33240891 33240901 33240911 33240921 33240931 33240941 33240951 33240961 33240971 33240981 33240991 AATTTCATTTGTATTATCTCTCTCTA*CATACAC TGTCCGCAGACGCACTCTCCATTGTTACTGCAGATTTCTGAACTGTTTTC TCCTGCAGTAAGCATCCATGTCTTCACTGTT AATTTCATTTTATTATCCTTCTTCCTA*TATACAC TGTCCGCAGACGCACTCTCCATTGTTACTGCAGAT CTGAACTGTTTTCTTTCCTGCAGTAAGCATCCATGTCTTCACTGTT AATTTCATTTTATTATCCCTCTTCTTT*CTAATAC tgtccgcagacgcactctccattgttactgca tttctgaactgttttctttcctgcagtaagcatccatgtcttcactgtt VAATTTCATTTTTATTATCCCTCTTCCTA*CTAATACACT CCGCAGACGCACTCTCCATTGTTACTGCAGAT CTGAACTGTTTTCTTTCCTGCAGTAAGCATCCATG TTCACTGTT aaatttcatttgtattatccctcttccta*caaacacactgtccgca ACGCACTCTCCATTGTTACTGCAGATTTCTGAACT TTTCTTTCCTGCAGTAAGCATCCATGTCTTCA GTT VAATTTCATTTGTATTATCCCTCTTCCTA*CAAACACACTGTCCGCAG cggagtctccattgttactgcagatttctgaa GTTTTCTTTCCTGCAGTAAGCATCCATGTCTT CTGTT ATTTCATTTGTATTATCCCTCTTCCTA+CAAAC CACTGTCCGCAGACGCACTCTCCATTGTTACTGCAGATTTCTGAACTGTT CTTTCCTGCAGTAAGCATCCATGTCTTCACTGTT A TTTCATTTGTATTATCCCTCTTCCTA*CAAACA CTGTCCGCAGACGCACTCTCCATTGTTACTGC tttctgaactgttttctttcctgcagtaagcatcc GTCTTCACTGTT A TTTCATTTGTATTATCCCTCTTCCTA*CAAACACACTGTCCGCAGACGCAC CTCCATTGTTACTGCAGATTTCTGAACTGTTTTCTTTCCTGCAGTAAGCATCCATGTCTTCACTGTT VAATTTCATTTGTATTATCCCTCTTCCTA*CAAACACACTGTCCGCAGACGCA tctccattgttactgcagatttctgaactgtt CTTTCCTGCAGTAAGCATCCATGTCTTCACTGTT aatttcatttgtattatccctcttccta*caaacacactgtccgcagacgcac CTCCATTGTTACTGCAGATTTCTGAACTGTTTTCT CCTGCAGTAAGCATCCATGTCTTCACTGTT aaatt ATTTGTATTATCCCTCTTCCTA*CAAACACACTGTCCGCAGACGCACTCTC ttgttactgcagatttctgaactgttttcttt tgcagtaagcatccatgtcttcactgtt aaatttc TTTGTATTATCCCTCTTCCTA*CAAACACACTG CGCAGACGCACTCTCCATTGTTACTGCAGATT ntaacttttttctttactgcagtaaacatccatgtcttcactgtt aatttca ttgtattatccctcttccta*caaacaccactgtccg agacgcactctccattgttactgcagatttct actgttttctttcctgcagtaagcatccattt TCACTGTT VAATTTCAT tgtattatccctcttccta*caaacacactgtc gcagacgcactctccattgttactgcagattt gaactgttttctttcctgcagtaagcatccat CTTCACTGTT VAATTTCATT gtattatccctcttccta*caaacacactgtcc cagacgcactctccattgttactgcagatttc aactgttttctttcctgcagtaagcatccatg TTCACTGTT WATTICATE tattatccctcttccta*caaacacactgtccg agacgcactctccattgctactgcagatttct actgttttctttcctgcagtaagcatccatgt tcactgtt AATTTCATTTGTATTATCCCTCTTCCTA*CAAACACACTGTCCGCAGACGCACTCTCCAT ttactgcagatttctgaactgttttctttcct agtaagcatccatgtcttcactgtt aaatttcatttg ATTATCCCTCTTCCTA*CAAACACACTGTCCGCAGACGCACTCTCCATTGT ctgcagatttctgaactgttttctttcctgca aagcatccatgtcttcactgtt aaatttcatttgt ttatccctcttccta*caaacacactgtccgca acgcactctccattgttactgcagatttctga tgttttctttcctgcagtaagcatccatgtcttca GTT aaatttcatttgta TATCCCTCTTCCTA*CAAACACACTGTCCGCAGACG actctccattgttactgcagatttctgaactg ttctttcctgcagtaagcatccatgtcttcactgt aaatttcatttgta tatccctcttccta*caaacacactgtccgcag GCACTCTCCATTGTTACTGCAGATTTCTGAAC ttttctttcctgcagtaagcatccatgtcttc TGTT aatttcatttgta ATCCCTCTTCCTA*CAAACACACTGTCCGCAGACGC ctctccattgttactgcagatttctgaactgt tctttcctgcattaagcatccatgtcttcactgtt aatttcatttgtat TCCCTCTTCCTA*CAAACACACTGTCCGCAGACGCACTCTCCATTGTTACT GATTTCTGAACTGTTTTCTTTCCTGCAGTAAGCAT atgtcttcactgtt aatttcatttgtatt CCCTCTTCCTA*CAAACACACTGTCCGCAGACGCAC ctccattgttactgcagatttctgaactgttt TTTCCTGCAGTAAGCATCCATGTCTTCACTGTT aaatttcatttgtatt CCCTCTTCCTA*CAAACACACTGTCCGCAGACGCACTCTCCATTGTTACTG gatttctgaactgttttctttcctgcagtaag TCCATGTCTTCAATGTT AATTTCATTTGTATTA CCTCTTCCTA*CAAACACACTGTCCGCAGACGC ctctccattgttactgcagatttctgaactgt CTTTCCTGCAGTAAGCATCCATGTCTTCACTGTT aatttcatttgtattat TCTCTTCCTA*CAAACACACTGTCCGCAGACGCACT ccattgttactgcagatttctgaactgttttc TCCTGCAGTAAGCATCCATGTCTTCACTGTT aaatttcatttgtattat CCTCTTCCTA*CAAACACACTGTCCGCAGACGCACT ccattgttactgcagatttctgaactgttttc TCCTGCAGTAAGCATCCATGTCTTCACTGTT ATTTCATTTGTATTATCCCTCTTCCTA*CAAACACACTGTCCGCAGACGCA tctccattgttactgcagatttctgaactgttttc CCTGCAGTAAGCATCCATGTCTTCACTGTT aat tcatttgtattatccctcttccta*caaacacactgtccgcagacgcactc CATTGTTACTGCAGATTTCTGAACTGTTTTCTTTCCTGCAGTAATCATCC gtcttcactgtt aat ttcattgtattatccctcttccta*caaacacactgtccgcagacgcactc CATTGTTACTGCAGATTTCTGAACTGTTGTCTTTCCTGCAGTAAGCATCCATGTCTTCACTGTT aaatttcatttgtattatc ctcttccta*caaacacactgtccgcagacgcactc cattgttactgcagatttctgaactgttttct CCTGCAGTAAGCATCCATGTCTTCACTGTT

Clinical and Research Genomics Spring 2021

Professor:

Christopher E. Mason, Ph.D. Ebrahim Afshinnekoo, M.D.

TA:

Chandrima Bhattacharya, M.S.

Course Over Ten Sessions:

- I. Sequencing Methods, Single-Cell Dynamics, and Molecular Detection Techniques (March 9th)
- II. RNA Sequencing, Epitranscriptomes, and Single Cell / Spatial Omics (March 16th)
- III. Epigenomes, DNA Modifications, and Chromatin Dynamics (March 23rd)
- **IV.** Metagenomes, BGCs, and Metabolomics (March 30th)
- V. Complex Genome Re-arrangements, Transposons, and Tools for Genetic Variant Calling (April 6th)
- VI. Cancer Genomics, Non-coding Regulation and Variation(April 13th)
- VII. Genome Ethics, Large Data, Small Data, and Disease Classification (April 20th)
- VIII. Systems Biology, Synthetic Biology, & Genome Engineering (April 27th)
- IX. COVID-19 Tracking and Pathophysiology (May 4th)
- X. Global Health and Beyond-Globe Health (Aerospace Medicine) (May 11th)

All classes on Zoom

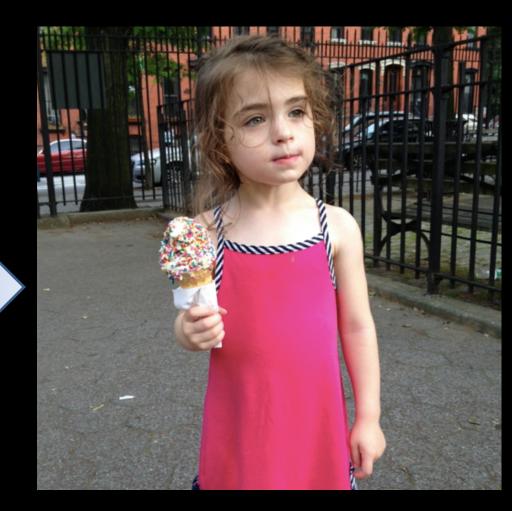
Stay updated with the course webpage:

http://physiology.med.cornell.edu/faculty/mason/lab/clinicalgenomics/schedule.html

GGAACTTGATGCTCAGAGAGGACAAGTCATTTGCCCAAGGTCACACAGCTGGC AACTGGCAGACGAGATTCACGCCCTGGCAATTTGACTCCAGAATCCTAACCTT AACCCAGAAGCACGGCTTCAAGCCCTGGAAACCACAATACCTGTGGCAGCCA GGGGGAGGTGCTGGAATCTCATTTCACATGTGGGGAGGGGGGCTCCTGTGCTC AAGGTCACAACCAAAGAGGAAGCTGTGATTAAAACCCAGGTCCCATTTGCAAA GCCTCGACTTTTAGCAGGTGCATCATACTGTTCCCACCCCTCCCATCCCACTTC CTTGCTGAGGCTGGAGTGCAGTGGCGAGATCTCGGCTCACTGTAACCTCCGCC

CTCCCATCCCACTTCTGTCCAG GAGTCCAGATCCCCAGCCC

GGACAGGGTCAGGAAAG

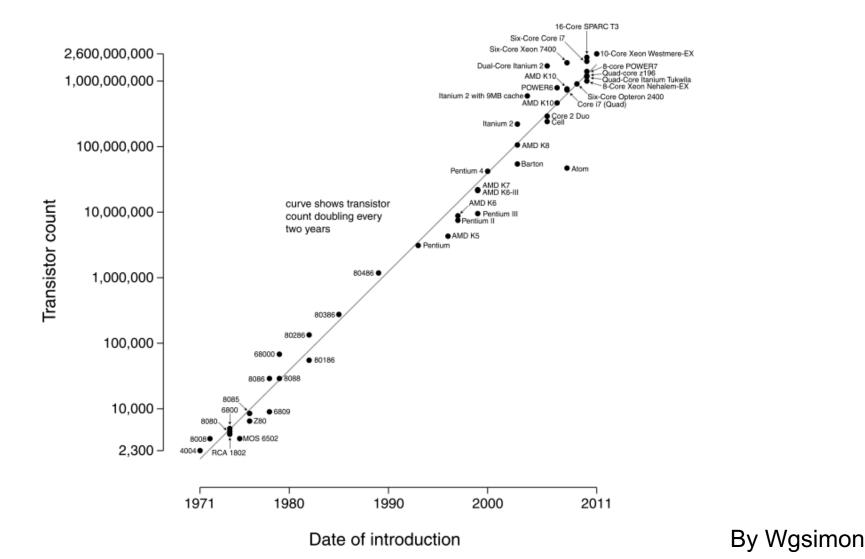

CACGCTTGGCCCCCAG

CCTCCCTTCCTGGGG

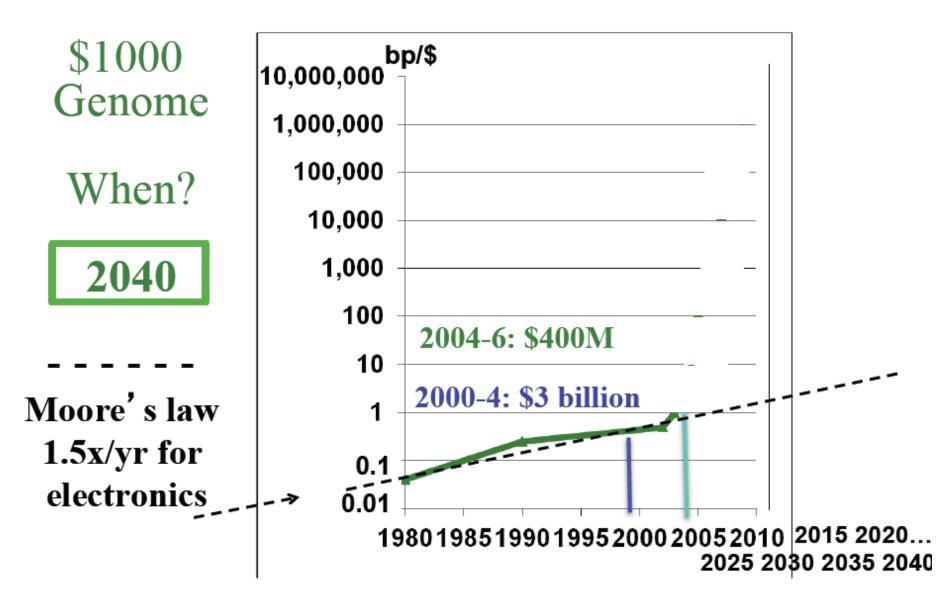
CCTTCCTCCCTCTG

GTGACTGGGCTGCC

Finish

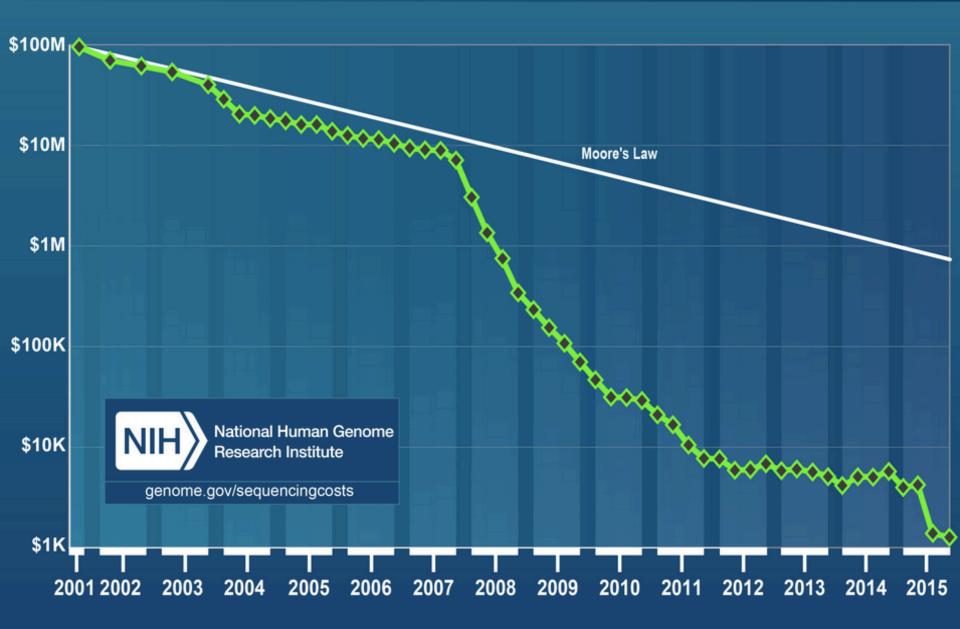

TCCCGGGTTCAAGCGATTCTCCTGCCTCAGCCTCCCAAGTAGCTAGGATTACA GGCGCCCGCCACCACGCCTGGCTAACTTTTGTATTTTAGTAGAGATGGGGTTT CACCATGTTGGCCAGGCTGGTCTCAAACTCCTGACCTTAAGTGATTCGCCCAC TGTGGCCTCCCAAAGTGCTGGGATTACAGGCGTGAGCTACCGCCCCAGCCC CTACTTTCTTTCTGGGATCCAG TTCATCCAGGCACAGGAAA CCTCCACATTCCCCCTTC TTACTGGGCGAGGTGT CTCTATGCCCCACCT GAACAGCCCACCTC GGGGGCGGGACAGG CTACTCAGCCCCAG Time

GGGAGCCCTATAAT CGGAGGTGAAGGA AGCGCAGTCGGGG GCACGGGGGATGAG GACCCTGGGAAGC CCTGGCCTCCAGGT CGGGCTTGGGGAGA GGAGGAGCGGGGGT ACCTGGGAAGGGCT GTGGGGGAGAGCAGCT GGGCAGCAGAGACGA GGACTGGGATGTAAGC GTCACTATCATTATCG AGCACCTACTGGGTGT CATAACTGGGGAGCCAG GGGCAGCGACACGGTAGC AACTTTAAAATGAGGACT GAATTAGCTCATAAATGGAACA ACTGTGAGGTTGGAGCTTAGAA TGTGAAGGGAGAATGAGGAATGCGAGACTGGGACTGAGATGGAACCGGCGGT TTTCTATGGAGGCCGACCTGGGGATGGGGGAGATAAGAGAAGACCAGGAGGGA GTTAAATAGGGAATGGGTTGGGGGGGGGGCGGCTTGGTAAATGTGCTGGGATTAGGCT GTTGCAGATAATGCAACAAGGCTTGGAAGGCTAACCTGGGGTGAGGCCGGGT TCCTTCCCCAGACTGGCCAATCACAGGCAGGAAGATGAAGGTTCTGTGGGCTG CCTGGGCCCCCTCTTCTGAGGCTTCTGTGCTGCTTCCTGGCTCTGAACAGCGAT


TTGACGCTCTCTGGGCCTCGGTTTCCCCCCATCCTTGAGATAGGAGTTAGAAGTT GTTTTGTTGTTGTTGTTGTTGTTGTTGTTGTTTTTTGAGATGAAGTCTCGCT

The effects from Moore's Law ushered in a whole new era of technology

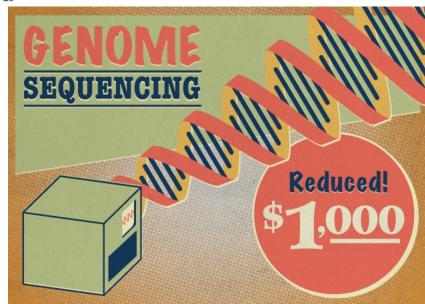
Microprocessor Transistor Counts 1971-2011 & Moore's Law



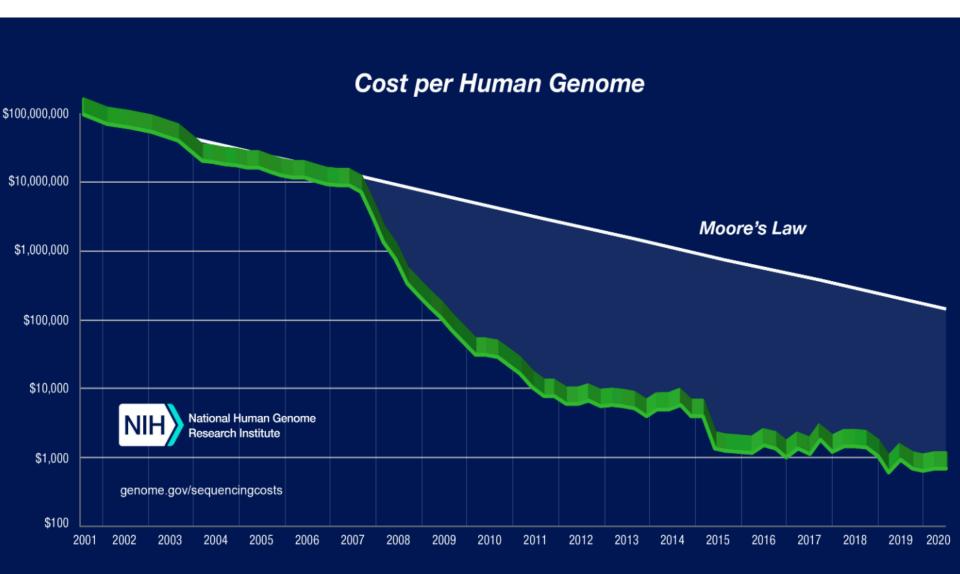
Initially we expected a \$1K Genome in 2040

George Church

Cost per Genome

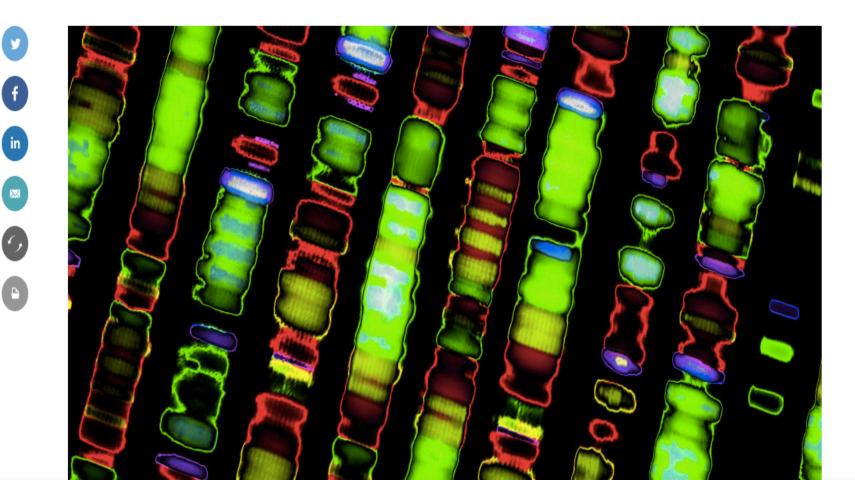

NATURE | NEWS FEATURE

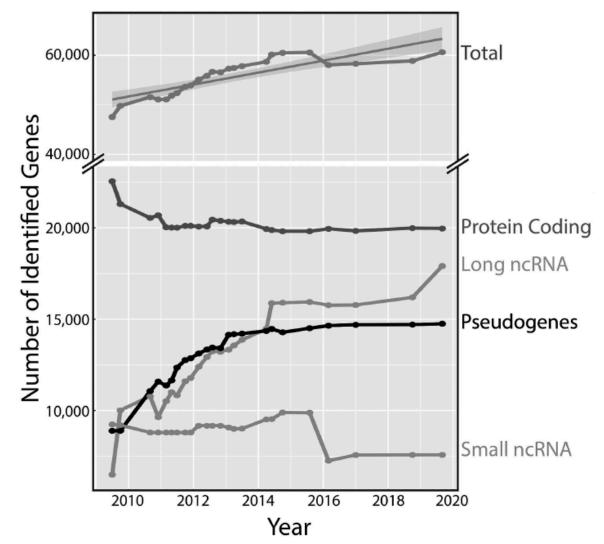
Technology: The \$1,000 genome


With a unique programme, the US government has managed to drive the cost of genome sequencing down towards a much-anticipated target.

Erika Check Hayden

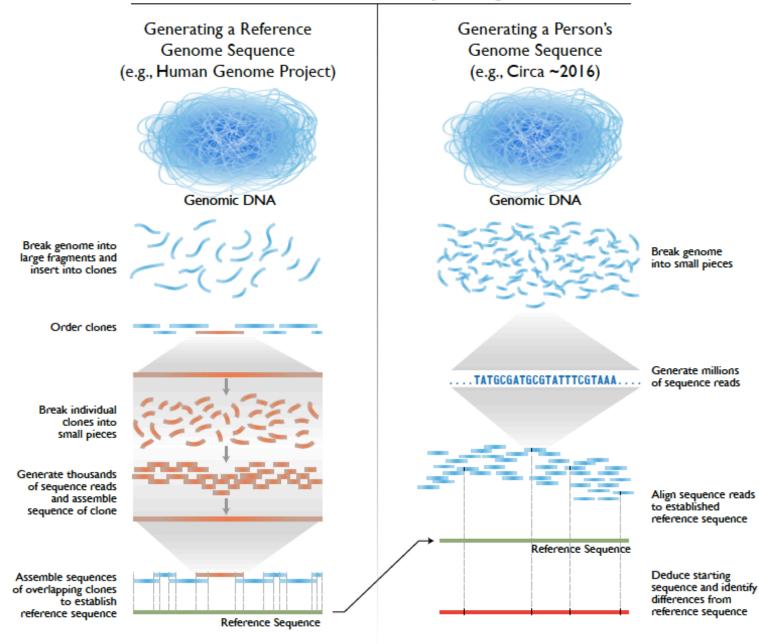
19 March 2014


Flatlined a little

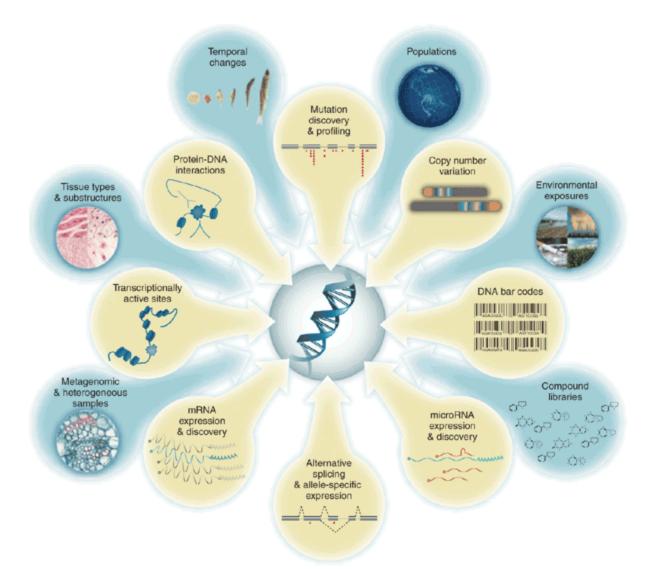


BUSINESS

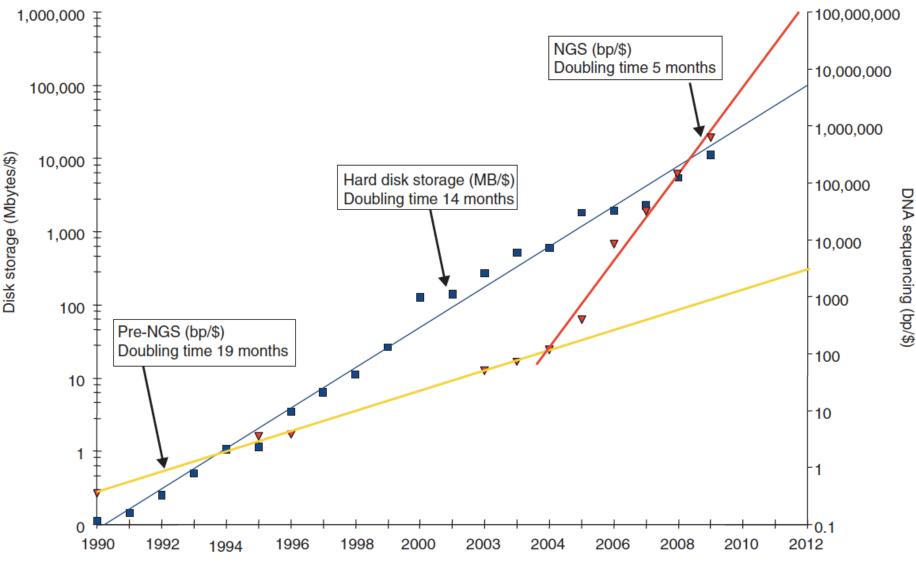
Illumina says it can deliver a \$100 genome — soon


New genes still coming

https://mitpress.mit.edu/books/next-500-years


Every Day is the Best Day

Human Genome Sequencing


https://www.genome.gov/images/illustrations/sequencing.pdf

Since DNA defines the biochemical recipe for the genesis of organisms, sequencing allows us to create molecular portraits of development and disease at single-base resolution.

Kahvejian, 2008

But, hard drive space is not keeping pace, creating a phalanx of companies aimed at the cloud

Year

Genome Medicine

Home About Articles Submission Guidelines

Declarations

Musings Open Access

References

The \$1,000 genome, the \$100,000 analysis?

412

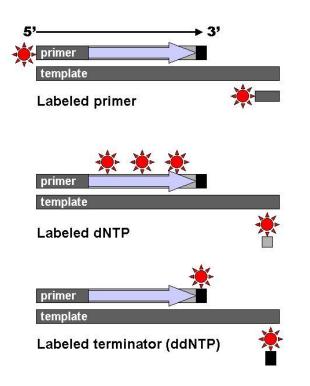
Elaine R Mardis 🔛

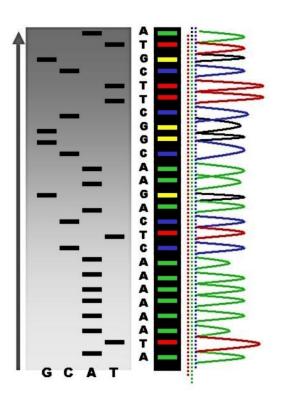
Genome Medicine 2010 2:84 https://doi.org/10.1186/gm205 © BioMed Central Ltd 2010 Published: 26 November 2010

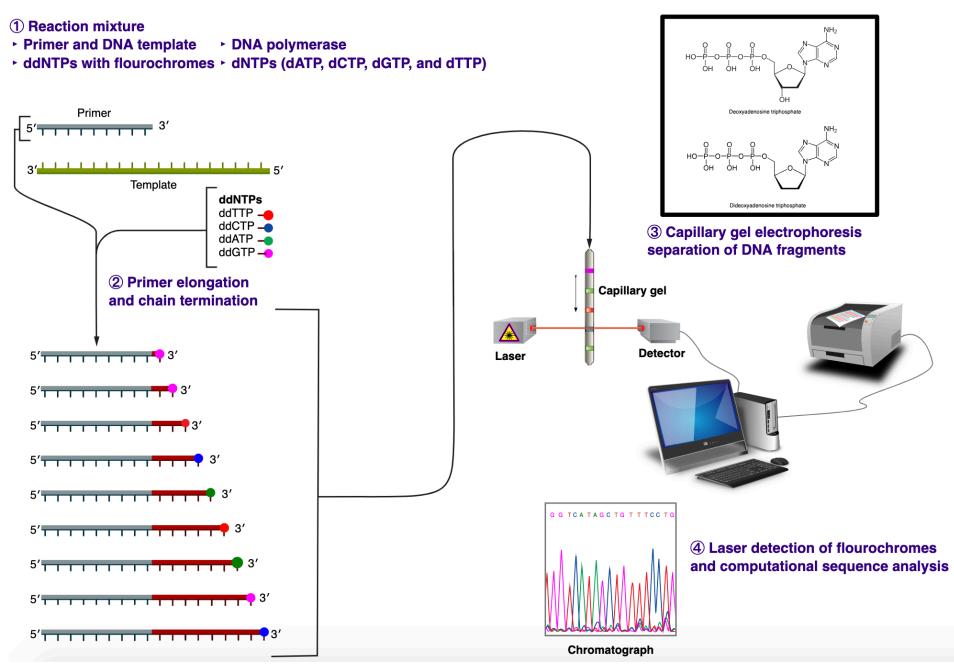
https://genomemedicine.biomedcentral.com/articles/10.1186/gm205

Sequencing Technologies

1. "Old School" dye-terminator sequencing (Sanger). 300-1000bp


2. "New School" methods


- a. Emulsion PCR Pyrosequencing
- b. Solid-phase amplification sequencing by synthesis (clonal or single molecule)
- c. Sequencing by ligation
- d. Single-molecule, real-time (SMRT) sequencing
- e. Electrical sequencing



Sequencing Technologies

1. "Old School" dye-terminator sequencing (Sanger). 300-1000bp

By 2009, many options emerged

Platform	Library/ template preparation	NGS chemistry	Read length (bases)	Run time (days)	Gb per run	Machine cost (US\$)	Pros	Cons	Biological applications	Refs
Roche/454's GS FLX Titanium	Frag, MP/ emPCR	PS	330*	0.35	0.45	500,000	Longer reads improve mapping in repetitive regions; fast run times	High reagent cost; high error rates in homo- polymer repeats	Bacterial and insect genome <i>de novo</i> assemblies; medium scale (<3 Mb) exome capture; 16S in metagenomics	D. Muzny, pers. comm.
Illumina/ Solexa's GA _{II}	Frag, MP/ solid-phase	RTs	75 or 100	4‡, 9§	18‡, 35§	540,000	Currently the most widely used platform in the field	Low multiplexing capability of samples	Variant discovery by whole-genome resequencing or whole-exome capture; gene discovery in metagenomics	D. Muzny, pers. comm.
Life/APG's SOLiD 3	Frag, MP/ emPCR	Cleavable probe SBL	50	7‡, 14§	30‡, 50§	595,000	Two-base encoding provides inherent error correction	Long run times	Variant discovery by whole-genome resequencing or whole-exome capture; gene discovery in metagenomics	D. Muzny, pers. comm.
Polonator G.007	MP only/ emPCR	Non- cleavable probe SBL	26	5 [§]	12 [§]	170,000	Least expensive platform; open source to adapt alternative NGS chemistries	Users are required to maintain and quality control reagents; shortest NGS read lengths	Bacterial genome resequencing for variant discovery	J. Edwards, pers. comm.
Helicos BioSciences HeliScope	Frag, MP/ single molecule	RTs	32*	8 [‡]	37‡	999,000	Non-bias representation of templates for genome and seq-based applications	High error rates compared with other reversible terminator chemistries	Seq-based methods	91
Pacific Biosciences (target release: 2010)	Frag only/ single molecule	Real-time	964*	N/A	N/A	N/A	Has the greatest potential for reads exceeding 1 kb	Highest error rates compared with other NGS chemistries	Full-length transcriptome sequencing; complements other resequencing efforts in discovering large structural variants and haplotype blocks	S. Turner, pers. comm.

Michael Metzker, 2010

Then, by 2014, an ecosystem of options erupted

Table 1: Types of High-Throughput Sequencing Technologies

Optical Sequencing							
Platform	Instrument	Template Preparation	Chemistry	Avearge Length	Longest Read		
Illumina	HiSeq2500	BridgePCR/cluster	Rev. Term., SBS	100	150		
Illumina	HiSeq2000	BridgePCR/cluster	Rev. Term., SBS	100	150		
Illumina	MiSeq	BridgePCR/cluster	Rev. Term., SBS	250	300		
GnuBio	GnuBio	emPCR	Hyb-Assist Sequencing	1000*	64,000*		
Life Technologies	SOLiD 5500	emPCR	Seq. by Lig.	75	100		
LaserGen	LaserGen	emPCR	Rev. Term., SBS	25*	100*		
Pacific Biosciences	RS	Polymerase Binding	Real-time	1800	15,000		
454	Titanium	emPCR	PyroSequencing	650	1100		
454	Junior	emPCR	PyroSequencing	400	650		
Helicos	Heliscope	adaptor ligation	Rev. Term., SBS	35	57		
Intelligent BioSystems	MAX-Seq	Rolony amplification	Two-Step SBS (label/unlabell)	2x100	300		
Intelligent BioSystems	MINI-20	Rolony amplification	Two-Step SBS (label/unlabell)	2x100	300		
ZS Genetics	N/A	Atomic Lableing	Electron Microscope	N/A	N/A		
Halcyon Molecular N/A		N/A	Direct Observation of DNA	N/A	N/A		

Electical Sequencing							
Platform	Instrument	Template Preparation	Chemistry	Avearge Length	Longest Read		
IBM DNA Transistor	N/A	none	Microchip Nanopore	N/A	N/A		
NABsys	N/A	none	Nanochannel	N/A	N/A		
Bionanogenomics	N/A	anneal 7mers	Nanochannel	N/A	N/A		
Life Technologies	PGM	emPCR	Semi-conductor	150	300		
Life Technologies	Proton	emPCR	Semi-conductor	120	240		
Life Technologies	Proton 2	emPCR	Semi-conductor	400*	800*		
Genia	N/A	none	Protein nanopore (a-hemalysin)	N/A	N/A		
Oxford Nanopore	MinION	none	Protein Nanopore	10,000	10,000*		
Oxford Nanopore	GridION 2K	none	Protein Nanopore	10,000	500,000*		
Oxford Nanopore	GridION 8K	none	Protein Nanopore	10,000	500,000*		

*Values are estimates from companies that have not yet released actual data

Mason, Porter, Smith, 2014

Coming of age: ten years of nextgeneration sequencing technologies

Sara Goodwin¹, John D. McPherson² and W. Richard McCombie¹

Abstract | Since the completion of the human genome project in 2003, extraordinary progress has been made in genome sequencing technologies, which has led to a decreased cost per megabase and an increase in the number and diversity of sequenced genomes. An astonishing complexity of genome architecture has been revealed, bringing these sequencing technologies to even greater advancements. Some approaches maximize the number of bases sequenced in the least amount of time, generating a wealth of data that can be used to understand increasingly complex phenotypes. Alternatively, other approaches now aim to sequence longer contiguous pieces of DNA, which are essential for resolving structurally complex regions. These and other strategies are providing researchers and clinicians a variety of tools to probe genomes in greater depth, leading to an enhanced understanding of how genome sequence variants underlie phenotype and disease.

Genomics England is delivering the **100,000 Genomes Project.**

We are creating a new genomic medicine service with the NHS – to support **better diagnosis and better treatments** for patients. We are also enabling medical research.

More information about the 100,000 Genomes Project

News story

Genome sequencing project reaches the halfway mark

50,000 human genomes have now been sequenced from patients with cancer or rare diseases, under the 100,000 Genomes Project.

Published 28 February 2018

https://www.genomicsengland.co.uk/

Health Information Grants & Funding News & Events Research & Training In Home » Research & Training » All of Us Research Program ALL OF US SM RESEARCH PROGRAM In

All of Us Research Program

Scale and Scope

Participation

Program Components

Funding

FAQ

Advisory Groups

Events

Announcements

In the News

Multimedia

October 12, 2016

PMI Cohort Program announces new name: the All of Us Research Program

The Precision Medicine Initiative[®] (PMI) Cohort Program will now be called the *All of Us* Research Program and will be the largest health and medical research program on precision medicine. A set of core values is guiding its development and implementation:

- Participation is open to all.
- Participants reflect the rich diversity of the U.S.
- Participants are partners.

1 million U.S. Veterans WGS

ORD Home

- About Us
- Services
- Programs

See All Programs

Animal Research

Biosafety & Biosecurity

 Cooperative Studies Program (CSP)

Health Disparities & Minority Health

Million Veteran Program (MVP)

Million Veteran Program (MVP)

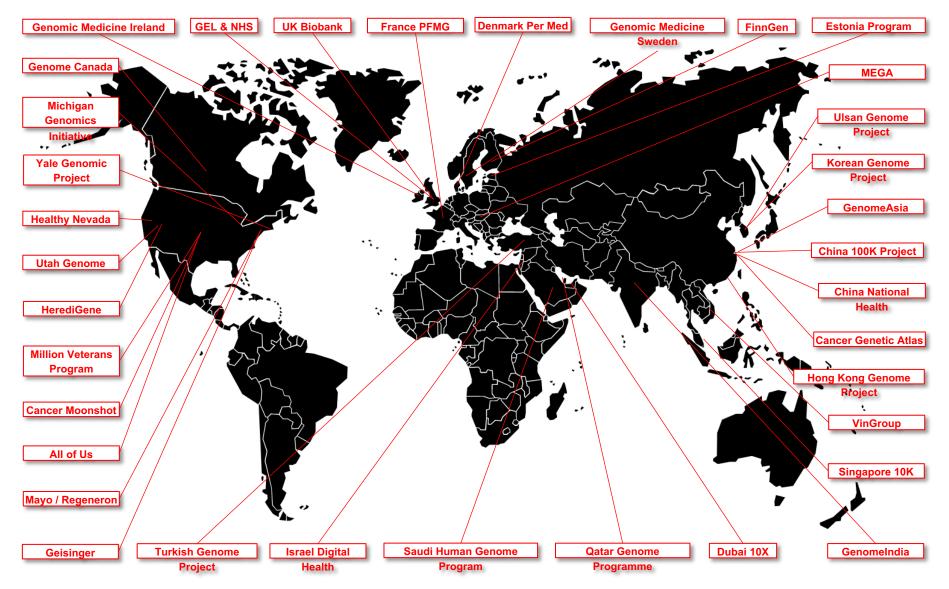
MVP is a national, **voluntary** research program funded entirely by the Department of Veterans Affairs Office of Research & Development. The goal of MVP is to partner with Veterans receiving

their care in the VA Healthcare System to study how genes affect health. To do this, MVP will build one of the world's largest medical databases by safely collecting blood samples and health information from one million Veteran volunteers. Data collected from MVP will be stored anonymously for research on diseases like diabetes and cancer, and military-related illnesses, such as post-traumatic stress disorder. Learn more.

Frequently Asked Questions

- How do I participate?
- Do I need to schedule an appointment to participate?

Text size: ± -


CONTACT MVP

Contact the MVP Information Center toll-free at:

866-441-6075

INFORMED CONSENT

POPULATION-SCALE NGS 2020 IS GLOBAL

NHS to trial blood test to detect more than 50 forms of cancer

Researchers hopes Galleri trial will be a 'gamechanger' for early diagnosis and save many lives

▲ The Galleri blood test will be offered to 165,000 people in England from mid-2021, the vast majority of whom have no signs of the disease. Photograph: Jacqueline Larma/AP

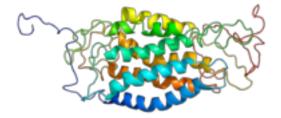
Offered to 165,000 people in England from mid-2021, with no signs of disease.

Followed through 2023; If successful, move on to test 1M people in 2024-2025.

https://www.theguardian.com/science/2020/nov/27/nhs-to-trial-blood-test-to-detect-more-than-50-forms-of-cancer

Specific genes can have significant impact

Myostatin (MSTN) homozygous nulls (-/-) give lean and large muscles



http://thevoiceofnetizen.blogspot.com

Low density lipoprotein receptor 5 (LRP5) heterozygotes (+/-) can have strong bones

C-C chemokine receptor type 5 (CCR5) homozygous nulls (-/-) have HIV protection

Constitutional CHEK2 mutations are associated with a decreased risk of lung and laryngeal cancers

Cezary Cybulski*, Bartłomiej Masojć, Dorota Oszutowska, Ewa Jaworowska¹, Tomasz Grodzki², Piotr Waloszczyk², Piotr Serwatowski², Juliusz Pankowski², Tomasz Huzarski, Tomasz Byrski, Bohdan Górski, Anna Jakubowska, Tadeusz Dębniak, Dominika Wokołorczyk, Jacek Gronwald, Czesława Tarnowska¹, Pablo Serrano-Fernández, Jan Lubiński and Steven A.Narod³

International Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University, ul. Połabska 4, 70-115 Szczecin, Poland, ¹Department of Otolaryngology and Laryngological Oncology, Pomeranian Medical University, ul.Unii Lubelskiej, 71–252 Szczecin, Poland, ²Lung Diseases Hospital, ul. Sokołowskiego 11, 70–891 Szczecin, Poland and ³Women's College Research Institute, Toronto, Ontario M5G IN8, Canada

*To whom correspondence should be addressed. Tel: +48 91 466 1532; Fax: +48 91 466 1533; Email: cezarycy@sci.pam.szczecin.pl

Mutations in the CHEK2 gene have been associated with increased risks of breast, prostate and colon cancer. In contrast, a previous report suggests that individuals with the I157T missense variant of the CHEK2 gene might be at decreased risk of lung cancer and upper aero-digestive cancers. To confirm this hypothesis, we genotyped 895 cases of lung cancer, 430 cases of laryngeal cancer and 6391 controls from Poland for four founder alleles in the CHEK2 gene, each of which has been associated with an increased risk of cancer at several sites. The presence of a CHEK2 mutation was protective against both lung cancer [odds ratio (OR) = 0.3; 95%confidence interval (CI) 0.2–0.5; $P = 3 \times 10^{-8}$] and laryngeal cancer (OR = 0.6; 95% CI 0.3–0.99; P = 0.05). The basis of the protective effect is unknown, but may relate to the reduced viability of lung cancer cells with a CHEK2 mutation. Lung cancers frequently possess other defects in genes in the DNA damage response pathway (e.g. p53 mutations) and have a high level of genotoxic DNA damage induced by tobacco smoke. We speculate that lung cancer cells with impaired CHEK2 function undergo increased rates of cell death.

Introduction

Germ line mutations in *CHEK2* have been associated with a range of cancer types, in particular of the breast and the prostate, but cancers of

of Brennan *et al.* We have extended our series of lung cancer cases from 272 to 895 and our control sample from 4000 to 6391. We have also identified a fourth deleterious *CHEK2* allele (a large deletion of exons 9 and 10). Because smoking is the principal risk factor for lung cancer in Poland and elsewhere, we asked whether the protective effect of *CHEK2* might extend to laryngeal cancer patients as well.

Materials and methods

We studied 895 unselected cases of lung cancer (226 women and 669 men) diagnosed in the Lung Diseases Hospital in Szczecin, Poland, between 2004 and 2006. We also ascertained 430 consecutive, unselected patients with squamous cell carcinoma of the larynx (70 women and 360 men) at Department of Otolaryngology and Laryngological Oncology of the Pomeranian Medical University, Szczecin, Poland, during the period 2001-2004. Patients were recruited from the oncology services of the contributing hospitals and were unselected for age or family history. Patients were approached by a member of the study team during an outpatient visit to the oncology clinic and were asked if they wished to participate. Patient acceptance rates exceeded 80% for both cancer sites. Patients provided written informed consent. A blood sample of 10 cc was then drawn for DNA extraction. Two hundred and seventy-two of the lung cancer patients have been included in our previous study (5). The mean age of diagnosis of the lung cancer patients was 61.4 years (range 29-88 years) and of the laryngeal cancer patients was 58.2 years (range 30-84). Patients completed a questionnaire about their smoking habits at the time of cancer diagnosis. Smoking histories were available for 818 of 895 (91%) lung cancer cases and for 387 of 430 (90%) laryngeal cancer cases. The study was approved by the Ethics Committee of the Pomeranian Medical University in Szczecin.

Unmatched analysis

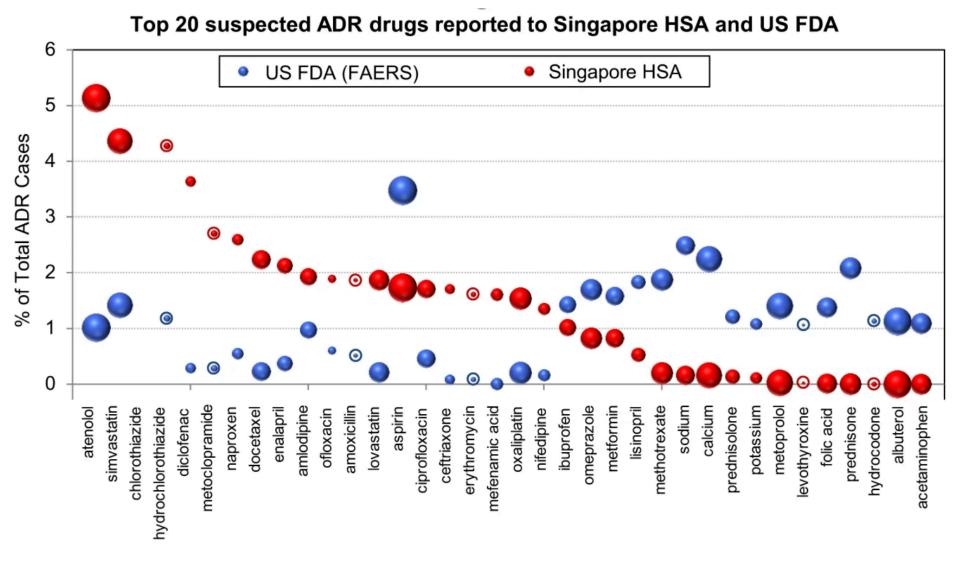
In the unmatched analysis, four non-overlapping control groups were combined in order to maximize the number of controls.

The first control group of 1896 healthy adults, including 1079 women (age range 15–91, mean 58.3) and 817 men (age range 23–90, mean 59.4). These controls were selected at random from the computerized patient lists of five large family practices located in the region of Szczecin. These healthy adults were invited to participate by mail and participated in 2003 and 2004. Participation rates for this group exceeded 70%. During the interview, the goals of the study were explained, informed consent was obtained, genetic counselling was given and a blood sample was taken for DNA analysis. A detailed family history of cancer was taken (first- and second-degree relatives included). Probands were included regardless of their cancer family history status. Individuals affected with any malignancy were excluded from the study.

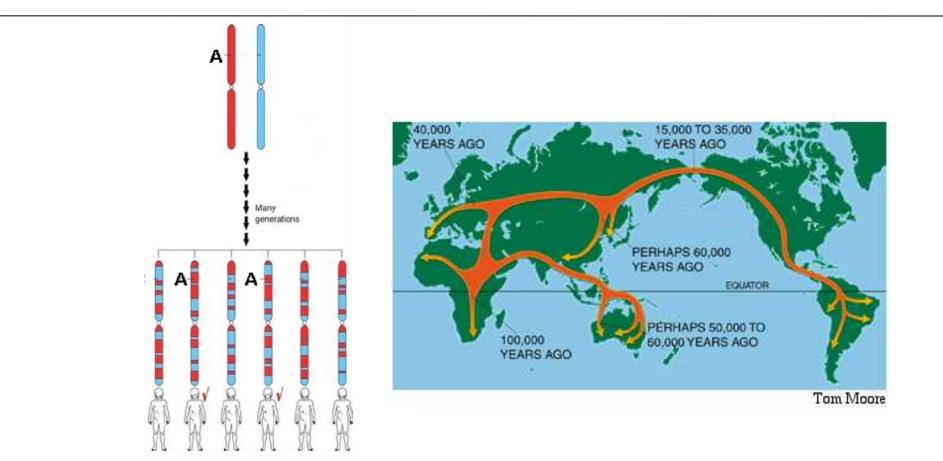
The second control group consisted of 1417 unselected young adults (705 women and 712 men; age range 18–35, mean 24.3) from Szczecin metropolitan region who submitted a blood sample for paternity testing between 1994 and 2001.

The third control group consisted of 2183 children from nine cities in Poland

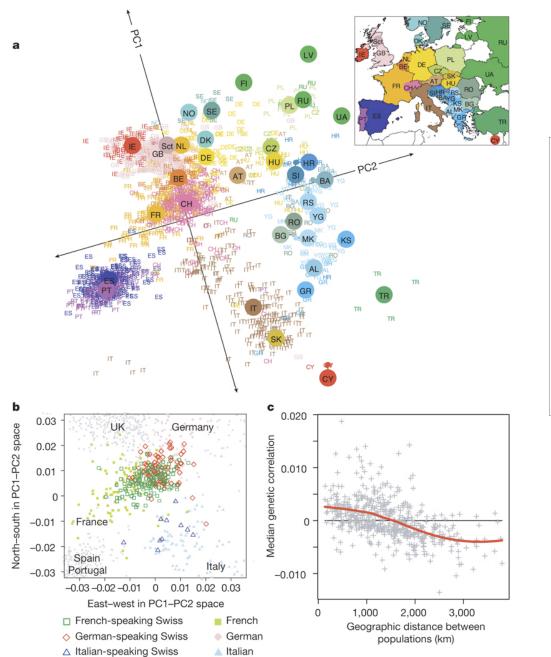
The Pharmacogenomics Journal

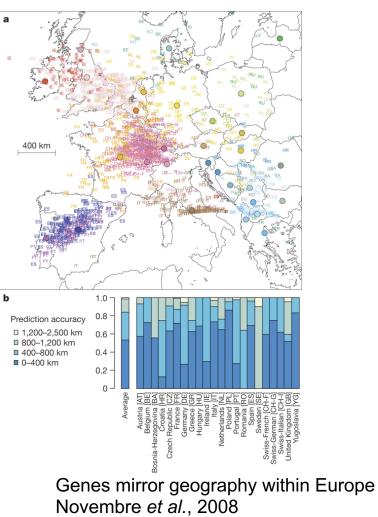

Article Open Access Published: 03 October 2019

Towards precision medicine: interrogating the human genome to identify drug pathways associated with potentially functional, populationdifferentiated polymorphisms


Maulana Bachtiar, Brandon Nick Sern Ooi, Jingbo Wang, Yu Jin, Tin Wee Tan, Samuel S. Chong & Caroline G. L. Lee [™]

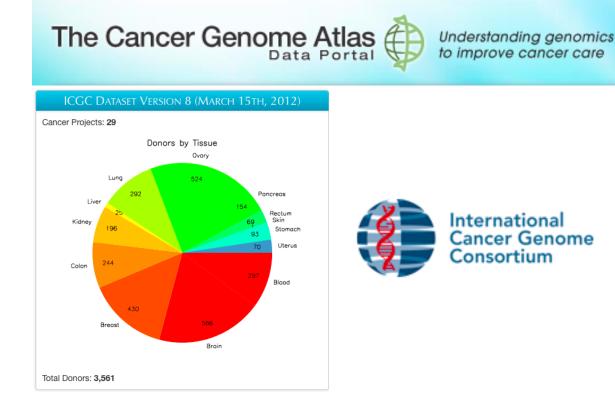
The Pharmacogenomics Journal (2019)□ Download Citation ±7 Accesses22 AltmetricMetrics ≫


https://www.nature.com/articles/s41397-019-0096-y

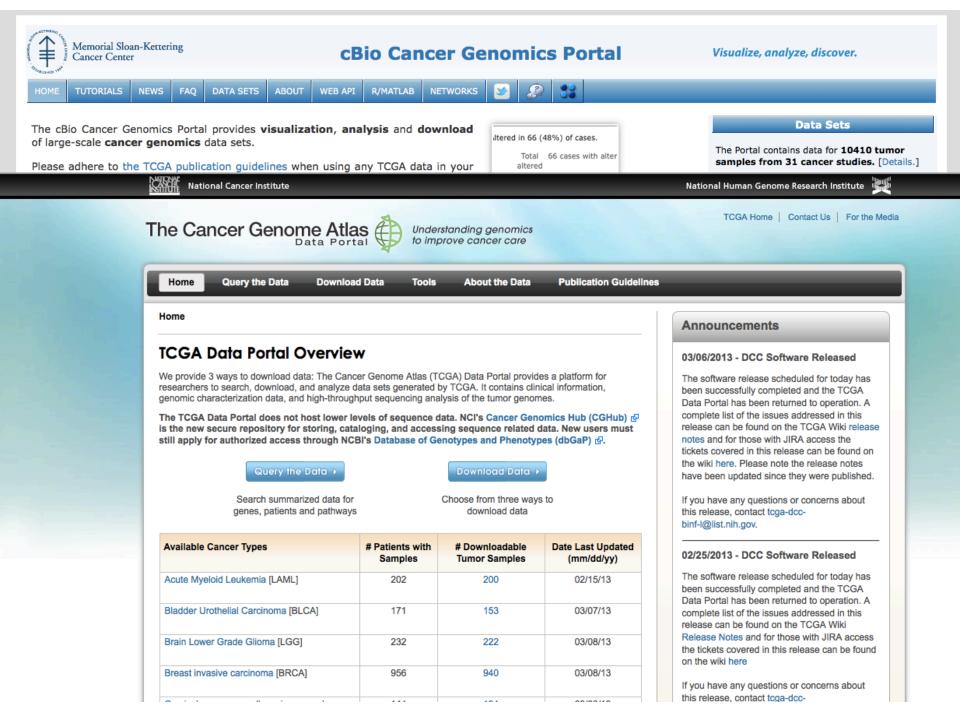


Our genes come from the migration patterns of haplotypes throughout human history ("Population Stratification")

Genotype data can even predict your birthplace

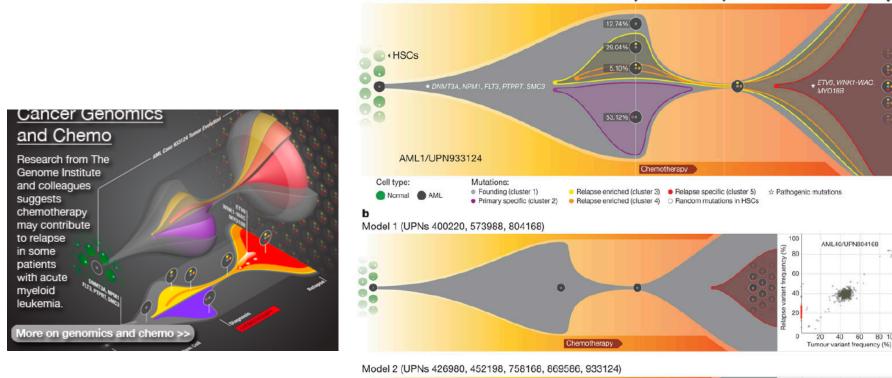


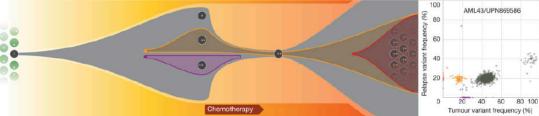
Large impact for normal genomes and diseases, especially cancer


1000 Genomes

A Deep Catalog of Human Genetic Variation

ICGC Goal: To obtain a comprehensive description of genomic, epigenomic, and transcriptomic (GET) changes in 50 different tumor types and/or subtypes which are of clinical and societal importance across the globe.


We can also observe the dynamics and evolution of cancers


Clonal fractions at initial diagnosis

Day 170

First relapse

40 60 80 100

Ding L, et.al, Clonal evolution in relapsed acute myeloid leukemia revealed by whole-genome sequencing. Nature. 2012 Jan 11:481(7382):506-10.

And look beyond just humans

Genome 10K Project

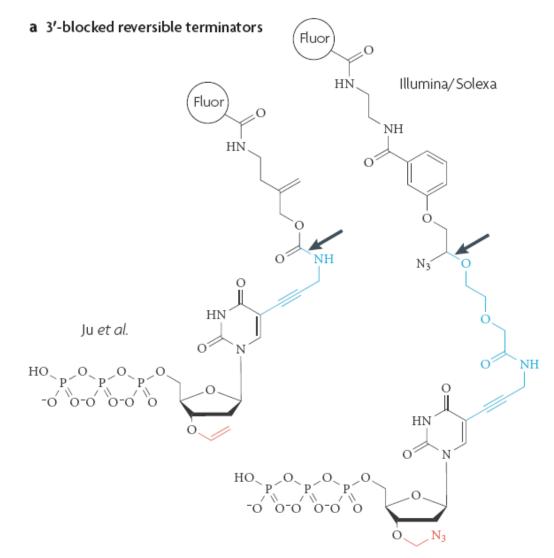
To understand how complex animal life evolved through changes in DNA and use this knowledge to become better stewards of the planet

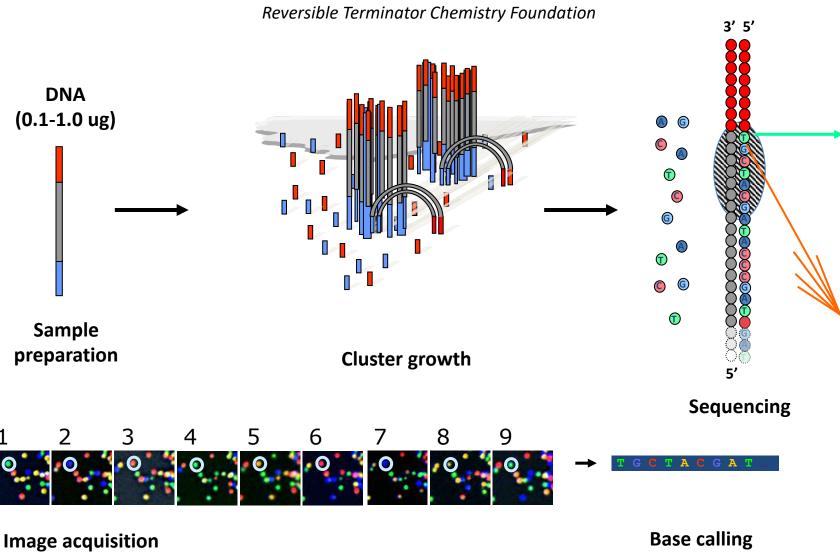
The Genome 10K project: Assembling a "Noah's Ark" of genomic data to save dying species.

https://genome10k.soe.ucsc.edu/

https://www.hgsc.bcm.edu/i5k-pilot-project-summary

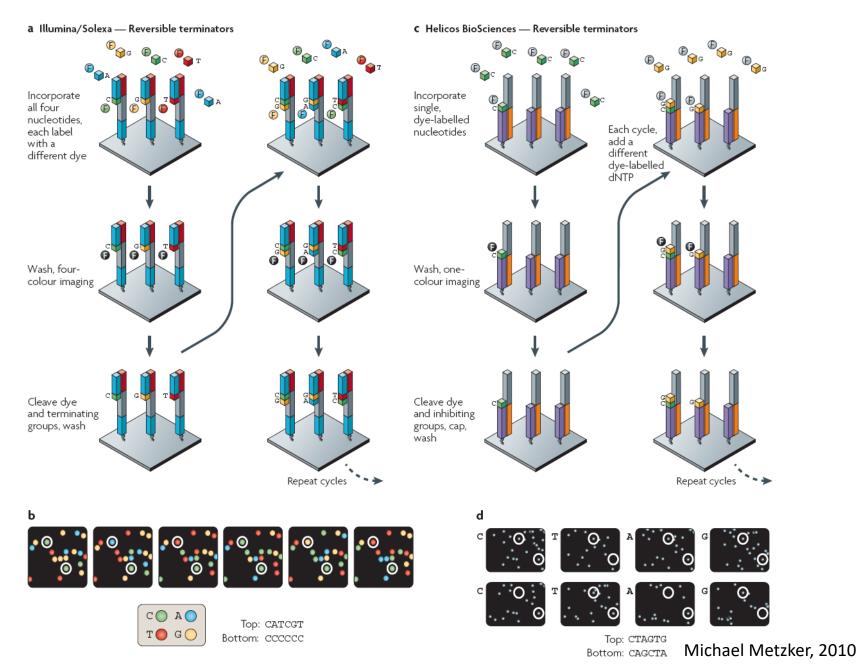
Plants as well!




http://ldl.genomics.cn/page/pa-research.jsp

Consideration of WGS for each platform

Reversible Terminator Bases are Essential Technology Used in Many Chemistries

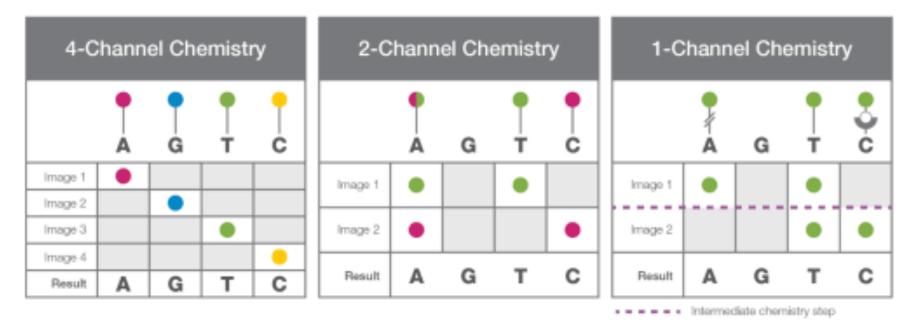
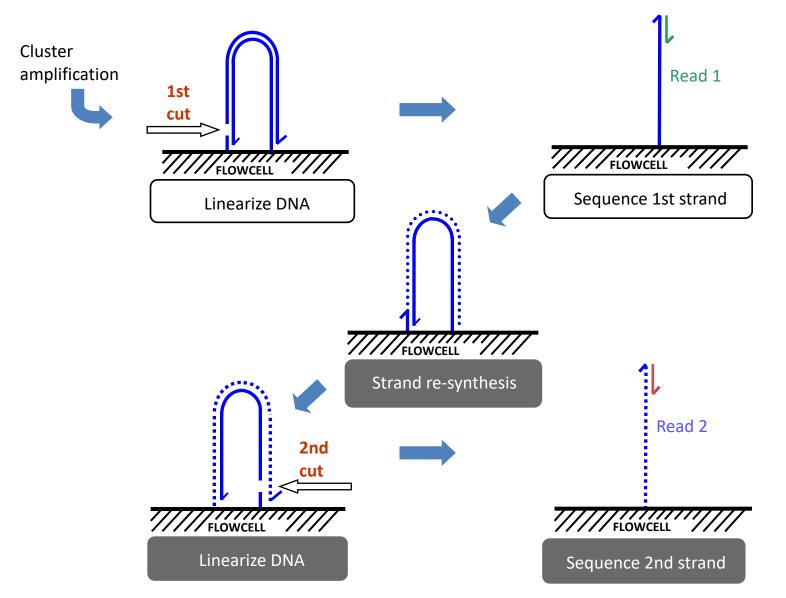


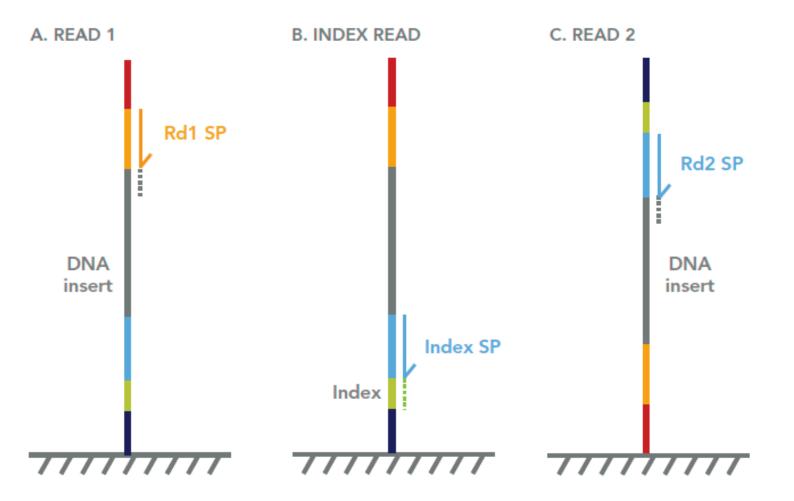
Illumina SBS Technology

http://www.illumina.com/technology/sequencing_technology.ilmn

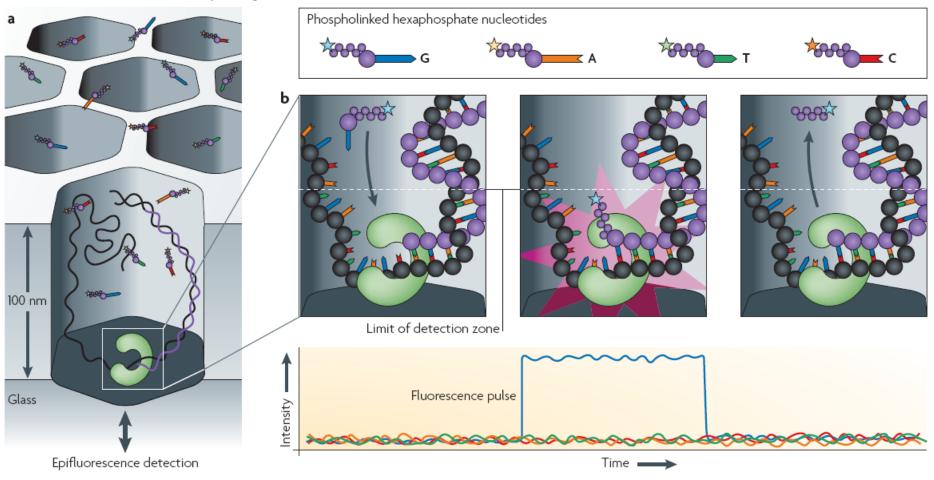
Sequencing by Synthesis (SBS)

Now three kinds of chemistry


Figure 2: Four-, Two-, and One-Channel Chemistry — Four-channel chemistry uses a mixture of nucleotides labeled with four different fluorescent dyes. Two-channel chemistry uses only one dye. The images are processed by image analysis software to determine nucleotide identity.

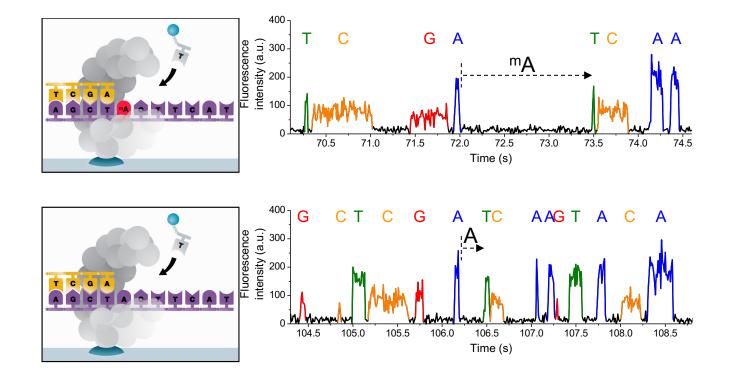
Paired-End Sequencing allows for two looks at a sequence


© Illumina, Inc.

Indexed sequencing method is now standard for single and paired reads

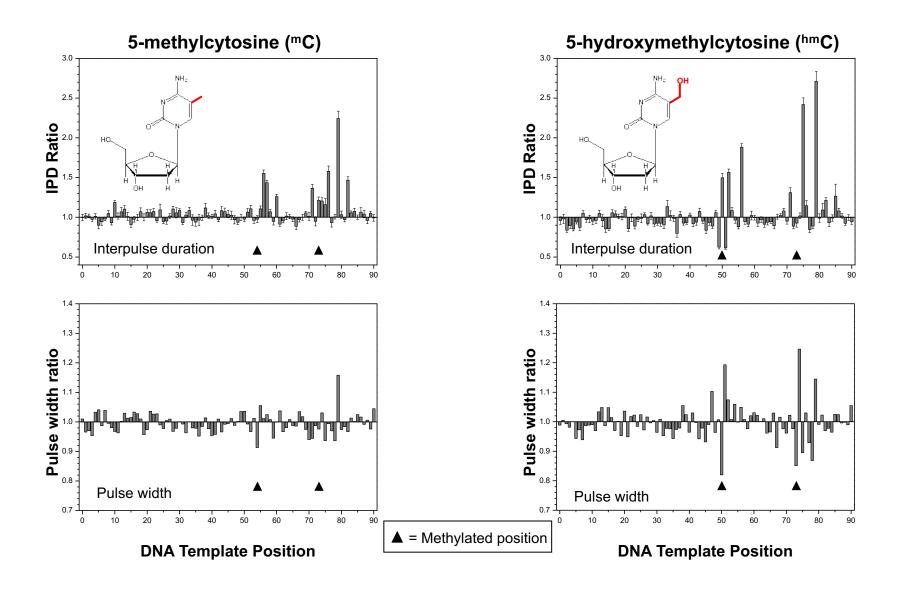
Pacific Biosciences Single Molecule Real-Time (SMRT) Sequencing

Pacific Biosciences — Real-time sequencing

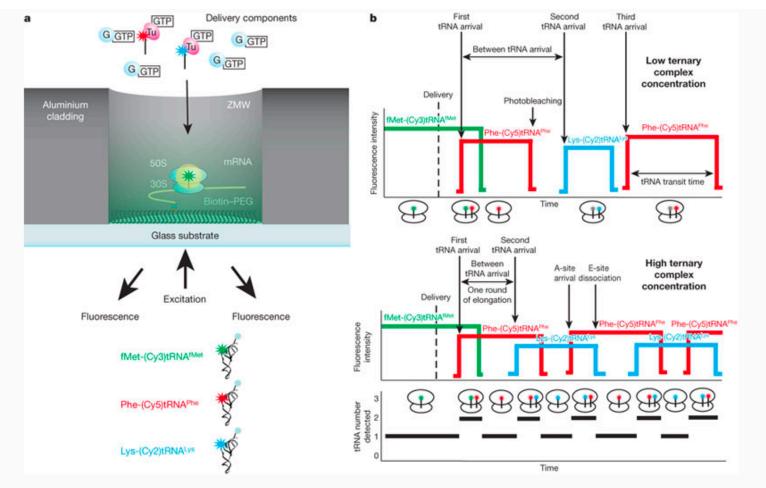


https://www.pacb.com/videos/video-overview-of-smrt-technology/

Single Molecule Kinetics Allow for the Direct Detection of Methylation

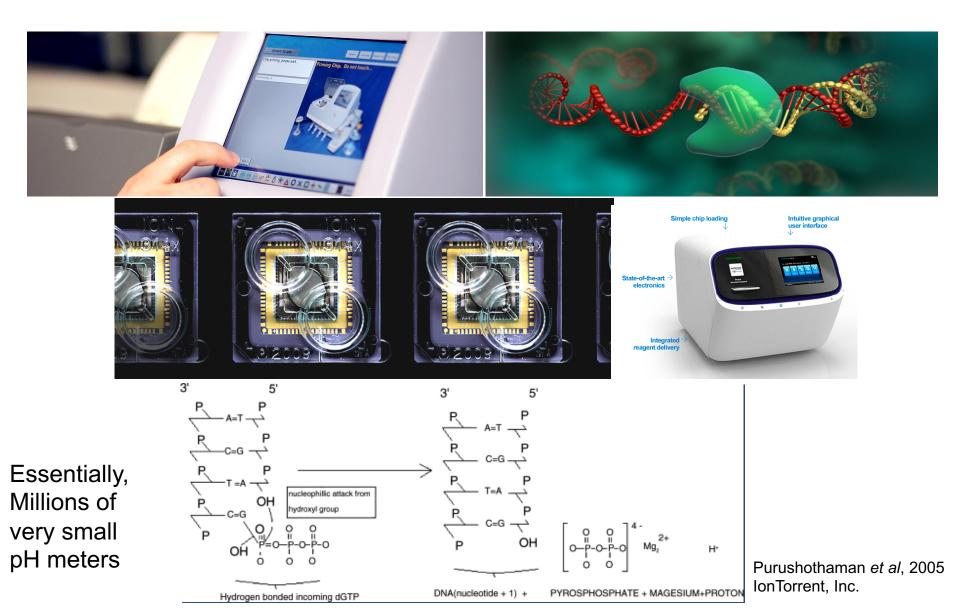

Approach: Kinetic detection of methylated bases during SMRT DNA sequencing

Example: N⁶-methyladenosine (^mA)



Flusberg et al., 2010.

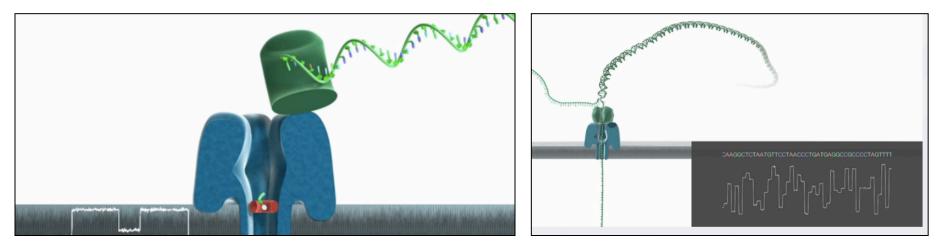
Kinetics can detect other base modifications

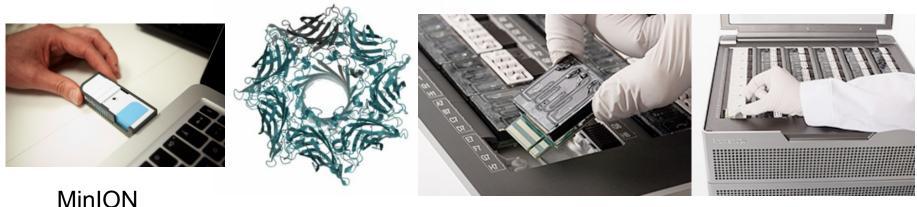

Kinetics allow one to watch protein translation as it occurs

Uemura et al., 2010

"Post-Light," Semi-Conductor Sequencing:

Thermo Fisher's Personal Genome Machine (PGM), the Proton I and Proton II, and S5


Latest Ion Platforms Thermo Fisher's Ion S5 & S5 XL



2014:Sequencing with a protein nanopore

Exonuclease-Seq

Strand-Seq

PromethION

2021

Products & Services

Sequencing platforms

Learn more

Consumables

Flow cells

Research

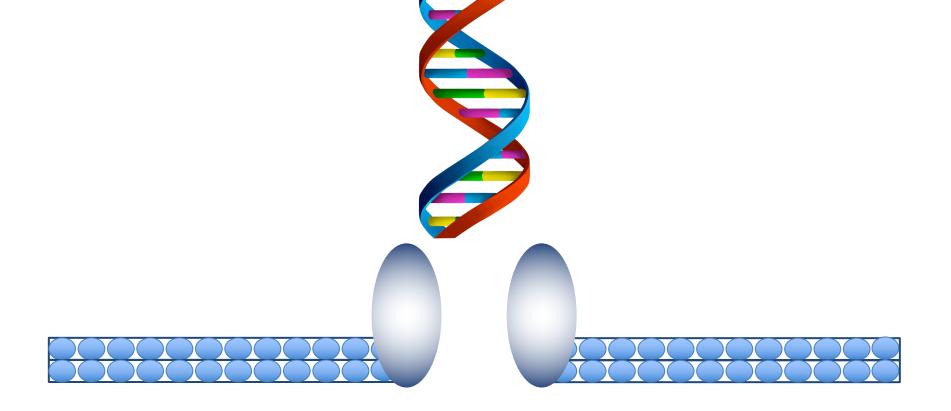
>

Real-time DNA and RNA sequencing — from portable to high-throughput devices.

IVD testing

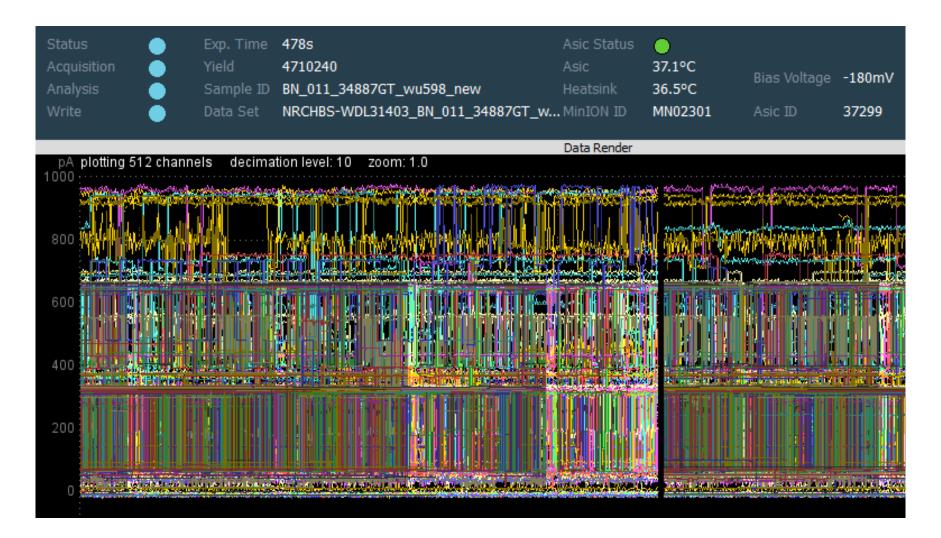
LamPORE – rapid, low-cost, highly scalable detection of SARS-CoV-2.

Q-Line


>

Locked-down, research-validated devices for applied sequencing applications.

https://nanoporetech.com/


They are small

Meyer et al., Cell, 2012 | Saletore et al., Genome Biology, 2012 | McIntyre et al., 2015

Base space is now "squiggle space"

You can do it anywhere

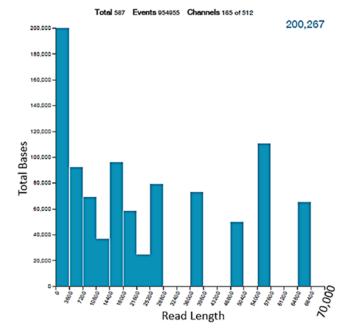
Letter | Published: 03 February 2016

Real-time, portable genome sequencing for Ebola surveillance

Joshua Quick, Nicholas J. Loman[™] […] Miles W. Carroll

Nature **530**, 228–232 (11 February 2016) | Download Citation *↓*

https://www.nature.com/articles/nature16996



Lake Fryxell, Antarctica Scott Tighe

Sequencing HW DNA in the field with the Oxford Nanopore Sarah Johnson (PI) expedition G062 team

J Biomol Tech, 2017 Apr : jbt.17-2801-009. Published online 2017 Mar 22. doi: 10.7171/jbt.17-2801-009

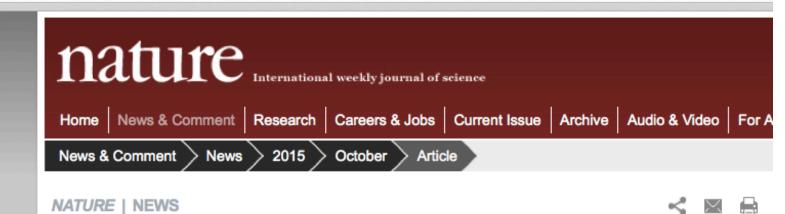
Real-Time DNA Sequencing in the Antarctic Dry Valleys Using the Oxford Nanopore Sequencer

Sarah S. Johnson, ^{1,2,*} Elena Zaikova,¹ David S. Goerlitz,³ Yu Bai,¹ and Scott W. Tighe⁴ Autor Information E Copyright and Ucerse Information E

Abstract

PMCID: PMC5362188

ARTICLE


Genomic Methods and Microbiological Technologies for Profiling Novel and Extreme Environments for the Extreme Microbiome Project (XMP)

Scott Tigbe,^{1,,1} Ebrahim Afshinnelsoo,^{2,3,4, *} Tara M. Roch,⁵ Ken McGrath,⁶ Noah Alexandee,^{2,3} Alexa McInyre,^{3,5} Sefia Ahsanuddin,^{3,5} Daniela Beadan,^{3,5} Stefan J. Green,⁷ Samantha Joye,⁴ Sarah Stewart Johnson,⁹ Don A. Baldwin,¹⁰ Nathan Birens,¹¹ Nadim Ajami,^{12,13} Joseph R. Carrinold,^{2,13} Lan Charold Herriott,⁴⁴ Kita Coluvell,¹⁵ Mohamed Donia,¹⁶ Jonathan Foox,^{2,3,17} Nick Greenfield,¹⁸ Tim Hunter,¹ Jessica Hoffman,¹ Joshua Hyman,¹⁹ Ellen Jorgensen,²⁰ Diana Krawczyk,²⁷ Jodie Lee,²² Sharen Levy,²⁵ Nathlia Garcia-Reyero,²⁴ Matthew Settles,²⁵ Kelley Thomas,³⁶ Felipe Gómez,⁷⁷ Lynn Schrint,^{20,20} Nikos Kyrpides,³⁰ Elena Zaikova,⁸ Jon Penterman,¹⁴ and Christopher F. Mason^{3,2,324}

Zero-G Pipetting: Hardest Lab Job Ever

Dr. Andrew Feinberg

E

Zero-gravity genomics passes first test

Two experiments demonstrate sample transfer and sequencing in a low-gravity environment.

Chris Cesare

13 October 2015

🔍 Rights & Permissions

After 160 swoops in NASA's zero-gravity aeroplane, researchers have the first evidence that genetic sequencing can be done in space.

MENU 🗸

Login

13

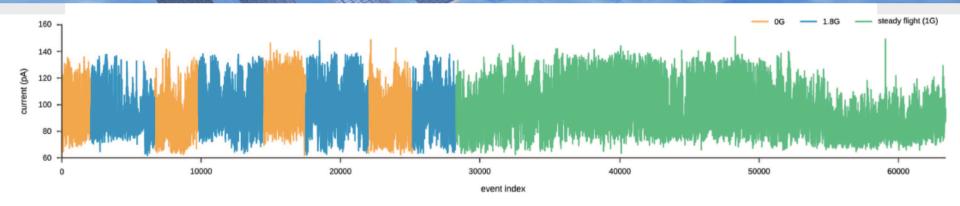
 \times

E-alert

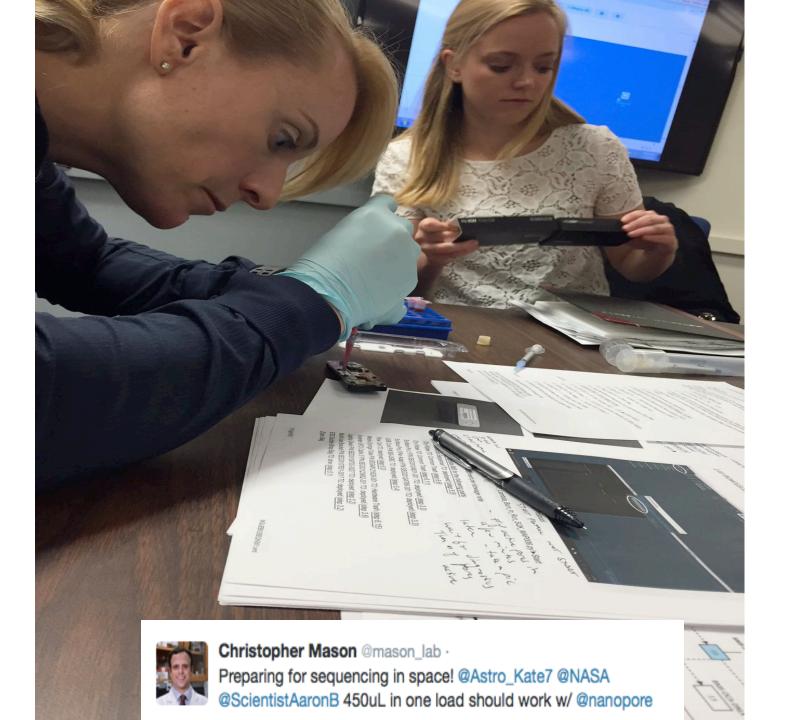
Search

+

Submit


EDITOR-IN-CHIEF Dr. Cheryl A. Nickerson, Ph.D.

nature.com > npj microgravity


npj Microgravity

DNA sequencing in space: Nanopores ready for liftoff

Results from the first DNA sequencing experiments performed in microgravity reveal a promising future for portable 'nanopore' devices in space missions. Read the paper in full.

McIntyre ABR et al., Nature Microgravity, 2016.

SpaceX CRS-7 blows up

National Aeronautics and Space Administration

Office of the Administrator Washington, DC 20546-0001

Dr. Christopher Mason Weill Cornell Medical College 1300 York Ave. New York, NY 10065

Dear Dr. Mason:

As NASA astronaut Scott Kelley tweeted on Sunday, June 28, 2015, "space is hard."

Speaking as a fellow researcher, I can only imagine how devastated you must be feeling right now with the loss of SpaceX's CRS-7. I am saddened and disappointed too. I am sure that the tremendous honor of being selected to have your experiment flown on the International Space Station is of little solace after the loss of months, and perhaps even years, of hard work.

I am writing to encourage you – and in fact, to urge you – to continue your inquiry. The story of space exploration is the story of people just like you who meet adversity, head on, with determination and scientific and technological advancement. If you think about it, virtually every major innovation and technological breakthrough in human history has been the product of many different stops and starts; learning and being better because of failures and setbacks and, ultimately, enhanced knowledge and moving forward.

SpaceX CRS-9: perfect launch and booster return July 18, 2016

Topics

Missions Galleries

Downloads

About

Latest

Related

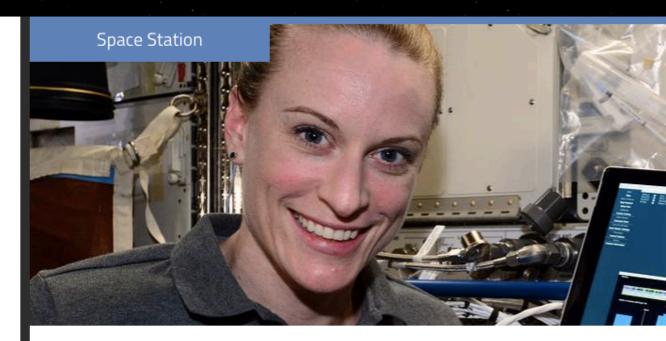
Weekly Recap From the Expedition Lead Scientist 5 days ago

Weekly Recap From the Expedition Lead Scientist 13 days ago

Biological Sciences on the International Space Station 19 days ago

SAGE III to Look Back at Earth's Atmospheric 'Sunscreen' 19 days ago

eekly Recan Fi


Weekly Recap From the Expedition Lead Scientist 19 days ago

Weekly Recap From the Expedition Lead Scientist 24 days ago

Weekly Recap From the Expedition Lead Scientist a month ago

Aug. 29, 2016

First DNA Sequencing in Space a Game Changer

For the first time ever, DNA was successfully sequenced in microgravity as part of the **Biomolecule** Sequencer experiment performed by NASA astronaut Kate Rubins this weekend aboard the International Space Station. The ability to sequence the DNA of living organisms in space opens a whole new world of scientific and medical possibilities. Scientists consider it a game changer.

DNA, or deoxyribonucleic acid, contains the instructions each cell in an organism on Earth needs to live. These instructions are represented by the letters A, G, C and T, which stand for the four chemical bases of DNA, adenine, guanine, cytosine, and thymine. Both the number and arrangement of these bases differ among organisms, so their order, or sequence, can be used to identify a specific organism.

Great to see this team at work from training to operations at "the dawn of genomics...in space" #AstroKate

12

...

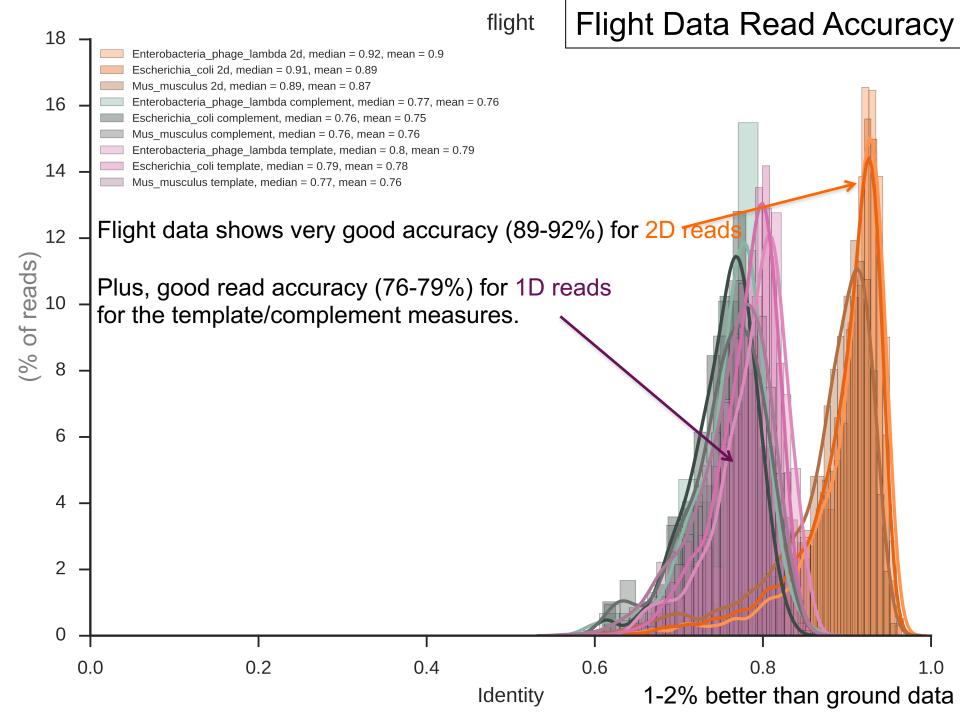
9:40 PM - 29 Aug 2016

Houston, TX

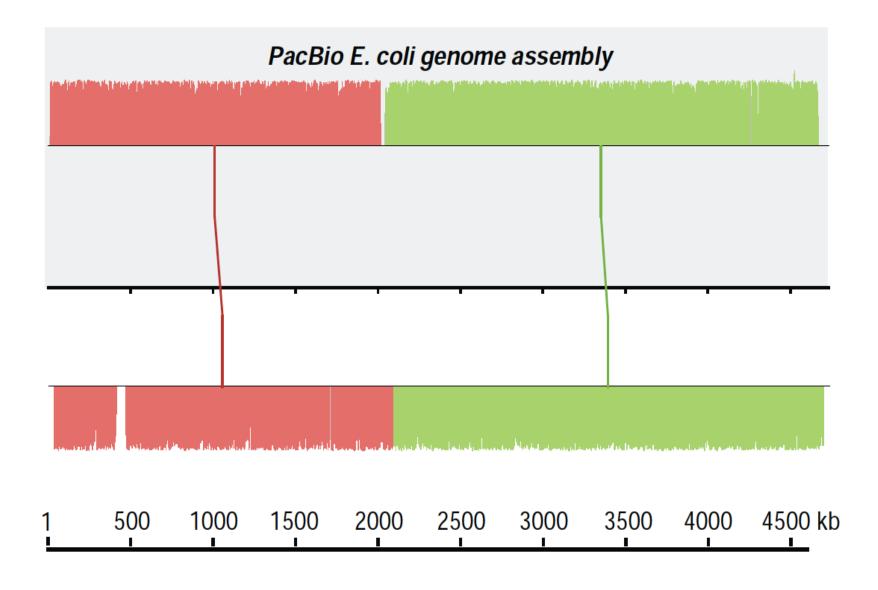
♠

You, Aaron Burton, Kristen John and 3 others

From zero to one billion: sequencing the one billionth base pair of DNA in space. go.nasa.gov /2bV2UnD



sequencing the one billionth base pair of DNA


Clip from NASA TV

3:28 PM - 14 Sep 2016

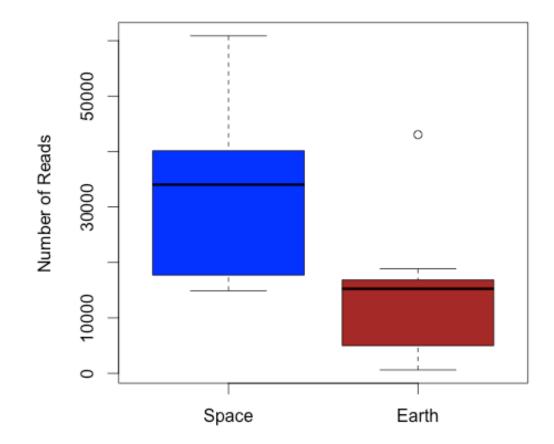
Almost perfect when compared to PacBio

The first genome sequence, assembly, and AMR detection off Earth SCIENTIFIC REPORTS

Altmetric: 171

More detail ≫

Article | OPEN

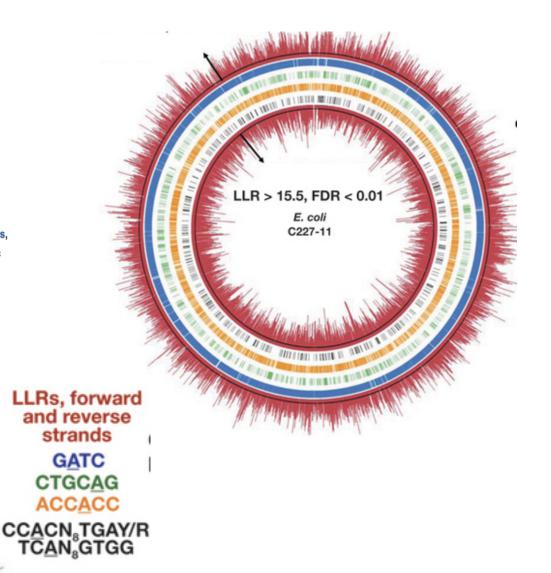

Nanopore DNA Sequencing and Genome Assembly on the International Space Station

Sarah L. Castro-Wallace, Charles Y. Chiu, Kristen K. John, Sarah E. Stahl, Kathleen H. Rubins, Alexa B. R. McIntyre, Jason P. Dworkin, Mark L. Lupisella, David J. Smith, Douglas J. Botkin, Timothy A. Stephenson, Sissel Juul, Daniel J. Turner, Fernando Izquierdo, Scot Federman, Doug Stryke, Sneha Somasekar, Noah Alexander, Guixia Yu, Christopher E. Mason & Aaron S. Burton ™

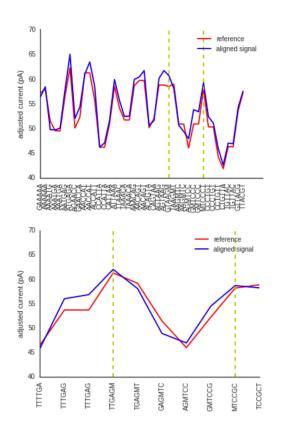
Scientific Reports 7, Article number: 18022	Received: 01 August 2017
(2017)	Accepted: 11 December 2017
doi:10.1038/s41598-017-18364-0	Published online: 21 December 2017

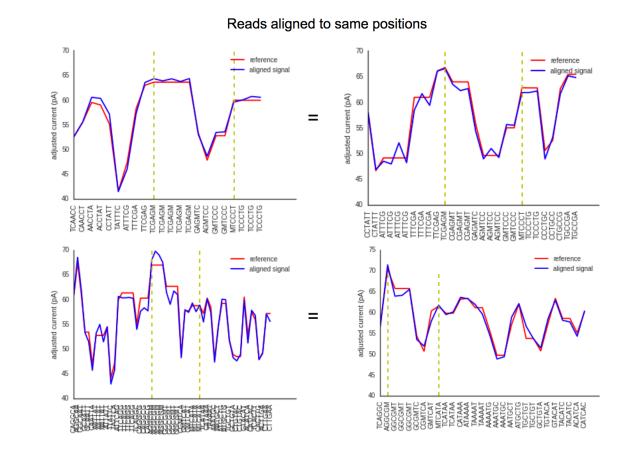
https://www.nature.com/articles/s41598-017-18364-0

As good, or better (8/9) data in space

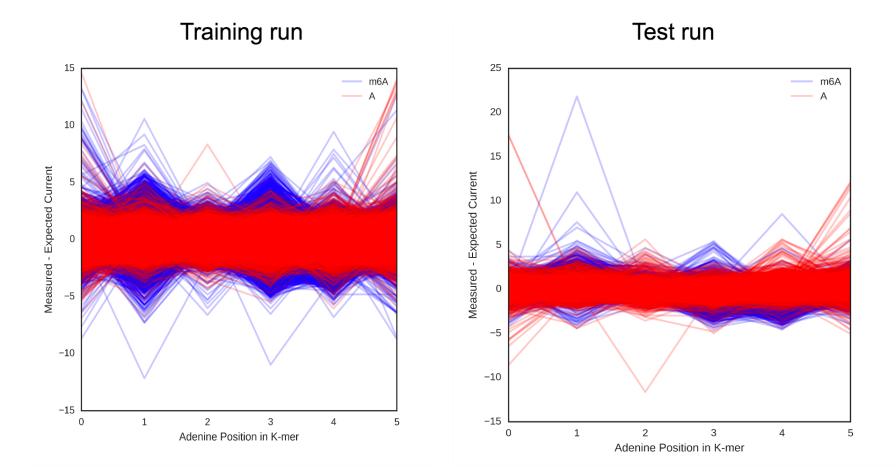

Bacteria are splattered with epigenetic marks

Genome-wide mapping of methylated adenine residues in pathogenic *Escherichia coli* using single-molecule real-time sequencing


Gang Fang, Diana Munera, David I Friedman, Anjali Mandlik, Michael C Chao, Onureena Banerjee, Zhixing Feng, Bojan Losic, Milind C Mahajan, Omar J Jabado, Gintaras Deikus, Tyson A Clark, Khai Luong, Iain A Murray, Brigid M Davis, Alona Keren-Paz, Andrew Chess, Richard J Roberts, Jonas Korlach, Steve W Turner, Vipin Kumar, Matthew K Waldor & Eric E Schadt

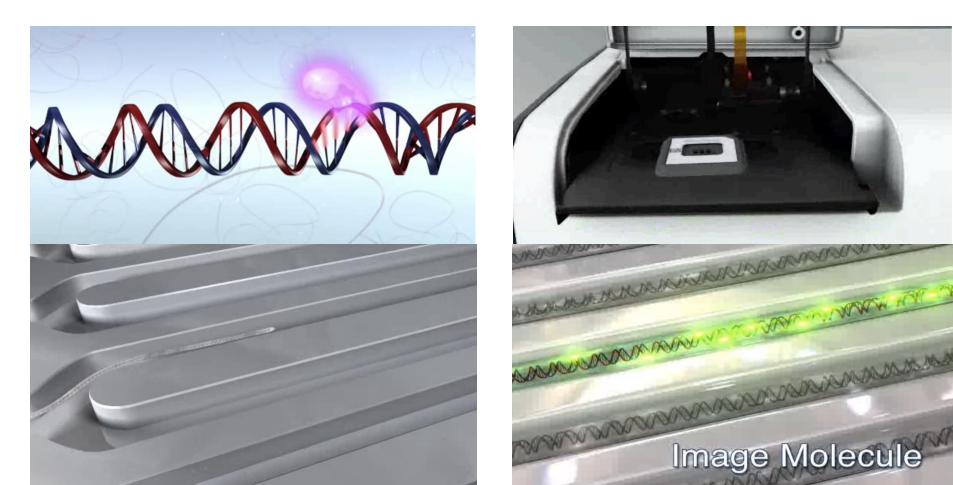

Affiliations | Contributions | Corresponding authors

Nature Biotechnology 30, 1232-1239 (2012) | doi:10.1038/nbt.2432



Calling current (pA) differences, similar to PacBio

Certain positions of the pore and more informative then others



Is a 2.6 minute genome possible? No today, but if the physics holds up...

	Table 2: Nanopore and Nanochannel Sequencing Considerations																		
<u>Parameter</u>	DNA fragment (avearge bp)	Pore Speed (bp/s)	# nanopores	% of Pores Functional	transit time (seconds)	transit time (minutes)	run time (hours)	max # molecules / pore / run	% of time pores have DNA	actual # molecules/ pore/run	# of bases sequenced per device		n Cost (\$)	\$	/ Mb	\$	\$ / Gb	Hours for 30X WGS of 3.1Gb	Model
e _	10,000	100	512	0.5	100	1.67	6	216	80%	172.8	442,368,000	\$	1,000	\$	2.26	\$2	2,260.56	1261.4	T1
Time	10,000	100	512	0.5	100	1.67	24	864	80%	691.2	1,769,472,000	\$	1,000	\$	0.57	\$	565.14	1261.4	T2
	10,000	100	512	0.5	100	1.67	48	1728	80%	1382.4	3,538,944,000	\$	1,000	\$	0.28	\$	282.57	1261.4	Т3
-	10,000	100	512	0.5	100	1.67	6	216	80%	172.8	442,368,000	¢	1,000	\$	2.26	¢ ·	2,260.56	1261.4	S1
Size	100,000	100	512	0.5	1000	16.67	6	21.6	80%	17.28	442,368,000	-P -C	1,000	-P -P	2.20		2,260.56	1261.4	S2
- Si	1,000,000	100	512	0.5	10000	166.67	6	21.0	80%	1.728	442,368,000	۹ \$	1,000	_₽ \$	2.20		2,260.56	1261.4	S2 S3
	1,000,000	100	012	010	10000	100107	<u> </u>	2110	0070	11/20	112/000/000	Ψ	1,000	Ŷ		.		120111	0.0
ര് പ	10,000	100	512	0.5	100	1.67	6	216	80%	172.8	442,368,000	\$	1,000	\$	2.26	\$2	2,260.56	1261.4	S&T1
Size & Time	100,000	100	512	0.5	1000	16.67	24	86.4	80%	69.12	1,769,472,000	\$	1,000	\$	0.57	\$	565.14	1261.4	S&T2
I I Si	1,000,000	100	512	0.5	10000	166.67	48	17.28	80%	13.824	3,538,944,000	\$	1,000	\$	0.28	\$	282.57	1261.4	S&T3
-	10.000	100	50000	0.5	100	1.67	6	216	000/	172.0	42 200 000 000	-	1 000	-	0.022		22.15	12.0	D0 T1
.es	10,000	100 100	50000	0.5	100	1.67	6	216 216	80% 80%	172.8	43,200,000,000	\$	1,000		0.023	\$	23.15	12.9	P&T1
Pores	10,000	100	100000		100 100	1.67 1.67	6	216	80%	172.8 172.8	86,400,000,000	\$	1,000		0.012	\$	11.57 7.72	6.5 4.3	P&T2 P&T3
	10,000	100	150000	0.5	100	1.07	0	210	80%	172.0	129,600,000,000	>	1,000	\$	0.008	\$	1.12	4.5	Pais
s a	10,000	100	50000	0.5	100	1.67	6	216	80%	172.8	43,200,000,000	\$	10,000	\$	0.23	\$	231.48	12.9	P&T1
Pores & Time	10,000	100	100000	0.5	100	1.67	24	864	80%	691.2	345,600,000,000		20,000	\$	0.06	\$	57.87	6.5	P&T2
ă F F	10,000	100	150000	0.5	100	1.67	48	1728	80%	1382.4	1,036,800,000,000	\$	30,000	\$	0.03	\$	28.94	4.3	P&T3
Pores, Speed , & Time	10,000	100	50000	0.5	100	1.67	6	216	80%	172.8	43,200,000,000		10,000	\$	0.23	\$	231.48	12.9	PS&T1
De er	10,000	1000	100000	0.5	10	0.17	24	8640	80%	6912	3,456,000,000,000		20,000	\$	0.01	\$	5.79	0.6	PS&T2
്ഗ്	10,000	10000	150000	0.5	1	0.02	48	172800	80%	138240	103,680,000,000,000	\$	30,000	\$	0.00	\$	0.29	0.04	PS&T3

Bionanogenomics - Irys System

QIAGEN GeneReader

Emerging Technologies

The race for long is on

Longer and longer: DNA sequence of more than two million bases now achieved with nanopore sequencing.

Fri 4th May 2018

Congratulations! The first >2 Mb DNA read, achieved with nanopore sequencing

Matt Loose, Alex Payne, Nadine Holmes, Vardhman Rakyan & team, University of Nottingham, UK May 2018 Long read club

Really very long reads indeed

http://longreadclub.org/

https://nanoporetech.com/about-us/news/longer-and-longer-dna-sequence-more-twomillion-bases-now-achieved-nanopore

Sequencing Services

Resources

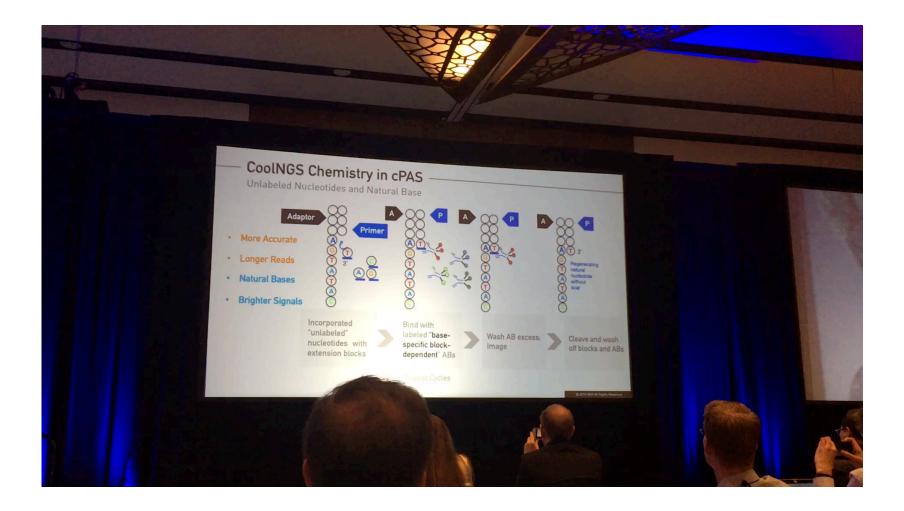
News

10/31/2018

BGI Unveils New High-Throughput Sequencing System.

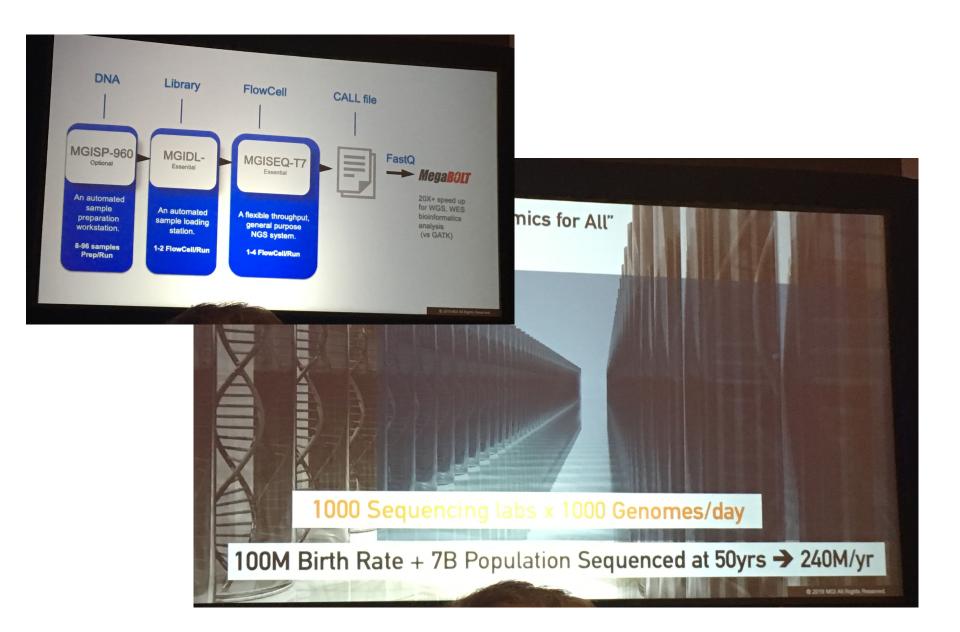
Last week at the 13th International Conference on Genomics (ICG-13) in Shenzhen, China, BGI announced a new sequencing system based on its DNBseq[™] Technology.

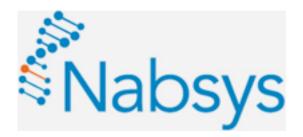
The newly unveiled MGISEQ-T7 is the most powerful sequencing system from BGI's MGI subsidiary, with a daily output capability of 6Tb of data.

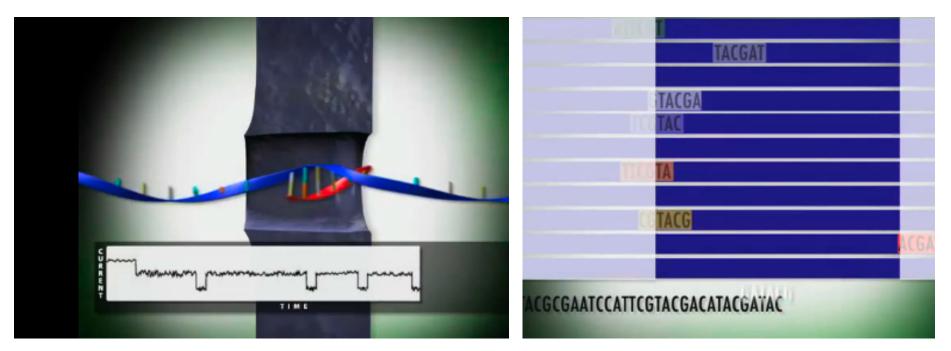

The MGISEQ-T7 is able to complete 60 human genomes in a single day, with essentially error-free sequencing from BGI's DNBseq sequencing technology.

https://www.bgi.com/us/company/news/bgi-unveils-new-high-throughput-sequencingsystem/

T-1000?




BGI - CoolNGS



BGI – NGS streets

Hybridization -Assisted Nanopore Sequencing (HANS):

- -1 million bases per second
- -Variable probe length can be used for HANS
- -Long Reads (100kb)
- -Single molecule

ZS Genetics, Inc. Working At The Scale Of Life

Single-atom labeling and then visualization with EM

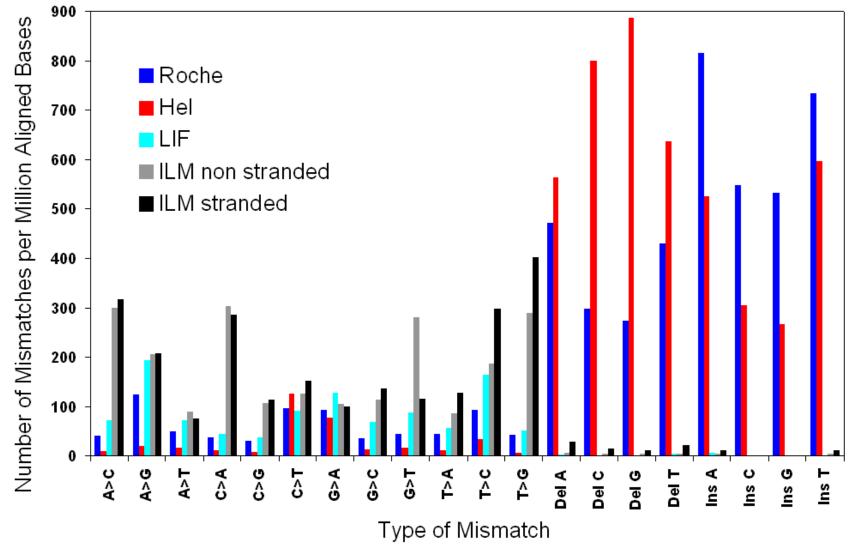
- -Long Reads (20kb)
- -Single molecule

The new Illumina Firefly (iSeq100) can sequence in <6h.

GenapSys

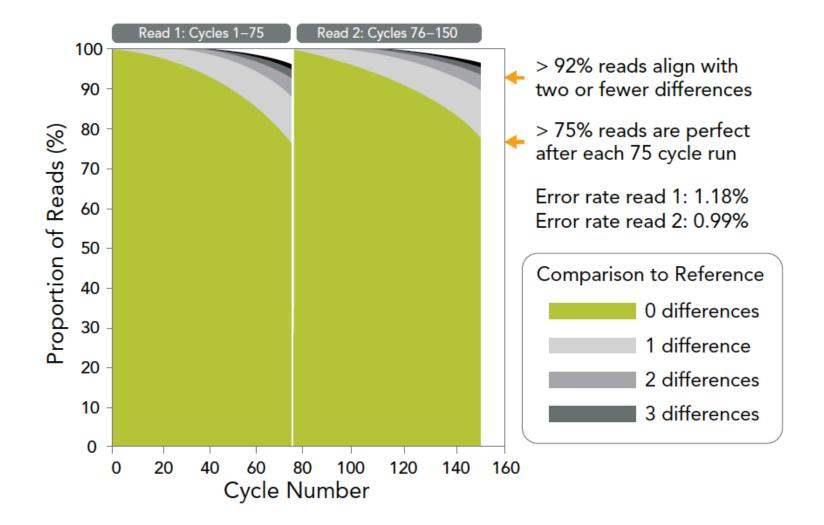
(1M, 16M or 144M)

Roche's nanopore tech

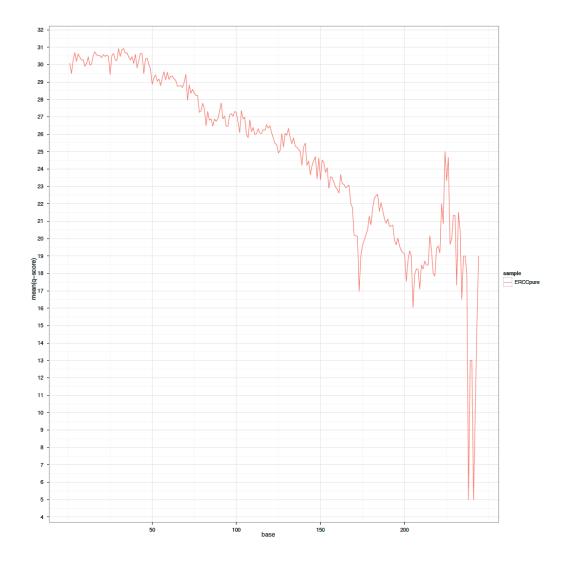

Sequencing by eXpansion (SBX)

https://sequencing.roche.com/en/science-education/technology/nanopore-sequencing.html

Each Platform has various sources of noise, and thus Error

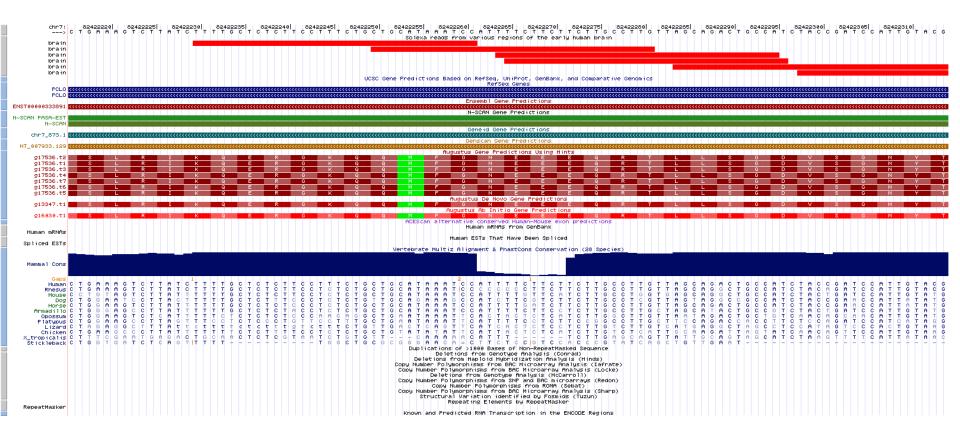

- De-Phasing
 - Lagging strand dephasing from incomplete extension
 - Leading strand dephasing from over-extension
- Dark Nucleotides
- Polymerase errors (10⁻⁵ to 10⁻⁷)
- Single molecule challenges
 - High noise
 - Polymerase "wiggling" from tail
- Platform-specific errors
 - Illumina more likely to have error after 'G'
 - PCR-based methods miss GC- and AT-rich regions

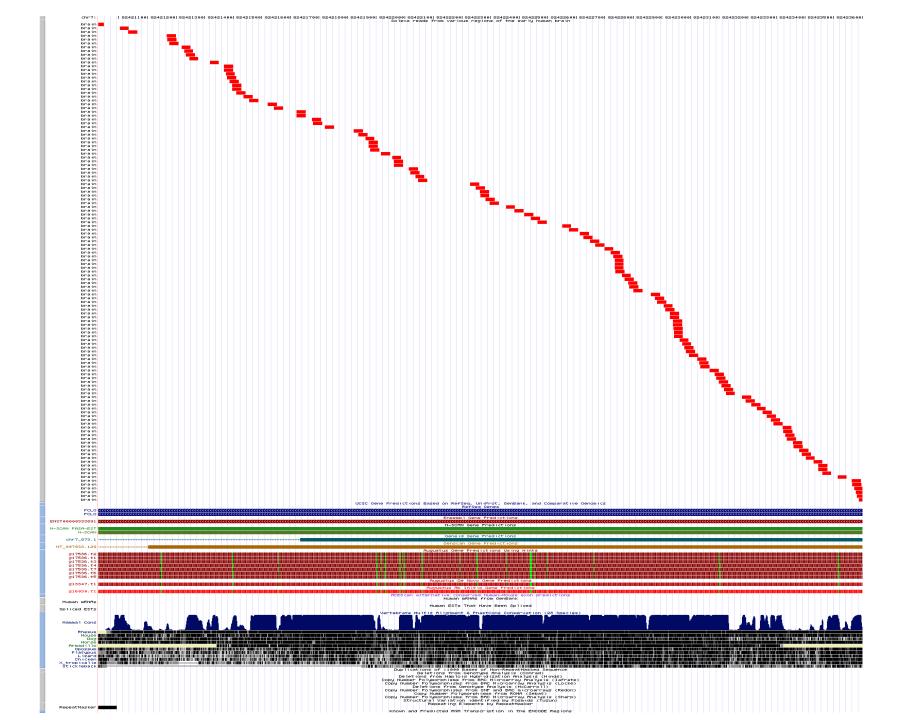
Each platform is slightly different, and so intrinic errors are different



SeQC Consortium

Many platforms are cycle-dependent on error rate - ILMN




Many platforms are cycle-dependent on error rate - ION

What do you do with the reads?

Alignment to the genome

The reads: FASTQ

The most common format is FASTQ, based off the FASTA data format:

>SequenceID

CGTAGTCTATATATGCGCGAATGCGTA

But....

FASTQ also includes quality information: @Sample_Info CCTTGCTGCC +

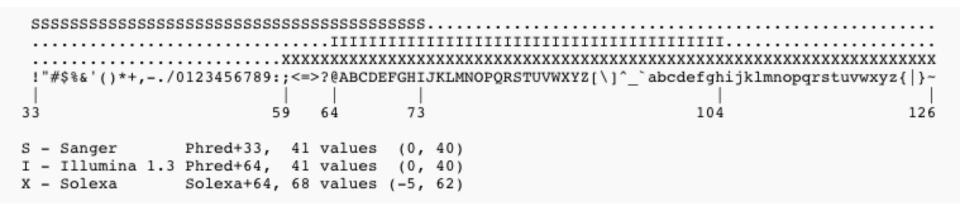
3.6;#\$!>><

Understanding FASTQ

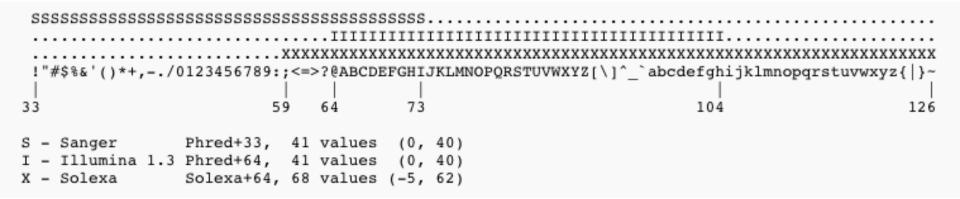
For Illumina, sequences have an ID: @HWUSI-EAS100R:6:73:941:1973#0/1

HWUSI-EAS100R	the unique instrument name
6	flowcell lane
73	tile number within the flowcell lane
941	'x'-coordinate of the cluster within the tile
1973	'y'-coordinate of the cluster within the tile
#0	index number for a multiplexed sample (0 for no indexing)
/1	the member of a pair, /1 or /2 (paired-end or mate-pair reads only)

Understanding Quality Scores


Q-values are the probability (p) of a base being incorrect. From Sanger sequencing:

 Q_{value} =-10log₁₀p


So, if your p=0.1, then $Q_{value} = (-10log_{10}(0.1))$ = (-10(-1)) = 10If your p=0.01, then $Q_{value} = (-10log_{10}(0.01))$ = (-10(-2)) = 20If p=0.001, then $Q_{value} = (-10log_{10}(0.001))$ = (-10(-3)) = 30

Understanding Quality Scores

- Q-values are the probability (p) of a base being incorrect, but it is most efficient to represent this with a single bit in ASCII (American Standard Code for Information Interchange) format.
- The first 32 symbols in ASCII are control characters, so we start at 33.

Phred-Based Base Quality


```
If your ASCII character is 'B', then 66-64=2, so P=10^{-Q/10}
```

```
-0.2 = \log_{10}p
```

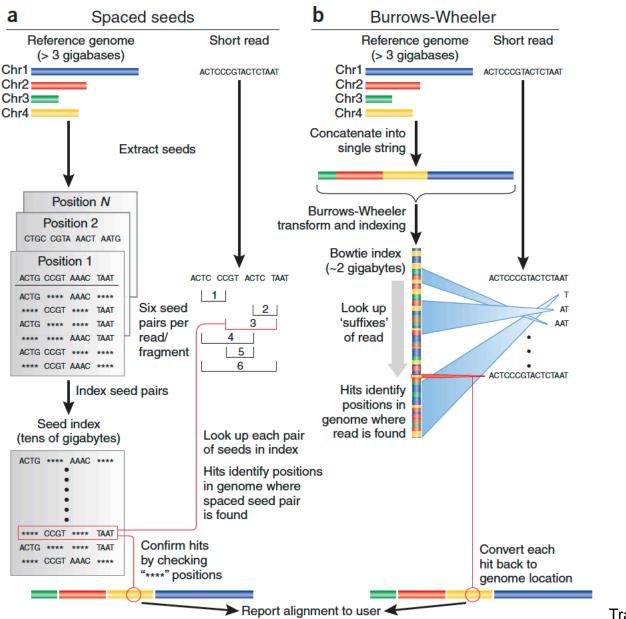
10^{-0.2} =p, so p=0.63, or 63% change of an incorrect base.

If your ASCII character is 'h', then 104-64=40, so

- $40 = (-10\log_{10}p)$
- $-4.0 = \log_{10}p$
- 10^{-4} =p, so p=0.0001, or 0.01% change of an incorrect base.

Many Options for Alignment - 2009

	MAQ	ELAND	SOAP	BFAST	Bowtie	SHRiMP	Rmap	SeqMap	Novocraft
Algorithm Parameters									
Version	0.71	1.1	1.11	0.1.11	0.9.8	1.1.0	0.41	1.0.8	1.06
SNP-calls	✓	-	✓	-	-	✓	-	-	-
Uses Quality Scores	✓	-	-	✓	✓	✓	✓	-	✓
Indels	PE only	PE only	✓	✓	-	✓	-	✓	-
Splicing	-	-	-	-	-	-	-	-	-
Paired-End	✓	✓	✓	✓	-	-	-	-	✓
Threading	-	✓	✓	✓	✓	-	-	-	✓
Max # Mismatches (*in Seed)	3*	2*	5	-	3*, or UD	-	-	2	7
Default Seed Size	10	32	-	-	28	-	-	-	-
Max Input Length	63	-	60	-		-	64	-	-
5' Read Trimming	-	✓	-	-	✓	-	-	-	-
3' Read Trimming	✓	✓	✓	-	✓	-	-	-	✓
Methylation Alignment	-	-	-	✓	-	-	-	-	-
Repeats/Adaptor Removal	✓	✓	-	✓	✓	-	-	-	✓
Strand-specific search	-	-	✓	-	-	-	-	✓	-
Platforms									
ABI SOLID	✓		✓	✓	✓	✓			
Illumina GA	✓	✓	✓	✓	✓	✓	✓	✓	✓
Roche 454					✓	✓			
Helicos Heliscope		✓	✓					✓	


Many Options for Alignment - 2021

- Bfast
- BioScope
- Bowtie
- BWA
- CLC bio
- CloudBurst
- Eland/Eland2
- GenomeMapper
- GnuMap
- Karma

- MAQ
- MOM
- Mosaik
- MrFAST/MrsFAST
- NovoAlign
- PASS
- PerM
- RazerS
- RMAP
- SSAHA2

- Segemehl
- SeqMap
- SHRiMP
- Slider/SliderII
- SOAP/SOAP2
- Srprism
- Stampy
- vmatch
- ZOOM
-

Many common methods are BW-based

Trapnell and Salzberg, 2010

Burrows-Wheeler Transformation (BWT)

- •First discovered in 1983 by Wheeler at AT&T Bell Labs
- Used for compression in 1994.
- First implemented for aligners with "Bowtie" Ben Langmead, Cole Trapnell, Mihai Pop, and Steven Salzberg
- •Allows for fast searching with a small memory footprint

http://bio-bwa.sourceforge.net/

Li H. and Durbin R. "Fast and accurate short read alignment with Burrows-Wheeler transform." (2009) *Bioinformatics*, 25, 1754-60.

Burrows M, Wheeler DJ. "A Block Sorting Lossless Data Compression Algorithm." Technical Report 124. Palo Alto, CA: Digital Equipment Corporation; 1994.

Questions?