Optimal cost functions and ΔI

Let's say we want to build a deterministic decoder based on neuronal responses. In other words, we want to construct a mapping that takes the neuronal response, \mathbf{r} , to an estimate of the stimulus, $\hat{\mathbf{s}}(\mathbf{r})$, such that the difference between the true stimulus, \mathbf{s} , and the estimated stimulus, $\hat{\mathbf{s}}(\mathbf{r})$, is as small as possible. "As small as possible", of course, means with respect to some cost function, $C(\hat{\mathbf{s}}(\mathbf{r}), \mathbf{s})$. The total cost is some functional of $C(\hat{\mathbf{s}}(\mathbf{r}), \mathbf{s})$; here we'll use the average, denoted $\langle C(\hat{\mathbf{s}}) \rangle_p$,

$$\langle C(\hat{\mathbf{s}})\rangle_p = \int d\mathbf{r} \, p(\mathbf{r}) \int d\mathbf{s} \, p(\mathbf{s}|\mathbf{r}) C(\hat{\mathbf{s}}(\mathbf{r}), \mathbf{s}) \,.$$

The estimator that minimizes the average cost, denoted $\hat{\mathbf{s}}_p(\mathbf{r})$, is

$$\hat{\mathbf{s}}_p(\mathbf{r}) = \arg\min_{\hat{\mathbf{s}}} \int d\mathbf{s} \, p(\mathbf{s}|\mathbf{r}) C(\hat{\mathbf{s}},\mathbf{s}) \,.$$

Suppose we don't know the true distribution $p(\mathbf{s}|\mathbf{r})$; instead we know only an approximate distribution, $q(\mathbf{s}|\mathbf{r})$. If we minimized the average cost with respect to $q(\mathbf{s}|\mathbf{r})$, we would get a different estimator, $\hat{\mathbf{s}}_q$, which would be given by

$$\hat{\mathbf{s}}_q(\mathbf{r}) = \arg\min_{\hat{\mathbf{s}}} \int d\mathbf{s} \, q(\mathbf{s}|\mathbf{r}) C(\hat{\mathbf{s}}, \mathbf{s}) \,. \tag{1}$$

The difference between the two costs, denoted ΔC , is given by

$$\Delta C = \langle C(\hat{\mathbf{s}}_q) \rangle_p - \langle C(\hat{\mathbf{s}}_p) \rangle_p.$$
 (2)

Note that, even though $\hat{\mathbf{s}}_q$ was constructed using $q(\mathbf{r}|\mathbf{s})$, the cost associated with $\hat{\mathbf{s}}_q$ is found by averaging with respect to the true distribution.

We want to compute ΔC in the limit that p is close to q, and then compare that to ΔI (defined in Eq. (9) below). We can find $\hat{\mathbf{s}}_q(\mathbf{r})$ by minimizing the right hand side of Eq. (1) with respect to $\hat{\mathbf{s}}$. In other words, $\hat{\mathbf{s}}_q(\mathbf{r})$ is a solution to the equation

$$\int d\mathbf{s} \, q(\mathbf{s}|\mathbf{r}) \nabla C(\hat{\mathbf{s}}_q(\mathbf{r}), \mathbf{s}) = 0$$
(3)

where the gradient is with respect to $\hat{\mathbf{s}}$: $\nabla C(\hat{\mathbf{s}}, \mathbf{s}) \equiv \partial C(\hat{\mathbf{s}}, \mathbf{s})/\partial \hat{\mathbf{s}}$. Expanding $\hat{\mathbf{s}}_q$ around $\hat{\mathbf{s}}_p$ and q around p, and working to lowest order in (p-q), Eq. (3) becomes

$$\int d\mathbf{s} \left[p(\mathbf{s}|\mathbf{r})(\hat{\mathbf{s}}_q - \hat{\mathbf{s}}_p) \cdot \nabla \nabla C(\hat{\mathbf{s}}_p, \mathbf{s}) + [q(\mathbf{s}|\mathbf{r}) - p(\mathbf{s}|\mathbf{r})] \nabla C(\hat{\mathbf{s}}_p, \mathbf{s}) \right] = 0$$
(4)

where we used the condition $\int ds \, p(\mathbf{s}|\mathbf{r}) \nabla C(\hat{\mathbf{s}}_p, \mathbf{s}) = 0$. Solving Eq. (4) for $\hat{\mathbf{s}}_q - \hat{\mathbf{s}}_p$ yields

$$\hat{\mathbf{s}}_q - \hat{\mathbf{s}}_p = \langle \nabla \nabla C(\hat{\mathbf{s}}_p, \mathbf{s}) \rangle_{p(\mathbf{s}|\mathbf{r})}^{-1} \cdot \langle \nabla C(\hat{\mathbf{s}}_p, \mathbf{s}) [q(\mathbf{s}|\mathbf{r}) - p(\mathbf{s}|\mathbf{r})] / p(\mathbf{s}|\mathbf{r}) \rangle_{p(\mathbf{s}|\mathbf{r})}.$$
 (5)

The notation $\langle ... \rangle_{p(\mathbf{s}|\mathbf{r})}$ means average over \mathbf{s} with respect to the distribution $p(\mathbf{s}|\mathbf{r})$.

Now that we know $\hat{\mathbf{s}}_q$ in terms of $\hat{\mathbf{s}}_p$ we can compute ΔC . Taylor expanding the first term in Eq. (2) around $\hat{\mathbf{s}}_p$, we find, to second order in $\hat{\mathbf{s}}_p - \hat{\mathbf{s}}_q$, that

$$\Delta C = \langle C(\hat{\mathbf{s}}_p) \rangle_p + \langle (\hat{\mathbf{s}}_q - \hat{\mathbf{s}}_p) \cdot \nabla C(\hat{\mathbf{s}}_p, \mathbf{s}) \rangle_p + \langle (\hat{\mathbf{s}}_q - \hat{\mathbf{s}}_p) \cdot \nabla \nabla C(\hat{\mathbf{s}}_p, \mathbf{s}) \cdot (\hat{\mathbf{s}}_q - \hat{\mathbf{s}}_p) \rangle_p - \langle C(\hat{\mathbf{s}}_p, \mathbf{s}) \rangle_p.$$
 (6)

Again using $\int ds \, p(\mathbf{s}|\mathbf{r}) \nabla C(\hat{\mathbf{s}}_p, \mathbf{s}) = 0$, Eq. (6) becomes

$$\Delta C = \langle (\hat{\mathbf{s}}_q - \hat{\mathbf{s}}_p) \cdot \nabla \nabla C(\hat{\mathbf{s}}_p) \cdot (\hat{\mathbf{s}}_q - \hat{\mathbf{s}}_p) \rangle_p.$$
 (7)

Inserting Eq. (5) into (7) then yields

$$\Delta C = \int d\mathbf{r} \, p(\mathbf{r}) \langle (\delta p/p) \nabla C(\hat{\mathbf{s}}_p, \mathbf{s}) \rangle_{p(\mathbf{s}|\mathbf{r})} \cdot \langle \nabla \nabla C(\hat{\mathbf{s}}_p, \mathbf{s}) \rangle_{p(\mathbf{s}|\mathbf{r})}^{-1} \cdot \langle \nabla C(\hat{\mathbf{s}}_p, \mathbf{s}) (\delta p/p) \rangle_{p(\mathbf{s}|\mathbf{r})}$$
(8)

where $\delta p/p$ is shorthand for $[p(\mathbf{s}|\mathbf{r}) - q(\mathbf{s}|\mathbf{r})]/p(\mathbf{s}|\mathbf{r})$.

What we want to do now is compare this expression for ΔC to the one for ΔI . The latter is defined to be

$$\Delta I = \left\langle \log \frac{p(\mathbf{s}|\mathbf{r})}{q(\mathbf{s}|\mathbf{r})} \right\rangle_{n} . \tag{9}$$

Expanding this to lowest order in (p-q) and using $\langle (p-q)/p \rangle_p = 0$, ΔI becomes, to lowest nonvanishing order in (p-q),

$$\Delta I = \langle (\delta p/p)^2 \rangle_p \,. \tag{10}$$

To compare ΔI to ΔC , we need the following inequality. If **A** is symmetric and positive semi-definite, then, for any functions f and \mathbf{g} ,

$$\langle f\mathbf{g}\rangle \cdot \mathbf{A} \cdot \langle \mathbf{g}\mathbf{f}\rangle = \langle f\mathbf{g}\rangle \cdot \left(\sum_{k} \lambda_{k} \mathbf{v}_{k} \mathbf{v}_{k}\right) \cdot \langle \mathbf{g}f\rangle = \sum_{k} \lambda_{k} \langle f\mathbf{g} \cdot \mathbf{v}_{k}\rangle^{2}$$

$$\leq \sum_{k} \lambda_{k} \langle f^{2}\rangle \langle \mathbf{g} \cdot \mathbf{v}_{k}^{2}\rangle$$

$$= \langle f^{2}\rangle \left\langle \mathbf{g} \cdot \left(\sum_{s} \lambda_{k} \cdot \mathbf{v}_{k} \mathbf{v}_{k}\right) \cdot \mathbf{g} \right\rangle = \langle f^{2}\rangle \langle \mathbf{g} \cdot \mathbf{A} \cdot \mathbf{g}\rangle.$$
(11)

where the lone inequality in the above list of expressions follows from the Schwarz inequality, and λ_k and \mathbf{v}_k are the eigenvalues and eigenvectors of \mathbf{A} .

We would like to use this inequality in Eq. (8), but we can do that only if $\langle \nabla \nabla C(\hat{\mathbf{s}}_p, \mathbf{s}) \rangle_{p(\mathbf{s}|\mathbf{r})}^{-1}$ is positive semi-definite. Fortunately, it is: $\hat{\mathbf{s}}_p$ was chosen to make $\langle C(\hat{\mathbf{s}}_p, \mathbf{s}) \rangle_{p(\mathbf{s}|\mathbf{r})}$ a minimum, which implies that $\langle \nabla \nabla C(\hat{\mathbf{s}}_p, \mathbf{s}) \rangle_{p(\mathbf{s}|\mathbf{r})}$ is positive semi-definite, so its inverse is also. Thus, using Eq. (11), Eq. (8) becomes

$$\Delta C \le \int d\mathbf{r} \, p(\mathbf{r}) \langle (\delta p/p)^2 \rangle_{p(\mathbf{s}|\mathbf{r})} \left[\langle \nabla C(\hat{\mathbf{s}}_p, \mathbf{s}) \cdot \langle \nabla \nabla C(\hat{\mathbf{s}}_p, \mathbf{s}) \rangle_{p(\mathbf{s}|\mathbf{r})}^{-1} \cdot \nabla C(\hat{\mathbf{s}}_p, \mathbf{s}) \rangle_{p(\mathbf{s}|\mathbf{r})} \right]. \tag{12}$$

Comparing Eqs. (10) and (12), we see that, so long as $\langle \nabla \nabla C(\hat{\mathbf{s}}_p, \mathbf{s}) \rangle_{p(\mathbf{s}|\mathbf{r})}$ is invertible and ΔI is sufficiently small,

$$\frac{\Delta C}{\Delta I} \le \int d\mathbf{r} \, \tilde{p}(\mathbf{r}) \left[\langle \nabla C(\hat{\mathbf{s}}_p, \mathbf{s}) \cdot \langle \nabla \nabla C(\hat{\mathbf{s}}_p, \mathbf{s}) \rangle_{p(\mathbf{s}|\mathbf{r})}^{-1} \cdot \nabla C(\hat{\mathbf{s}}_p, \mathbf{s}) \rangle_{p(\mathbf{s}|\mathbf{r})} \right]$$

where

$$ilde{p}(\mathbf{r}) \equiv rac{p(\mathbf{r})\langle(\delta p/p)^2\rangle_{p(\mathbf{s}|\mathbf{r})}}{\int d\mathbf{r} \, p(\mathbf{r})\langle(\delta p/p)^2\rangle_{p(\mathbf{s}|\mathbf{r})}} \, .$$