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Optimal cost functions and A7l

Let’s say we want to build a deterministic decoder based on neuronal responses. In other
words, we want to construct a mapping that takes the neuronal response, r, to an estimate of
the stimulus, §(r), such that the difference between the true stimulus, s, and the estimated
stimulus, §(r), is as small as possible. “As small as possible”, of course, means with respect
to some cost function, C'(8(r),s). The total cost is some functional of C(§(r),s); here we’ll

use the average, denoted (C(8)),,

(CE)y = [ drp(r) [ dsp(s)C((E), ).

The estimator that minimizes the average cost, denoted $,(r), is

§,(r) = argmjn/dsp(s|r)0(§, s) .

Suppose we don’t know the true distribution p(s|r); instead we know only an approximate
distribution, ¢(s|r). If we minimized the average cost with respect to ¢(s|r), we would get a

different estimator, §,, which would be given by
§4(r) = argmjn/ds q(s|r)C(s,s) . (1)
The difference between the two costs, denoted AC), is given by

AC =(C(8¢))p — (C(8p))yp - (2)

Note that, even though §, was constructed using ¢(r|s), the cost associated with §, is found
by averaging with respect to the true distribution.

We want to compute AC in the limit that p is close to ¢, and then compare that to A7
(defined in Eq. (9) below). We can find §,(r) by minimizing the right hand side of Eq. (1)

with respect to §. In other words, §,(r) is a solution to the equation
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where the gradient is with respect to §: VC(8,s) = 0C(8,s)/0s. Expanding §, around §,

and ¢ around p, and working to lowest order in (p — ¢), Eq. (3) becomes
/ ds [p(sIr) (8, — §) - VVC(3,,5) + [a(s|r) — p(s|T)]VCO(5,,8)] = 0 (4)
where we used the condition [ dsp(s|r)VC(S§,,s) = 0. Solving Eq. (4) for §, — §, yields

84— 8 = (VVC(85,8)) ki) - (VC (85,9 la(slr) — p(sI0)]/p(SIT) o) (5)

The notation (...)ps|r) Means average over s with respect to the distribution p(s|r).
Now that we know §, in terms of §, we can compute AC. Taylor expanding the first

term in Eq. (2) around §,, we find, to second order in §, — §,, that
AC = (C(8p))p+((8g=5p)- VO (8p,8))p+((8g—5p) - VVC(8p,8)- (8§—5p))p = (C(8p,8))p - (6)

Again using [dsp(s|r)VC(8,,s) = 0, Eq. (6) becomes

AC = <(§q - ép) ) ch(ép) : (éq - ép))p- (7)

Inserting Eq. (5) into (7) then yields

AC = /drp(r)((5p/p)VC(§p, $))psir) - (VVO(Sp, S)>;(ls|r) (VC(8p,8)(0p/P))p(sir) (8)

where 0p/p is shorthand for [p(s|r) — ¢(s|r)]/p(s|r).
What we want to do now is compare this expression for AC' to the one for AI. The latter
is defined to be

Al = <log p(slr) >,, . 9)

q(slr)
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Expanding this to lowest order in (p — ¢) and using ((p — ¢)/p), = 0, AI becomes, to lowest

nonvanishing order in (p — q),
AL = {(dp/p))y- (10)

To compare AT to AC, we need the following inequality. If A is symmetric and positive

semi-definite, then, for any functions f and g,

(fg)-A-(gf) = (Z/\kvkvk) &) => M(fg-vi)?
< Z/\k< g vi) (11)

_— <g- (;Ak-vkvk) -g> — (e A-g).

where the lone inequality in the above list of expressions follows from the Schwarz inequality,
and \; and vj are the eigenvalues and eigenvectors of A.

We would like to use this inequality in Eq. (8), but we can do that only if (VVC(8,, S))z:(lsh')
is positive semi-definite. Fortunately, it is: §, was chosen to make (C(8,,s))y(sr) @ minimum,
which implies that (VVC(8,,s))ys|r) is positive semi-definite, so its inverse is also. Thus,

using Eq. (11), Eq. (8) becomes

AC < / dr p(r){(0p/))p(sle) (VO (85, 8) - (VVC (3, 8))pihiey - VO (G, 8)pair)] - (12)

Comparing Eqgs. (10) and (12), we see that, so long as (VVC(8,,s))p(s|r) is invertible and
Al is sufficiently small,

/dl‘p VC (85,8) - (VVC (85, 8)) ey - VC’(ép,s)>p(s|r)]

where

p(x){(6p/P)*)p(s
J dr p(r){(p/p)? >p<s r)

p(r) =



