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1 Preface

For the last session in this course, we’ll be looking at a common data reduction and analysis
technique called principal components analysis, or PCA. This technique is often used on
large, multi-dimensional datasets, such as those resulting from high-throughput sequenc-
ing experiments. To fully appreciate the mathematics behind PCA, one needs a firmer
background in linear algebra than we have developed in the this course (in particular, in
eigensystems). Additionally, traditional uses of PCA don’t rely on the statistical meth-
ods and reasoning we’ve developed here (although variance is at its core). We include an
overview of PCA here because it is a very common data analysis technique that is used on
the same kinds of data that you’ll be analyzing with many of the methods introduced in
this course, and to ensure that you have a good basis for critically evaluating the methods
and results reported by others.

2 Introduction

Principal component analysis (PCA) is a simple yet powerful method widely used for an-
alyzing high dimensional datasets. When dealing with datasets such as gene expression
measurements, some of the biggest challenges stem from the size of the data itself. Tran-
scriptome wide gene expression data usally have 10,000+ measurements per sample, and
commonly used sequence variation datasets have around 600,000 ∼ 900,000 measurements
per sample. The high dimensionality not only makes it difficult to perform statistical anal-
yses on the data, but also makes the visualization and exploration of the data challenging.
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These datasets are typically never fully visualized because they contain many more dat-
apoints than you have pixels on your monitor. PCA can be used as a data reduction
tool, enabling you to represent your data with fewer dimensions, and to visualize it in 2-D
or 3-D where some patterns that might be hidden in the high dimensions may become
apparent.

3 The core concept: Change of basis

Let us think about the problem that we are facing with a simple example that involves the
measurement of 5 genes g1, . . . , g5. In this case, we would have 5 measurements for each
sample, so each sample can be represented as a point in a 5-dimensional space. For example,
if the measurements for sample 1 (x1) were g1 = 1.0, g2 = 2.3, g3 = 3.7, g4 = 0.2, g5 = 0.3,
we can represent x1 as a 5-dimensional point where each axis corresponds to a gene. (Just
like we would define a point on a two-dimensional space with x- and y-axes as (x, y).) So
if we had two samples they would look something like this in vector form:

x1 =


1.0
2.3
3.7
0.2
0.3

x2 =


0.8
1.84
2.22
0.12
0.18

 (1)

It might be quite obvious, but this means that the point x1 is defined as 1 unit in the
g1 direction, 2.3 units in the g2 direction, 3.7 in the g3 direction and so on. This can be
represented as

x1 =


1
0
0
0
0

 · 1 +


0
1
0
0
0

 · 2.3 +


0
0
1
0
0

 · 3.7 +


0
0
0
1
0

 · 0.2 +


0
0
0
0
1

 · 0.3 (2)

where the set of 5 unit vectors are the “basis set” for the given data. If the expression
levels of all of the 5 genes were independent of each other (or orthogonal, if we talk in
vector terms), we would have to look at the data as it is, since knowing the expression
level of g1 will not give us any information about other genes. In such a case, the only
way we could reduce the amount of data in our dataset would be to drop a measurement
of a gene, and lose the information about that gene’s expression level. However, in reality
the expression levels of multiple genes tend to be correlated to each other (for example,
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pathway activation that bumps up the expression levels of g1 and g2 together, or a feedback
interaction where a high level of g3 suppresses the expression level of g4 and g5), and we
don’t have to focus on the expression levels individually. This would mean that by knowing
the expression level of g1 we can get some sense of the expression level of g2, and from the
level of g3 we can guess the levels of g4 and g5. So let’s say, for the sake of simplicity, that
our two samples obey this relationship perfectly (which will probably never happen in real
life) and represent our samples in a more compact way. Something like this might do the
job.

x1 =


1.0
2.3
0
0
0

 · 1 +


0
0

3.7
0.2
0.3

 · 1 x2 =


1.0
2.3
0
0
0

 · 0.8 +


0
0

3.7
0.2
0.3

 · 0.6 (3)

What this means is that we are representing our sample x1 as a two dimensional point
(1,1) in the new space defined by the relationships between genes. This is called a “change
of basis” since we are changing the set of basis vectors used to represent our samples. A
better representation would be to normalize the basis vectors to have a unit norm, like this
where the normalization factor just gets multiplied into the coordinates in the space:

x1 =


0.398
0.917

0
0
0

 · 2.51 +


0
0

0.995
0.054
0.081

 · 3.72 x2 =


0.398
0.917

0
0
0

 · 2.01 +


0
0

0.995
0.054
0.081

 · 2.23 (4)

In this example, the new basis vectors were chosen based on an assumed model of gene
interactions. Additionally, since the expression values followed the model exactly, we were
able to perfectly represent the five dimensional data in only two dimensions. PCA follows
similar principles, except that the model is not assumed, but based on the variances and
correlations in the data itself. PCA attempts to minimize the information lost as you drop
higher dimensions, but, unlike the contrived example above, there will probably be some
information content in every dimension.

4 Correlation and Covariance

Another way to think about PCA is in terms of removing redundancy between measure-
ments in a given dataset. In the previous example, the information provided by the mea-

© Copyright 2019 J Ju, J Banfelder, L Skrabanek; The Rockefeller University page 3



Principal Component Analysis

surement of g1 and g2 were redundant and the same was true for g3, g4 and g5. What
we essentially did was get rid of the redundancy in the data by grouping the related mea-
surements together into a single dimension. In PCA, these dependencies, or relationships
between measurements, are assessed by calculating the covariance between all the measure-
ments. So how do we calculate covariance? First, we recall that the variance of a single
variable is given by

s2 =

∑
(xi − x̄)2

n− 1

Covariance can simply be thought of as variance with two variables, which takes this
form

cov(x, y) =

∑
(xi − x̄)(yi − ȳ)

n− 1

If this looks familiar, you are not mistaken (take a look at the equation for the Pearson cor-
relation coefficient). Correlation between two variables is just a scaled form of covariance,
which takes values between -1 and 1.

cor(x, y) =
cov(x, y)

σx · σy

So just like correlation, covariance will be close to 0 if the two variables are independent,
or will take a positive value if they tend to move in the same direction, or a negative value
if the opposite is true.

Let’s see what variance and covariance look like for a couple of two-dimensional datasets.
We’ll begin by creating a dataset with 300 measurements for x and y, where there is no
relationship at all between x and y.

x <- rnorm(n = 300, mean = 7, sd = 1)

y <- rnorm(n = 300, mean = 21, sd = 2)

plot(y ~ x)

© Copyright 2019 J Ju, J Banfelder, L Skrabanek; The Rockefeller University page 4



Principal Component Analysis

5 6 7 8 9

16
18

20
22

24
26

x

y
As you can see from the plot above, there not much of a relationship between the xs and
the ys. You can quantify this mathematically by computing the covariance matrix for this
data.

samples <- cbind(x, y)

head(samples)

## x y

## [1,] 7.261869 21.34318

## [2,] 6.756167 20.46687

## [3,] 8.836920 21.03928

## [4,] 7.669822 21.73555

## [5,] 7.366226 25.22898

## [6,] 8.383130 23.49591

cm <- cov(samples) # compute the covariance matrix

round(cm, digits = 3) # print it so it is readable

## x y

## x 0.922 0.022

## y 0.022 3.963

The diagonals of the covariance matrix hold the variance of each column (recall that vari-
ance is just SD2), and the off-diagonal terms hold the covariances. From the matrix, you
can see that the covariances are near zero.

Now let’s consider a case where there is a relationship between the xs and ys.

x <- rnorm(n = 300, mean = 7, sd = 1)

y <- rnorm(n = 300, mean = 7, sd = 2) + 2 * x

plot(y ~ x)
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In this case, the plot shows that there is a significant relationship between x and y; this is
confirmed by the non-zero off-diagonal elements of the covariance matrix.

## x y

## x 1.069 2.179

## y 2.179 7.808

If you look at the code for this example, you can see that y is a mix of a random component
and a weighted portion of x, so these results shouldn’t be all that surprising.

If you were given the data in the figure above and asked to best represent each point using
only one number instead of two, a few options might come to mind. You could just forget
about all of the x values and report the ys. Or you could just forget about the y values
and report the xs. While either of these options might seem equally good, replotting the
data with equal scales might cause you to change your mind:

plot(y ~ x, xlim = c(0,30), ylim=c(0,30), cex = 0.5)
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Here we can see that there is more variance in y, so the best that we might do given one
value per point is to report the ys, and tell our audience to assume that all the xs were
7. In this case, the estimated location of each point wouldn’t be too far from its actual
location.
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However, since there is a clear correlation between x and y, we can do better by reporting
the position along the blue line shown in the plot below.

results <- prcomp(samples)

pc1 <- results$rotation[,"PC1"]

samples.xfromed <- results$x
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Another way of thinking about this line of reasoning is saying that we’ll transform the data
so that the blue line is our new x-axis. While we’re at it, we’ll choose the origin of our
x-axis to be the center of our data. A plot of the transformed data looks like this (notice
that here we’ve labeled the axes ‘PC1’ and ‘PC2’):
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The blue line in the prior plot is the first Principal Component of the data, and the direction
orthogonal to it is the second Principal Component. From this demonstration, you can see
that PCA is nothing more than a rotation of the data; no information is lost (yet).

So far, we skipped over the details of just how the blue line was determined. In PCA, we
choose the first principal component as the direction in the original data that contains the
most variance. The second principal component is the direction that is orthogonal (i.e.,
perpendicular) to PC1 that contains the most remaining variance. In a two dimensional
case the second PC is trivially determined since there is only one direction left that is
orthogonal to PC1, but in higher dimensions, the remaining variance comes into play. PC3
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is chosen as the direction that is orthogonal to both PC1 and PC2, and contains the most
remaining variance, and so on. . . Regardless of the number of dimensions, this all just
boils down to a rotation of the original data to align to newly chosen axes. One of the
properties of the transformed data is that all of the covariances are zero. You can see this
from the covariance matrix of the transformed data for our example:

round(cov(samples.xfromed), digits = 3)

## PC1 PC2

## PC1 8.451 0.000

## PC2 0.000 0.426

5 Interpreting the PCA Results

Once the PCA analysis is performed, one often follows up with a few useful techniques. As
our motivation for considering PCA was as a data reduction method, one natural follow-up
is to just drop higher PCs so that you’re dealing with less data. One question that should
naturally occur to you then is how to decide how many principal components to keep. In
a study that produces, say, a 15,000 dimensional gene expression dataset, is keeping the
first 50 PCs enough? Or maybe one needs to keep 200 components?

It turns out that the answer to this question is buried in the covariance matrix (you need to
look at the matrix’s eigenvalues, but we won’t go into the linear algebra of eigensystems).
In particular, the fraction of variance in a given PC relative to the total variance is equal
to the eigenvalue corresponding to that PC relative to the sum of all the eigenvalues.

While we’ll show the computation in R here, don’t worry about the details; for now just
appreciate that is is pretty easy to compute the fraction of information (i.e., variance)
captured in each PC.

results$sdev

## [1] 2.9071091 0.6524789

explained_variance <-

round((results$sdev^2) / sum(results$sdev^2), digits = 2)

explained_variance

## [1] 0.95 0.05

Here we see that, for our toy example, 95% of the variation in the data is captured by the
first PC.

When dealing with real data sets that have more than two dimensions, there are often
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two practices that are carried out. For data sets with a handful of dimensions (say eight
or twenty), one typically retains the first two or three PCs. This is usually motivated
by simple expediency with regard to plotting, which is a second motivation for PCA.
Since you can make plots in two or three dimensions, you can visually explore your high-
dimensional data using common tools. The evaluation of how much variance is retained
in the original dataset informs how well you can expect your downstream analysis will
perform. Typically, you hope to capture around 90% of the variance in these first two or
three components.

In very high dimensional datasets, you typically will need much more than two or three
PCs to get close to capturing 90% of the variation. Often, your approach will be to retain
as many PCs as needed to get the sum of the eigenvalues of the PCs you are keeping
to be 90% of the sum of all of them. An alternative is to make a so-called scree plot.
This is simply a bar blot of each eigenvalue in descending order, and (hopefully) will be
reminiscent of the geological feature after which it is named. The figure below shows both
a geological scree, and a typical scree plot from a gene expression study.

.

Such a plot may help you evaluate where the point of diminishing returns lies. The hope
here is that the first few PCs represent real (reduced dimension) structure in the data, and
the others are just noise.

6 Further interpretation of PCA results

After performing PCA, it is very tempting to try to interpret the weights (or loadings)
of the principal components. Since each principal component is a linear combination of
the original variables, it can be of interest to see which variables contribute most to the
most important principal components. For example, when looking at gene signatures,
those genes that contribute most to the first few PCs may be considered ‘more important’
genes.
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While the PC loadings can sometimes be the source of useful hints about the underlying
natural variables of a biological process, one “needs to be more than usually circumspect
when interpreting” the loadings (Crawley, The R Book, 2007). Part of this derives from the
fact that PCA results are sensitive to scaling, and part of this may be that individual PCs
may be very sensitive to noise in the data. When performing PCA on a computer, make
sure you know what your program does in terms of scaling (as well as with the underlying
numerics).

As scientists, we need as much help as we can to interpret our data, so to say that one
should never look at or think about loadings would be impractical. A good rule of thumb
may be to treat any interpretations about loading as a hypothesis that needs to be validated
by a completely independent means. This is definitely one of those areas where you want
to be conservative.

7 Example with real data

Let’s look at the results of applying PCA to a real gene expression dataset to get a sense
of what we would be looking at when interpreting high-dimensional data. The dataset
that we are going to use is a publicly available gene expression dataset, which was gener-
ated from bladder cancer and normal cells. Further details can be found here: http://www.
bioconductor.org/packages/release/data/experiment/html/bladderbatch.html

Generally, after performing PCA on a high dimensional dataset, the first thing to do is
visualize the data in 2-D using the first two PCs. Since we have sample information as
well, we can use this to color label our data points.
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We can see that the samples mostly cluster together according to their “cancer” label on
PC1 and PC2. This could mean that the biggest variation in the dataset is due to the
status of the tissue. However, we have many more PCs in this case than in our toy dataset
so it is important to check how much variance each PC actually explains, and then evaluate
the importance of the first two PCs.
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We can see that the plot generated from this dataset holds up to its name and shows us
that most of the variance is explained by the first 2 or 3 PCs, while the rest have only
minor contributions. In such a case, it would be reasonable to reduce the dimensionality
using the first few PCs.

8 PCA and scaling

We mentioned briefly above that PCA is sensitive to scaling, and we’ll take a moment here
to dig a bit deeper into this. We understand that the first PC is chosen to capture the most
variance in the data, but it is often forgotten that variance (like SD) has units (recall that if
you measure heights of people in feet, the units of SD is feet). This implies that if we collect
and record the same data in different units, the variance will be different; for example, if we
chose to record the heights of the people enrolled in our study in inches instead of feet, the
numerical value of the variance would be 144 times larger in the direction corresponding
to our height measurement.

Now consider the direction of PC (e.g., the solid blue line in our prior plot), which is a
mixture of x and y. If x and y are of the same units, interpretation of this direction is
natural, but if they are not, the units of measure along this dimension are odd at best.
We can still plow ahead and perform PCA with the numerical values, but we need to
acknowledge that there is an implicit scaling. If x is weight in kg and y in height in m,
then we’re saying that one meter of variance is worth just as much as one kilo of variance.
If we choose to work with heights in cm, we’d get a different PC because height variance
would be weighted 1,000 times more.

This phenomenon is generally not a issue when all of our measurements have the same
units, since the scaling factor is a constant. So if all dimensions in the original data are
gene expression values, there is not much to worry about.

However, in many studies, researchers often mix in other measurements. For example, in
trying to determine what combinations of factors might be determinants of bladder cancer,
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one might perform a PCA including gene expression values for most of the columns, but also
the subject’s age, weight, income, education level, etc. Once units are mixed, something
needs to be done to rationalize the mismatch. One common approach is to normalize each
measurement based on its SD, but this of course changes the original variances. The waters
can get murky; and this is often compounded by the fact that some PCA implementations
will, by default, normalize all data, while others don’t. When critically evaluating others’
work, if there isn’t an explicit statement about whether data was normalized or not, you
might be extra cautious.

9 Further Reading

For a more detailed and intuitive explanation on PCA, we recommend the tutorial written
by Jonathon Shlens: http://arxiv.org/pdf/1404.1100.pdf
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