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From https://native-land.ca

Land acknowledgement

| acknowledge being on Native Land today

| acknowledge the Munsee Lenape and Wappinger Nations, whose lands our institutions occupy
| acknowledge that | am part of the colonisation of this land

This land was taken from the Native communities without their consent or compensation
Genocide of Native peoples is an inescapable part of this history of colonisation

| offer respect and recognition to the Native communities, to start a process of reconciliation




Epigenesis

‘Epigenetic’

Genetic Cellular reprogramming Polycreodism

Nature Reviews | Genetics



Epigenetics:

five current definitions

Version available on FigShare
DOI10.6084/m9.figshare.9975359.Vv1
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Epigenetics meaning:

The epigenetic landscape
was proposed to resolve how
epigenesis could have genetic
influences.

A non-nuclear heritability of
long-term cellular memory

A mutational mechanism involving
changes in DNA methylation, not
DNA sequence. Later extended to
mean gene regulation.

Back-translated epi- (above, upon)
-genetics (DNA sequence) to mean
any biochemical process regulating
the genome

Attempted to rein in the use of

epi- (above) -genetics (DNA sequence)
by requiring molecular process to be
heritable through cell division

Why this is a problem:

All Waddington was trying to do was to
stop the embryologists and geneticists
from fighting with each other

How he was persuaded, while travel-weary,
not to use his favoured word ‘paragenetic’

How John Pugh came up with the word
epigenetic to describe non-genetic mutation
when trying to write an abstract with a

200 word limit

Epitranscriptomics

By including both mitotic and meiotic cell
division, he generated the multigenerational
definition of epigenetics
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All Waddington was trying to do was to

stop the embryologists and geneticists
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Waddington, C. H. (1957). The Strategy of the Genes
London: Ruskin House/George Allen and Unwin Ltd.

A Discussion of Some Aspects of Theoretical Biology



Epigenetics
and human disease

In 2021, ’epigenetic’ = hon-genetic
Assumption: non-mutated genes change expression to cause phenotype
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Epigenetics
and human disease

Non-genetic but mediated by the genome
Assumption: phenotype mediated by ‘epigenetic’ transcriptional regulation
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Epigenetics
and human disease

Testing epigenetic mechanisms in human diseases
Assumption:
A positive epigenome-wide association study result is evidence
supporting ‘epigenetic’ mechanisms
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Epigenetics
and human disease

The presumed cellular model
It Is assumed that cells undergo reprogramming
A canonical cell type acquires new molecular properties,

iIndependent of DNA sequence
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Genetic Cellular reprogramming

Epigenesis

Lappalainen T, Greally JM.
Associating cellular epigenetic models with human phenotypes. Nat Rev Genet. 2017 Jul:18(7):441-451.



Epigenetics
and human disease

Confounding effect

Reverse causation
The disease phenotype may cause the molecular phenotype

Molecular Molecular
genomic . genomic
phenotype phenotype
CONTROLS v CASES
Reverse ,:' Mechanistic
_ causation g causation
Organismal
Molecular
N — phenotype '
(disease) !
Reverse
causation

Controls

Birney E, Smith GD, Greally JM.
Epigenome-wide Association Studies and the Interpretation of Disease -Omics. PLOS Genet. 2016 Jun 23:;12(6):e1006105.



Epigenetics
and human disease

Confounding effect

Cell subtype proportion changes
The transcription/regulatory changes may be due to altered cell
subtype proportions in the tissue studied
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Epigenetics
and human disease

Confounding effect

DNA sequence variability
DNA sequence can alter molecular genomic patterns
Functional variants, methylation guantitative trait loci (meQTLS)

rs11686156
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Suzuki M, Liao W, Wos F, Johnston AD, DeGrazia J, Ishii J, Bloom T, Zody MC, Germer S, Greally JM.
Whole-genome bisulfite seqguencing with improved accuracy and cost. Genome Res. 2018 Sep;28(9):1364-1571



Epigenetics
and human disease

Confounding effect

DNA sequence variability
~14-80% of DNA methylation variation due to DNA segquence variation

Proportion of DNA methylation variation
explained by DNA sequence variation

O 100%
| |
| | | |
Monocytes Thyroid (endoderm), heart (mesoderm), brain (ectoderm)
DOI: 10.1016/).cell. 2016.10.026 DO/ 10.1186,/513059-019-1708-1
Whole blood Whole blood, adipose tissue, muscle, monocytes, T cells
DOI: 10.1371/journal.pgen.1002629 DO/ 10.1186,/513059-017-1173-7
Whole blood LCLs
DO/: 10.1038/ncommsliiis DO/: 10.1371/journal.pgen.1002228
LCLs

DOI: 10.1186,/9b-2011-12-1-r10

Adipose tissue
DOI: 10.1016/).a/hg.2013.10.004



Epigenetics
and human disease

|

Are we studying transcription factor biology?
he transcriptional regulators we call epigenetic have no ability to

target specific sequences } retsodimer

DNA modifications
Chromatin remodellers O))))))))))) m ))

Histone modification enzymes

HDACs ,~~ .~ SMRT/NCoR

They are targeted to loci
by transcription factors
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Clarke N, Germain P, Altucci L, Gronemeyer H.
Retinoids: potential in cancer prevention and therapy. Expert Rev Mol Med. 2004 Nov 30:6(25):1-23.



Epigenetics
and human disease

What regulates transcription factors?
Insights into cell signalling pathways

Environmental,
extrinsic influence

\\ Pathway (primary response)

Activation of %

cell signalling \ Cytoplasm
pathway \‘ Nucleus
Transcription

factor activation
B Inferred

transcriptional factors
mediating functional
O ® genomic changes
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Epigenetics
and human disease

Embracing the confounders
Gaining insights from the influences on molecular genomic assays

Control Cases Control Cases Control Cases
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Revealing cell subtype effects
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Epigenetics
and human disease

When cell subtype effects dominate epigenomic assay results

Blood leukocyte study of systemic lupus erythematosis
Estimated and adjusted for cell subtype composition (CIBERSORT)

SYSTEMIC LUPUS ERYTHEMATOSUS

Adjusted for age Adjusted for age and CIBERSORT LM22 PCs
485 differentially-expressed genes 1 differentially-expressed gene
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2,154 differentially-methylated cytosines 43 differentially-methylated cytosines
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Kong Y, Rastogi D, Seoighe C, Greally JM, Suzuki M.
INnsights from deconvolution of cell subtype proportions enhance the interpretation of functional genomic data. PLOS One. 2019 Apr 25:14(4):e0215987.



Epigenetics
and human disease

When cell subtype effects dominate epigenomic assay results
O be a confounder, It needs to be over-represented in cases or controls
Cell subtype proportions in blood distinctive in lupus patients
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Epigenetics
and human disease

Cell subtype effects revealed by scRNA-seq: obese asthma
CD4+ T lymphocyte subsets distinctive in obese asthmatic children
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Rastogi D, Nico J, Johnston AD, Tobias TAM, Jorge Y, Macian F, Greally JM.
CDC42-related genes are upregulated in helper T cells from obese asthmatic children. J Allergy Clin Immunol. 2018 Felb;141(2):539-548.e7.



Revealing transcription factor effects
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Transcription factors

TFs and cellular reprogramming
Cellular reprogramming to revitalise bone marrow MSCs

Before culture Cultured Cultured
CD45 Ter119- CD31- pefore transfection after transfection
< culture < < ] o
o 3 weeks >§,,’ § D
n n ] O O
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Transplant expanded Expansion of HSCs by co- Detect virally integrated
HSCs culture with revitalized MSCs genes in each clone

Implicated Ostfl, Xbpl, Irf3 and Irf/7 (OXI) reprogramming factors

Nakahara F, Borger DK, Wei Q, Pinho S, Maryanovich M, Zahalka AH, Suzuki M, Cruz CD, Wang Z, Xu C, Boulais PE, Ma'ayan A, Greally JM, Frenette PS.
Engineering a haematopoietic stem cell niche by revitalizing mesenchymal stromal cells. Nat Cell Biol. 2019 May;21(5):560-567.



Transcription factors

TFs and cellular reprogramming
Complementary approach:

ATAC-seq to find loci with open chromatin in revitalised MSCs
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Motif analysis implicated Mef2c as an additional factor
Confirmed with knock-down assay
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Epigenetics
and human disease

The cellular reprogramming model
Low oestradiol stage of oestrus cycle associated with increased anxiety

Open Field Light Dark Box Elevated Plus Maze
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Epigenetics
and human disease

The cellular reprogramming model
Cycling of dentritogenesis in ventral hippocampus
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Epigenetics
and human disease

The cellular reprogramming model

Neuronal nuclear ATAC-seq

Dynamic patterns of chromatin accessibility over 4-5 day cycle
Associated local changes In gene expression
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Epigenetics
and human disease

The cellular reprogramming model

Loci with chromatin accessibility changes enriched for TF binding
motifs, including Egr

Die Pro

Proestrus Specific Motifs

P value % Targets % Bkgd

mefzc LGLARAAATALK  1e-148

25.95%  16.42%
metzd TOTATTTLITACG 148 1317%  6.47%
merzb TOTATTTALYGR 1e126  38.84%  28.49%

Ggm l“%& IL_“& T__ 1e-104  26.48% 18.299
merza CLTAAAATAG 16101  22.02% 14.56%



Epigenetics
and human disease

TF insights revealing primary pathway regulation
=grl identified as TF ultimately mediating oestradiol response
Allows insights into regulation of TF signalling

Oestradiol -
2. Membrane GPER

Cell membrane

1. Nuclear Kinases

PI3/AKT
MAPK/ERK Rapid
e effects
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Epigenomics and

sequence polymorphism

UCSC Genome Browser

I | i
| |

I

NCAN

Transcription factors: act at non-coding DNA
Regulatory loci for gene expression

Sequence polymorphism at these loci: functional variants

epilogos

L - G e D . e S

Vierstra J, Lazar J, Sandstrom R, ... Meuleman W, Stamatoyannopoulos JA.
Global reference mapping of human transcription factor footprints. Nature. 2020 Jul:583(/818):/29-7/36.



Epigenomics and
sequence polymorphism

Transcription factors: act at non-coding DNA
Unexpected finding:
TF binding sites have locally increased polymorphism

alf the time the DNA sequence variant increases TF affinity

Variant effect on NFIX
recognition sequence
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Epigenomics and
sequence polymorphism

Polymorphic TF binding sites
Likely mediators of genetic influences on epigenomic assays

Proportion of DNA methylation variation
explained by DNA sequence variation

O 100%
| |
|| | I I
Monocytes Thyroid (endoderm), heart (mesoderm), brain (ectoderm)
DOI: 10.1016/).cell.2016.10.026 DOI: 10.1186,/513059-019-1708-1
Whole blood Whole blood, adipose tissue, muscle, monocytes, T cells
DOI: 10.1371/journal.pgen.1002629 DOI: 10.1186,/513059-017-1173-7
Whole blood LCLs
DOI: 10.1038/ncommsliiiis DOI: 10.1371/journal.pgen.i002228
LCLs

DOI: 10.1186,/gb-2011-12-1-r10
Adipose tissue
DO/ 10.1016,/1.ajhg.2013.10.004



Epigenomics and
sequence polymorphism

The ADCYS5 intronic variant rs56371916
Implicated by GWAS in both type 2 diabetes mellitus and osteoporosis

Variant — Regulator — Gene Cellular Organismal Chr3123095543 C/

Ancestral Allele (T) e e 4
G A4

&b H3K27me3

A >
SREBF1 ADCY5 High fasting glucose
/ Adipocyte
i ) ) Type 2 diabetes
/ Increased lipolysis

rs56371916 '
AMSC

Adipose derived stem cells (41 donors) "—> @\4

Osteoblast )

Increased fatty acid oxidation High bone

¥ A 4 €
& and osteoblast differentiation mineral density
€3 1
Differentiation ‘ :
eat N

¢ ®) Y on
Adipocyte Osteoblast Adipocyte

Low fasting glucose

Reduced lipolysis

rs56371916 &
/ ADCYS AMSC
N5 > o
Osteoblast i

s ’.‘
SREBF1 !
) Reduced fatty acid oxidation Low bone
Derived Allele (C) and osteoblast differentiation mineral density

Sinnott-Armstrong N, Sousa IS, Laber S, ... Lander ES, Kiel DP, Claussnitzer M.
A regulatory variant at 3921.1 confers an increased pleiotropic risk for hyperglycemia and altered bone mineral density.
Cell Metab. 2021 Jan 28:51550-4131(21)00001-2.



Epigenomics and
sequence polymorphism

rs56371916 is a functional variant

Influences overlying chromatin accessibility

Influences ADCY5 expression

Ancestral allele binds SREBP1 transcription factor, but not derived allele

= Haplotype 1 (high BMD, hyperglycemia)

= Haplotype 2 (low BMD, normoglycemia)
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Epigenomics and
sequence polymorphism

rs56371916 may influence mesenchymal lineage decisions
CRISPR editing from derived (CC) to ancestral (TT) state
Osteoblast induction leads to higher expression of osteoblast
differentiation marker genes/increased osteogenesis

U = 22 haplotype (rs56371916 CC allele)

=1 CC > TT rescue (CRISPR/Cas9)
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Cell fate
and tissue effects

The effect of functional variants may be on cell fate
ypically, we think of effects in terms of cellular reprogramming
Exposures/genetic polymorphisms can also influence tissue composition
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Tsiarli MA, Rudine A, Kendall N, Pratt MO, Krall R, Thiels E, DeFranco DB, Monaghan AP.
Antenatal dexamethasone exposure differentially affects distinct cortical neural progenitor cells
and triggers long-term changes in murine cerebral architecture and behavior. Transl Psychiatry. 2017 Jun 13;7(6):e1153.



Epigenomics and
sequence polymorphism

The effect of functional variants may be on cell fate

ypically, we think of effects in terms of cellular reprogramming
Exposures/genetic polymorphisms can also influence tissue composition

—_—
Genetic Cellular reprogramming Polycreodism

Epigenesis

Lappalainen T, Greally JM.
Associating cellular epigenetic models with human phenotypes. Nat Rev Genet. 2017 Jul:18(7):441-451.



Waddington redux

A neo-Waddingtonian model for human disease
DNA influencing phenotypes through cell fate decisions
Detectable at cis regulatory elements with epigenomic assays

Conrad Hal
Waddington

Waddington, C. H. (1957). The Strategy of the Genes: A Discussion of Some Aspects of Theoretical Biology
London: Ruskin House/George Allen and Unwin Ltd.



Epigenetics
and human disease

Epigenomics and human disease 2021
Harvesting confounders to reveal pathogenesis
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Epigenomics and
ultra-rare functional variants

Ultra-rare non-coding functional variants
he loci with the greatest effects on heritability of gene expression
differences occur extremely infrequently in populations (<1/10,000)

In any individual, most likely to be heterozygous
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Hernandez RD, Uricchio LH, Hartman K, Ye C, Dahl A, Zaitlen N.
Ultrarare variants drive substantial cis heritability of human gene expression. Nat Genet. 2019 Sep:;51(9):15349-13555.



Epigenomics and
ultra-rare functional variants

Harvesting ultra-rare functional variant confounders
Ultra-rare functional variants difficult to define using typical statistical
genetics approaches

Convergent outcomes make them detectable using molecular genomic
(eplgenomic) assays
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