Peter Latham and Sheila Nirenberg, July, 2002. 1

Introduction
When it comes to correlations and neural coding, our premise is that the question

“Do correlations among spike trains carry information above and beyond what can be

obtained from the individual spike trains?”
is the same as

“If the brain were to construct the conditional probability distribution of stimuli given
responses without knowledge of the correlational structure in the response distribution,

would that conditional distribution be close to the true one?”

The nice thing about this reformulation is that the second question can be phrased mathe-

matically as
“Is P(s|ry,rs,...) close to Piyp(s|ri,ra,...)7"

where P(s|ry,rg,...) is the true conditional stimulus distribution and P;yp(s|r1, 79, ...) is the
one built without any knowledge of the correlational structure in the responses.

The only remaining issue is to define “close to”. We used a pretty common measure, the
conditional relative entropy between P and P;yp. We called this measure A, and it’s given

by

AI' =) P(r)>_ P(s|r)log PIIJ;(A

p(s[r)
where r is shorthand for (rq,79,...). See Nirenberg et al. (2001) [Nature 411:698-701] for
details.

When it comes down to it, cost functions are always a matter of taste. However, there
are several good reasons for choosing AI: 1) Al provides a universal bound on optimal cost
functions; 2) AT is an upper bound on information loss; and 3) when it comes to comparing
codes, AT is completely standard, and it’s what everybody’s been using for years.

In the next few pages we make the above statements precise, and we prove them. Note:

these are separate documents, so equation numbers are internal to each of them.

Peter Latham and Sheila Nirenberg, July, 2002. 2

Optimal cost functions and A7l

Let’s say we want to build a deterministic decoder based on neuronal responses. In other
words, we want to construct a mapping that takes the neuronal response, r, to an estimate of
the stimulus, §(r), such that the difference between the true stimulus, s, and the estimated
stimulus, §(r), is as small as possible. “As small as possible”, of course, means with respect
to some cost function, C'(8(r),s). The total cost is some functional of C(§(r),s); here we’ll

use the average, denoted (C(8)),,

(CE)y = [drp(r) [dsp(s)C((E),5).

The estimator that minimizes the average cost, denoted $,(r), is

§,(r) = argmjn/dsp(s|r)0(é,s).

Suppose we don’t know the true distribution p(s|r); instead we know only an approximate
distribution, ¢(s|r). If we minimized the average cost with respect to ¢(s|r), we would get a

different estimator, §,, which would be given by
§4(r) = argmjn/ds q(s|r)C(s,s) . (1)
The difference between the two costs, denoted AC), is given by

AC =({C(8¢))p —(C(8p))s - (2)

Note that, even though §, was constructed using ¢(r|s), the cost associated with §, is found
by averaging with respect to the true distribution.

We want to compute AC in the limit that p is close to ¢, and then compare that to A7
(defined in Eq. (9) below). We can find §,(r) by minimizing the right hand side of Eq. (1)

with respect to §. In other words, §,(r) is a solution to the equation

Peter Latham and Sheila Nirenberg, July, 2002. 3

where the gradient is with respect to §: VC(8,s) = 0C(8,s)/0s. Expanding §, around §,

and ¢ around p, and working to lowest order in (p — ¢), Eq. (3) becomes
/ ds [p(sIr) (8, — §) - VVC(3,,5) + [a(s|r) — p(s|T)]VCO(5,,8)] = 0 (4)
where we used the condition [dsp(s|r)VC(§,,s) = 0. Solving Eq. (4) for §, — §, yields

Sy — 8 = (VVC(8,5)))+ (VO (8y,) [a(sx) — p(SI)]/0(I0) oo 5)

The notation (...),sr) means average over s with respect to the distribution p(s|r).
Now that we know §, in terms of §, we can compute AC. Taylor expanding the first

term in Eq. (2) around §,, we find, to second order in §, — §,, that
AC =(C(8p))p+((84—=8p) - VC(8p,8))p+((8g—8p) - VVC (8, 8) - (8g—8p))p —(C(8p;8))p - (6)

Again using [dsp(s|r)VC(8,,s) = 0, Eq. (6) becomes

AC = <(§q - ép)) ch(ép) : (éq - ép))p- (7)

Inserting Eq. (5) into (7) then yields

AC = /drp(r)((5p/p)VC(§p, $))psir) - (VVCO (S, S)>;(ls|r) (VC(8p,8)(0p/P))p(sir) (8)

where 0p/p is shorthand for [p(s|r) — ¢(s|r)]/p(s|r).
What we want to do now is compare this expression for AC' to the one for AI. The latter

is defined to be

Al = <log p(slr) >,, . 9)

q(slr)

Peter Latham and Sheila Nirenberg, July, 2002. 4

Expanding this to lowest order in (p — ¢) and using ((p — ¢)/p), = 0, AI becomes, to lowest

nonvanishing order in (p — q),
AL = {(dp/p))y- (10)

To compare AT to AC, we need the following inequality. If A is symmetric and positive

semi-definite, then, for any functions f and g,

(fg) - A-(gf) = (zxkvkvk)-<gf>:zxk<fg-vk>2
< Z/\k (f*) g vi) (11)

_— <g- (gxk-vkvk) -g> — (e A-g).

where the lone inequality in the above list of expressions follows from the Schwarz inequality,
and \; and vj are the eigenvalues and eigenvectors of A.

We would like to use this inequality in Eq. (8), but we can do that only if (VVC(S,, S))z:(lsh')
is positive semi-definite. Fortunately, it is: §, was chosen to make (C(S,, s))p(sr) @ minimum,
which implies that (VVC(8,,s))ps|r) is positive semi-definite, so its inverse is also. Thus,

using Eq. (11), Eq. (8) becomes

AC < / dr p(r){(0p/P):)p(sle) [(VC (85, 8) - (VVC (3, 8))pihiey - VO (G, 8)pair)] - (12)

Comparing Eqgs. (10) and (12), we see that, so long as (VVC(8,,s))p(s|r) is invertible and
Al is sufficiently small,

/dl‘p VC (85,8) - (VVC (85, 8)) ey - VC’(ép,s)>p(s|r)]

where

p(x){(6p/P)*)p(s

p(r) = Jdrp(r){(dp/p)?)p(s r)

Peter Latham and Sheila Nirenberg, July, 2002. 5

Al can act as an upper bound on information loss

Consider the following game: person A chooses, at random, one object out of a set of
objects, and person B has to guess which one was chosen by asking yes/no questions. The
i*" object is chosen with probability p;. Person B, however, thinks the i*" object is chosen
with probability ¢;, and will base her question-asking strategy on that wrong distribution.
Cover and Thomas (mainly Chap. 5) tells us that the average number of yes/no questions

person B has to ask to guess the object, denoted N (p, q), is
N(p,q) = = >_pilogg; = H(p) + Al (1)

where H(p) = — ¥, p; log p; is the entropy of the true distribution and AT = Y, p;log p;/¢; =
D(pl|q) is the Kullback-Leibler distance between p and g.

The quantity Al that appears in Eq. (1) has a natural interpretation: it is the penalty, in
yes/no questions, that person B pays for using the wrong distribution to design her question-
asking strategy. We can also interpret Al as an information loss, in the following sense: We
can make up for the wrong distribution by supplying person B with A bits. In other words,
if we give AT bits to person B, on average she will do as well guessing what object is present
as a person who knows the true distribution.

In fact, what we show below is stronger than that: if we give Al bits to person B, she
will do no worse at guessing the object than a person who knows the true distribution, and
she may do better. Alternatively, if we want person B to guess the object in H(p) yes/no
questions (the same number as a person who knows the true distribution), we could do that
by supplying her with at most Al bits, and sometimes less than that. The actual number
of bits she needs depends on the distributions p and gq.

When we say “give bits to person B”, we have in mind the following: Person A chooses
an object, and then sends a string of symbols (0s and 1s, say) to person B through a noisy
channel. Those strings provide information about which object was chosen using a pretty
standard coding scheme: the objects are divided into groups, and each string tells which
group the object is in. For example, a coding scheme for 6 objects might be: objects 1 and
2 are labeled with the string 1, objects 3 and 4 are labeled with the string 01, and objects 5
and 6 are labeled with the string 00. If, say, object 5 is chosen, then the string 00 would be

Peter Latham and Sheila Nirenberg, July, 2002. 6

sent. Since the channel is noisy, a string different than 00 might be received.

So here’s the situation. Person A chooses object 7, determines that it is labeled with
string k, and then sends string k£ to person B. Because the channel through which the string
is sent is noisy, person B receives string [. She then revises her estimate of the probability
that object i is chosen. Letting P(k|l) be the probability that string k£ was sent given that
string [was received, her new estimate of the distribution of objects, which we’ll call ¢(i|l),

g(ill) = &P(km 2)

where Q) = > ,c; ¢; and the notation ¢ € £ means sum over only those ¢ such that 7 is in

group k. The number of yes/no questions she will have to ask to guess the object is now

Ni(p,q) = - ; P(1) > p(ill) log g(ill) (3)

2

where the subscript I means that I bits were sent (I will be computed shortly), P(l) is the
probability that person B received string [, and p(i|l) is the true probability that object i
was chosen given that string [was received. Analogous to Eq. (2), this last quantity is given
by

p(ill) = - P(kI) ()

where P, = Y ,c pi-
Inserting Eqs. (2) and (4) into (3), rearranging terms slightly, and using P, = -, P(k|l) P(l),
we find that
Ni(p,q) = N(p,q) = >_P(1) 3_ P(k[l)log w —>_ DPilog e
l k k k Qk
The second term is I(k;1), the amount of information transmitted through the noisy channel
(also the average string length), and the third term is D(P||Q), the Kullback-Leibler distance
between P and (). We thus have

Ni(p,q) = N(p,q) — I(k;1) — D(P||Q) .

Peter Latham and Sheila Nirenberg, July, 2002. 7

Since D(P||Q) is non-negative, giving I bits to person B reduces the number of yes/no
questions she has to ask by at least I. The reduction could be larger, though. To find out
how much larger, we minimize N;(p,q) with respect to ¢, subject to the constraint that
the ¢; sum to 1. When we do this, we find that the minimum value of N;(p,q), which
occurs when ¢; = p;Qy/ Py, is H(p) — I(k;1). The maximum reduction in yes/no questions,
N(p,q) — [H(p) — I(k;1)], is thus I(k;1) + AI (see Eq. (1)). Consequently, giving I bits to
person B reduces the number of yes/no questions she has to ask by an amount somewhere

between I and I + A, inclusive. Alternatively,

Giving AT bits or less to person B allows her to guess the object in exactly the same

number of yes/no questions as someone who knows the true distribution.

This is our main result, and it’s why we interpret Al as an upper bound on information loss.
This looks sort of odd: we can, in principle, give person B an arbitrarily small amount

of information and produce a potentially large reduction in the number of yes/no questions.

Can this really happen? The answer is yes, as the following example shows.
Letp;=1/M,i=1,...M,q =1/M —a/M, and ¢;~; = 1/M +a/M(M — 1). For these

distributions

1 M—-1
—Mlog(l—oz)— i

(8]
AT = log |1 .
Og[+M—1]

For fixed M, we can make AI arbitrarily large by letting o approach 1.
Now let’s inject a little information by telling person B whether or not element 1 was
chosen. We’'ll use a lossless channel, so this results in a transmission of

Sl 1 M-l M-l
TTM® M T M %

bits, which, for large M, approaches log M/M. Thus, we can provide person B with an
arbitrarily small amount of information (by letting M go to infinity), while reducing the
number of yes/no questions she would have to ask by an arbitrarily large amount (by letting

« go to 1).

Peter Latham and Sheila Nirenberg, July, 2002. 8

Information differences and A/

Suppose you want to compare two neural codes — say spike timing and spike count. The
natural thing to do is compute the information using one code, compute the information
using the other, and then take the difference. What we show here is that when one of the
neural codes is a sub-code of the other (as spike count is a sub-code of spike timing), then this
difference is exactly equal to the Al, the cost function used to assess the role of correlations
in Nirenberg et al. (2001) [Nature 411:698-701].

As usual in information calculations in the brain, you show a set of stimuli and measure
neuronal responses. The latter are denoted r = (71,79, ...) where the r; can be any aspect of
the code — 1s and 0Os in small bins to indicate the presence or absence of a spike, for example.
A sub-code of r is any function of r: if z = f(r) then z is a sub-code of r. If you observe
just z, you get no more information than if you observe r, and you usually get less. The

difference is
Al = I(r;s) — I(z;s),

where s is the stimulus and

I(r;s) = =) P(r)logP(r +ZP ZPr|) log P(r|s)

I(z;s) = —>_ P(z)log P(z —l—ZP ZP s)log P(z[s) .

The probability distributions P(z|s) and P(z) are given by the usual formulae

P(z) = Y P(r)é(z —f(r)) (1a)

r

P(z|s) = > P(r|s)é(z— f(r)). (1b)

r

Here § is a Kronecker d-like object: §(z — f(r)) = 1 if z = f(r) and 0 otherwise. Had these
been continuous distributions, we would have used Dirac d-functions and the sums would

have been integrals.

Peter Latham and Sheila Nirenberg, July, 2002. 9

Let’s compare AT to AT, the latter being the number of extra yes-no questions it would
take to guess the stimulus given that you observed only z = f(r) rather than the full set of

responses, r. This quantity is given by [Nirenberg et al., Nature 411:698-701 (2001)]
P(sr)]
AI =Y P(r) S P(s]r) log li .
2 1) 2. POl 08 | s (e
Using Bayes’ theorem and rearranging terms slightly leads to

A=Y P(s) Y Plr]s)log lP(r‘S)P(S) P(f(r))] .

P(r) P(f(r)[s)P(s)

Canceling the P(s) that appears in the numerator and denominator inside the logs, and

again rearranging terms, we find that
AT = I(r;5) ZP)log P(f(r)) + >_ P(s ZP s) log P(f(r)|)] : (2)

We can rewrite the first term in brackets as

> P(r)log P(f ZP Z(Sz—)) log P(z) .

Rearranging terms one last time, we have
> P(r)log P(f ZlogP ZP ZP) log P(z) (3)
where the last equality follows from Eq. (1a). Using identical logic,
ZP r|s)log P(f ZP s)log P(z|s) . (4)

Finally, Inserting Eqgs. (3) and (4) into Eq. (2), we find that

Al =1I(r ZP)log P(z +ZP s)log P(z|s)| = I(r;s) — I(z;s) = Al.

Thus, A and AT are one and the same.

