from each city to identify the bacterial species present and determine whether they carry any antimicrobial resistance genes or markers, or chemically modified DNA bases (epigenetic modifications) that may Christopher Mason influence microbial function. The results will then be geographically mapped, and analyzed for associations with population density and proximity to health centers.

http://gcgh.grandchallenges.org/grant/global-distribution-and-epigenetic-stratification-antimicrobial-resistance

Significant Diversity, More to be Discovered

3 Goals:

- 1. Geospatial Metagenomic and Forensic Maps
- 2. Anti-microbial resistance (AMR) marker tracking by genetics and epigenetics
- 3. New Biosynthetic Gene Clusters (BGCs); new drugs

www.metasub.org

NGS on sewage in Florida, Wisconsin, and New York

DEVELOPMENT AND PROOF-OF-CONCEPT IMPLEMENTATION OF THE SOUTH FLORIDA MIAMI RADX-RAD SARS-COV-2 WASTEWATER-BASED SURVEILLANCE INFRASTRUCTURE

Award Number: U01DA053941

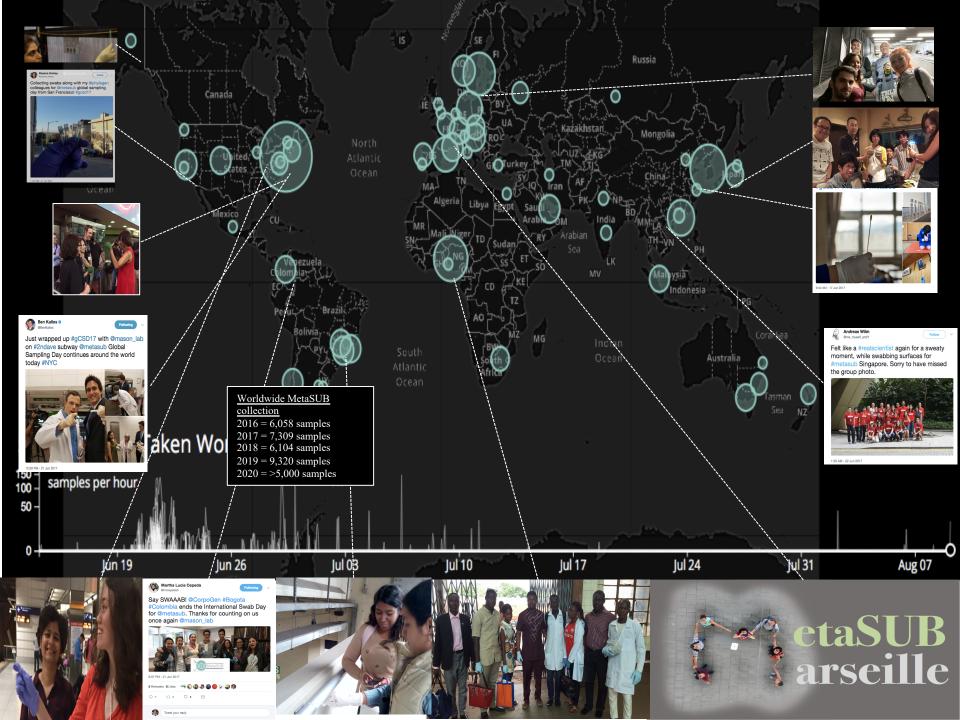
ORGANIZATION: NATIONAL INSTITUTE ON DRUG ABUSE

OPDIV: NIH

AWARD CLASS: COOPERATIVE AGREEMENT

AWARD ACTIVITY TYPE: SCIENTIFIC/HEALTH RESEARCH (INCLUDES SURVEYS)

Group Awards By Issue Date FY or Funding FY:

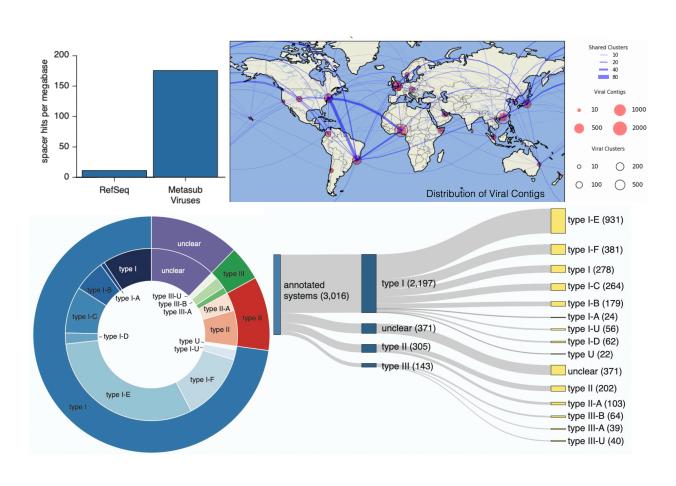


Issue Date FY

HIDE AWARD ABSTRACT

PROJECT SUMMARY The University of Miami (UM), with three primary campuses in Miami, Florida, is geographically spread within one of the worst current COVID-19 hotbeds. UM has deployed an elaborate human surveillance testing, tracking and tracing (3T) system to monitor the student body, faculty, and staff. This 3T system includes a major hospital that is part of UM and that treats COVID-19 patients. To augment this COVID-19 monitoring system, UM has deployed a pilot wastewater surveillance program for detecting SARS-CoV-2 from clusters of buildings on campus. Weill Cornell Medicine (WCM) is located in New York City, NY, an area that until recently had one of the worst outbreaks of COVID-19. WCM has established an international consortium for SARS-CoV-2 environmental surveillance, including in NYC and globally with the MetaSUB Consortium, which is creating metagenomic and metatranscriptomic maps of the world's sewage. Based on this work at both UM and WCM, this proposal aims to develop, implement, and demonstrate effective and predictive wastewater surveillance by optimizing sampling, concentration, and detection strategies. Working closely with the RADx-rad Data Coordination Center (DCC), this application (SF-RAD) will

3X increase in size of the tree of life, including 10,928 new viruses (vs. JGI/NCVBI)

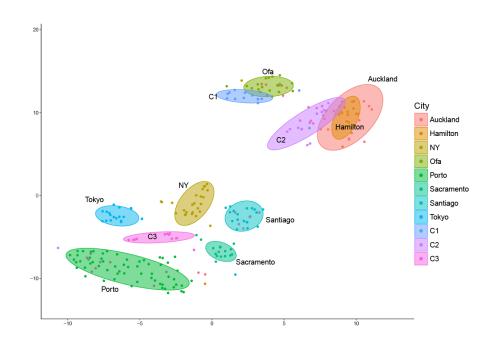

Recovery of nearly 8,000 metagenomeassembled genomes substantially expands the tree of life

Global Genetic Cartography of Urban Metagenomes and Anti-Microbial Resistance

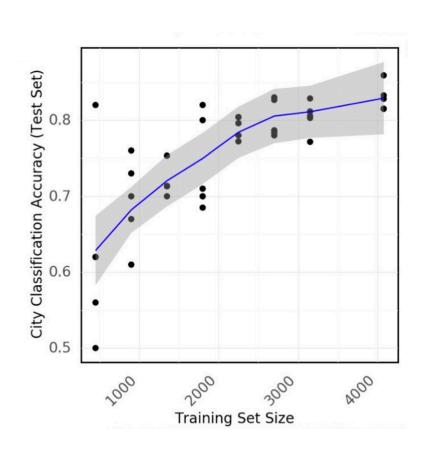
David Danko^{1,2,°}, Daniela Bezdan^{1,2,°}, Ebrahim Afshinnekoo^{1,2,†}, Sofia Ahsanuddin^{3,†}, Chandrima Bhattacharya^{1,2,†}, Daniel J Butler^{1,2,†}, Kern Rei Chng^{4,†}, Francesca De Filippis^{5,†}, Jochen Hecht^{6,†}, Andre Kahles^{7,†}, Mikhail Karasikov^{7,†}, Nikos C Kyrpides^{8,†}, Marcus H Y Leung^{9,†}, Dmitry Meleshko^{1,2,†}, Harun Mustafa^{7,†}, Beth Mutai^{10,6,†}, Russell Y Neches^{8,†}, Amanda Ng^{4,†}, Marina Nieto-Caballero^{11,†}, Olga Nikolayeva^{12,†}, Tatyana Nikolayeva^{12,†}, Eileen Png^{4,†}, Jorge L Sanchez^{13,†}, Heba Shaaban^{1,2,†}, Maria A Sierra^{1,2,†}, Xinzhao Tong^{9,†}, Ben Young^{1,2,†}, Josue Alicea ^{1,2,‡}, Malay Bhattacharyya^{14,‡}, Ran Blekhman^{15,‡}, Eduardo Castro-Nallar^{16,‡}, Ana M Cañas^{13,‡}, Aspassia D Chatziefthimiou^{17,‡}, Robert W Crawford^{18,‡}, Youping Deng^{19,‡}, Christelle Desnues^{20,‡}, Emmanuel Dias-Neto^{21,‡}, Daisy Donnellan^{13,‡}, Marius Dybwad^{22,‡}, Eran Elhaik^{23,‡}, Danilo Ercolini^{5,‡}, Alina Frolova^{24,‡}, Alexandra B Graf^{25,‡}, David C Green^{26,‡}, Iman Hajirasouliha^{1,2,‡}, Mark Hernandez^{11,‡}, Gregorio Iraola^{27,‡}, Soojin Jang^{28,‡}, Frank J Kelly^{26,‡}, Kaymisha Knights^{13,‡}, Paweł P Łabaj^{29,‡}, Patrick K H Lee^{9,‡}, Per Ljungdahl^{30,‡}, Abigail Lyons^{13,‡}, Gabriella Mason-Buck^{31,‡}, Ken McGrath^{32,‡}, Emmanuel F Mongodin^{33,‡}, Milton Ozorio Moraes^{34,‡}, Niranjan Nagarajan^{4,‡}, Houtan Noushmehr^{35,‡}, Manuela Oliveira^{36,‡}, Stephan Ossowski^{37,‡}, Olayinka O Osuolale^{38,‡}, Orhan Özcan^{39,‡}, David Paez-Espino^{8,‡}, Nicolas Rascovan^{40,‡}, Hugues Richard^{41,‡},

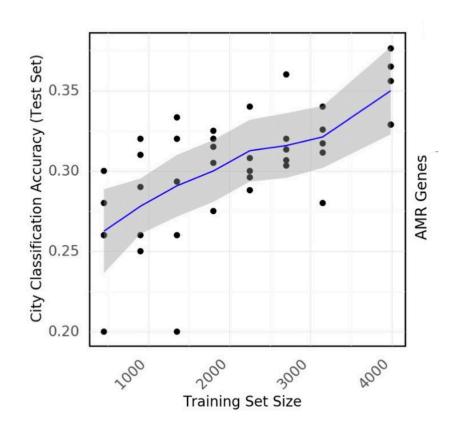
https://www.nature.com/articles/s41564-017-0012-7 https://www.biorxiv.org/content/10.1101/724526v1

And >800K new CRISPR arrays

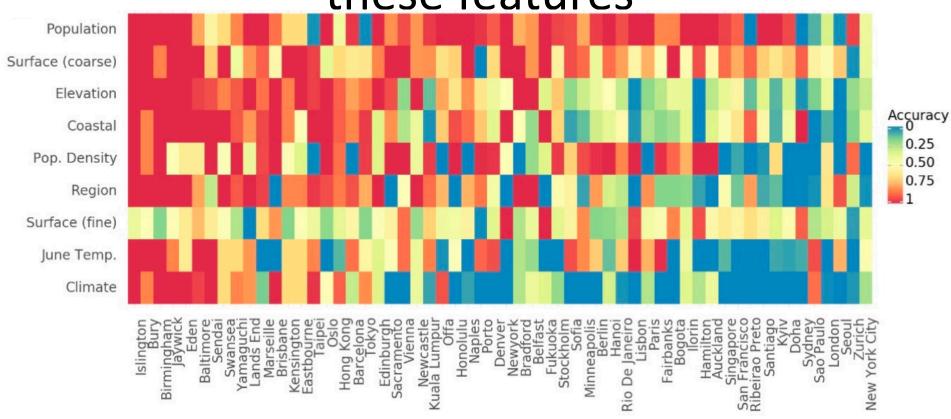

>4.3M putative novel peptides

metasub city	sum_contig_size	protein_cnt	metasub c95 ratio	metasub c80 ratio
new_york_city	23,237,773,149	10,424,821	44.3%	8.4%
london	11,698,381,507	5,453,860	47.2%	11.0%
ilorin	12,083,747,553	5,173,133	47.6%	11.5%
(blank)	4,877,902,237	2,450,185	46.8%	12.8%
rio_de_janeiro	2,594,610,094	1,199,482	41.6%	16.8%
hong_kong	1,900,750,111	1,169,336	53.9%	9.8%
tokyo	1,862,832,603	959,027	73.5%	54.9%
bogota	1,518,739,125	778,938	56.9%	26.4%
hamilton	1,690,325,223	708,354	37.5%	7.4%
fairbanks	1,486,245,088	680,871	51.8%	19.6%
berlin	1,145,162,542	583,137	58.4%	33.5%
porto	839,222,657	443,986	66.5%	37.2%
auckland	811,476,604	352,826	47.1%	10.5%
ofa	802,189,444	345,587	41.4%	9.7%
santiago	446,643,762	252,230	63.0%	35.6%
oslo	187,649,603	96,419	49.7%	10.2%
sacramento	75,398,186	37,901	66.3%	17.1%
Grand Total	67,259,049,488	31,110,093	47.9%	14.0%

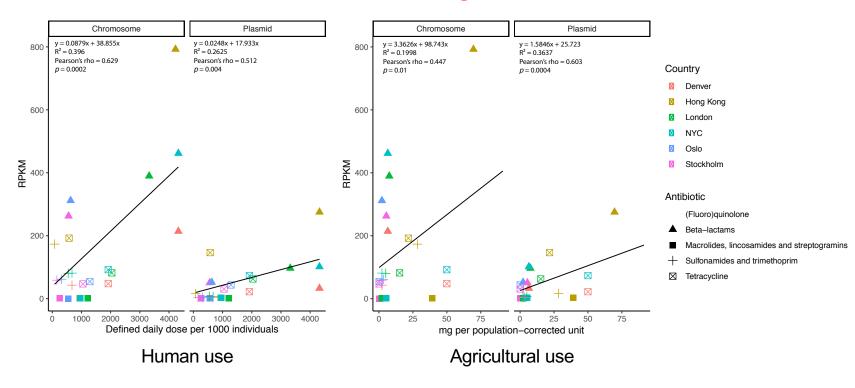

>1.5kb compared to JGI/NCBI, with Arbor Biotechnology, and Jonathan Gootenberg / Omar Abudayyeh


Can we predict where you are from? Yes.

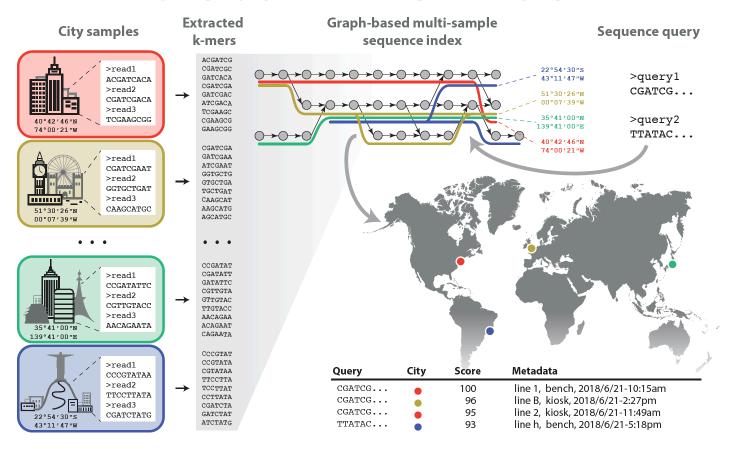
- R implementation of t-Distributed Stochastic Neighbor Embedding (t-SNE)
- Perplexity 50
- K = 2
- Only features from Kaiju with relative abundance of at least 0.5% in at least 1 sample



More data helps, but species are the better markers



Environment, city, and population drive these features

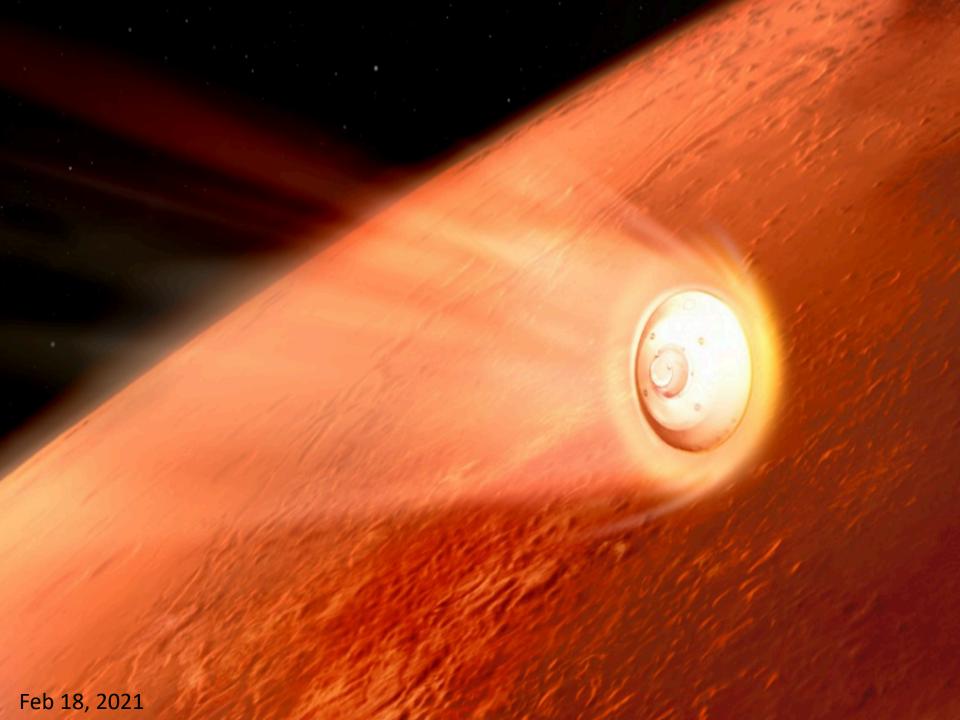


City-specific antibiotic use & ARG profiles

Pearson's correlation is significant

Global K-mer index

https://metagraph.ethz.ch/graphs


Planetary Genomics

Dec. 17, 2020 **RELEASE 20-133** NASA Moves Forward with Campaign to Return Mars Samples to Earth Mars Sample Return

MSR

Mars Sample Return is a proposed mission to return samples from the surface of Mars to Earth.

ETA: 2032

A New View

View from Curiosity rover, evening of January 31, 2014 (Mars year 32, late spring) Earth-Mars distance: 180 million km (112 million mi) JPL

@mason_lab

These People are Awesome

Thanks to Funding from:

WORLDQUYNT

Deep Gratitude to Many People:

Mason Lab

Ebrahim Afshinnekoo Yared Bayleyen Chandrima Bhattacharya Daniel Butler Chris Chin

Rafael Colon David Danko

Katie Dickieson Ceyda Durmaz

, Radwa Elshafey

Jonathan Foox

Kirill Grigorev

Sonia Iosim

Hannah Kelly

JJ Hastings

Cem Meyden

Chris Mozsary

Jiwoon Park Jake Reed

Michael Retchin

Krista Ryon

Delia Tomoiaga Craig Westover

Ben Young

WorldQuant Fellows

HudsonAlpha

Shawn Levy

Cornell/WCM

Alain Borczuk
David Erickson
Selina Chen-Kiang
Iwijn De Vlaminck
Olivier Elemento
Samie Jaffrey
Iman Hajirasouliha
Marcin Imielinksi
Ari Melnick (Melnick Lab)
Margaret Ross
Rob Schwartz

Biotia

Niamh O'Hara (Biotia) Rachid Ounit (Biotia)

NYU

Martin Blaser Jef Boeke Jane Carlton Chris Park Elizabeth Hénaff

Rockefeller

Jeanne Garbarino Charles Rice

NYGC

Michael Zody
Dayna M. Oschwald
Samantha Fennessey
Soren Gomer
Nicolas Robine
Tom Maniatis

Northwell Hospital

Lance Becker Peter Gregersen

Miami / UM

George Grills Helena Solo-Gabriele Maria E Figueroa

MIT Media Lab

Kevin Slavin Devora Najjar

FDA/SEQC/Fudan.

Leming Shi

ABRF/Vermont

Scott Tighe
Don Baldwin

Icahn/MSSM

Eric Schadt Joel Dudley Bobby Sebra

Illumina

Gary Schroth Marc Van Oene

Duke

Stacy Horner Nandan Gokhale

Jackson Labs

Sheng Li

Baylor

Fritz Sedlazeck Jeff Rogers

MSKCC

Alex Kentsis Christina Leslie Ross Levine

AMNH

George Amato

Nanostring

Tyler Hether Joe Beechem Sarah Warren

New England Biolabs

Eileen Dimalanta Nathan Tanner Ted Davis Fiona Stewart

UVA

Francine Garrett-Bakelman

NASA/JPL/Ames

Afshin Beheshti Kate Rubins Craig Kundrot David Smith Kasthuri Venkateswaran

Univ. Chicago

Yoav Gilad

UCSF

Charles Chiu

Questions?