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Carcieri, Stephen M., Adam L. Jacobs, and Sheila Nirenberg. Clas-
sification of retinal ganglion cells: a statistical approach. J Neurophysiol
90: 1704–1713, 2003; 10.1152/jn.00127.2003. Numerous studies have
shown that retinal ganglion cells exhibit an array of responses to visual
stimuli. This has led to the idea that these cells can be sorted into distinct
physiological classes, such as linear versus nonlinear or ON versus OFF.
Although many classification schemes are widely accepted, few studies
have provided statistical support to favor one scheme over another. Here
we test whether some of the most widely used classification schemes can
be statistically verified, using the mouse retina as the model system. We
used a cluster analysis approach and focused on 4 standard response
parameters: 1) response latency, 2) response duration, 3) relative ampli-
tude of the ON and OFF responses, and 4) degree of nonlinearity in the
stimulus-to-response transformation. For each parameter, we plotted its
distribution and tested quantitatively, using a bootstrap method, whether
it divided into distinct clusters. Our analysis showed that mouse ganglion
cells clustered into several groups based on response latency, duration,
and relative amplitude of the ON and OFF responses, but did not cluster into
more than one group based on degree of nonlinearity—the latter formed
a single, large, continuous group. Thus while some well-known schemes
for classifying ganglion cells could be statistically verified, others could
not. Knowledge of which schemes can be confirmed is important for
building models of how retinal output is processed and how retinal
circuits are built. Finally, this cluster analysis approach is general and can
be used to test other classification proposals as well, both physiological
and anatomical.

I N T R O D U C T I O N

It is well known that retinal ganglion cells, the output
neurons of the retina, do not respond in a uniform way to visual
stimuli (Barlow 1953; Enroth-Cugell and Robson 1966; Hart-
line 1938; Kuffler 1953). When the retina is presented with
almost any given stimulus, an array of responses is observed.
For example, when ganglion cells are presented with flashing
spots in their receptive field centers, some cells respond only to
the onset of the spot, others only to the offset, and still others
to both (Barlow 1953; Kuffler 1953). Similarly, when cells are
presented with contrast-reversing sine wave gratings, some
cells show linearity in their stimulus-to-response transforma-
tions, whereas others show striking nonlinearity (Enroth-
Cugell and Robson 1966; Hochstein and Shapley 1976).

These findings have led to the idea that retinal ganglion cells
fall into distinct classes based on their response properties (for
review, see Rockhill et al. 2002; Stone 1983; Wassle and
Boycott 1991). However, these findings do not necessitate the
existence of distinct classes—that is, the fact that a particular

response property varies from cell to cell does not imply that
the cells divide into groups with respect to that property.
Instead, the cells may just lie on a continuum (Abbott and
Chance 2002; Hochstein and Shapley 1976; Mechler and
Ringach 2002; Rodieck 1998). For example, cells with linear
and very nonlinear responses may be endpoints of a continuum
that contains cells with varying degrees of nonlinearity in
between.

The issue of how ganglion cells divide—that is, what re-
sponse properties divide them, and where the divisions lie—
has been a subject of much discussion and debate (reviewed in
Rockhill et al. 2002; Rodieck and Brening 1983; Rowe and
Stone 1977; Wassle and Boycott, 1991), and new proposals for
relevant properties are continually emerging (e.g., see DeVries
and Baylor 1997; O’Brien et al. 2002; Pang et al. 2002). One
way to determine whether a given property divides cells is to
use cluster analysis (Hochstein and Shapley 1976; Rodieck and
Brening 1983; Rowe and Stone 1977). Although this approach
has been used for molecular phenotyping of ganglion cells
(Marc and Jones 2002), it has not been used for physiological
classification. Here we applied a straightforward bootstrap
algorithm to test for clusters in standard physiological response
parameters.

The parameters chosen were among the most widely used
for sorting ganglion cells: 1) response latency, 2) response
duration, 3) relative amplitude of the ON and OFF responses, and
4) degree of nonlinearity in the stimulus-to-response transfor-
mation. Our aim was to determine how mouse ganglion cells
divide with respect to these parameters because the answers
have direct bearing on models of how retinal circuits are
constructed and how retinal output is processed.

M E T H O D S

Recording and stimulating

Recordings were made from the isolated mouse retina using an
extracellular multielectrode array as described previously (Nirenberg
et al. 2001). Two stimuli were used. The first was a spot stimulus,
which was used to examine response latency, duration, and the rela-
tive amplitude of ON and OFF responses. The stimulus consisted of a
flashing spot that switched from light to dark every 2 s (light spot for
2 s followed by dark spot for 2 s). The mean contrast between the light
and dark spots, measured as (Lmax � Lmin)/(Lmax � Lmin) where Lmax

is the maximum luminance and Lmin is the minimum luminance, was
0.27. The area of the screen not containing the spot was maintained at
a background intensity equal to the mean of the light and dark spots
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[1,400 rod-equivalent photons �m�2 s�1, placing the stimulus in the
cone-activating regime with rods �90% saturated (Dodd 1998)]. Each
cell received an array of spots that varied in diameter from 50 �m (the
smallest that consistently drove the cells to fire) to 860 �m, in steps
of 90 �m, and the different spot sizes were randomly interleaved. The
cells in a given multielectrode recording were probed one at a time,
with cells not receiving the stimulus kept at the background intensity.
The total recording time for the spot stimulus ranged from 30 to 60
min: because multiple cells were recorded from simultaneously, and
the spots that stimulated them were randomly interleaved (at any
given moment, only one spot was present on the screen), the entire
duration of spot stimulation depended on the number of cells in the
recording. The spot stimulus lasted approximately 7 min for each cell
and was presented to 4–8 cells at a time, giving 30–60 min of
stimulus.

The second stimulus was a series of contrast-reversing sine wave
gratings (luminance modulated sinusoidally), which were used to
examine the degree of nonlinearity in the stimulus-to-response trans-
formation. The gratings were presented at 1 cycle/s (6 spatial frequen-
cies, 12 phases, and 3 contrasts, with each combination presented for
10 cycles). The series was presented as follows: A spatial frequency
and phase were chosen and presented at the 3 contrasts. The same
frequency was then chosen again, but this time shifted in phase by
15°, and the 3 contrasts were shown again. This routine continued
until the grating was shifted by a total of 180°; then a new spatial
frequency was chosen. Spatial frequencies were presented in order
from smallest to largest. The range (0.055 to 0.55 cycles/deg) was
chosen, following Stone and Pinto (1993), to ensure detection of
nonlinear spatial subunits within the receptive field center. The con-
trasts were 0.19, 0.24, and 0.27. In this range, response amplitude
increases linearly with contrast for most of the cells. Cells without a
linear contrast-response relationship in this range were excluded (13%
of cells). Mean grating intensity was 1,400 rod-equivalent photons
�m�2 s�1, as above. The grating stimulus runs for approximately 40
min, a time over which responses are typically extremely stable;
stability is usually maintained for �4 h. To assess rundown, full-field
flashes were presented before and after the grating stimulus. No
statistically significant reduction in peak flash responses was observed
[P � 0.5, paired t-test comparing peak firing rates before and after
gratings, n � 5 retinas; average peak firing rate before gratings: 63 �
4 spikes/s (mean � SE), after gratings: 66 � 4 spikes/s].

Finding the receptive field center of each cell

For each cell, the receptive field was found using standard reverse
correlation techniques (Meister et al. 1994). We presented a randomly
flickering checkerboard stimulus with squares 70 �m across that were
either black or white, and whose intensity changed at random every 60
ms. Each cell’s spike train was then reverse correlated to the stimulus,
yielding an average movie that caused the cell to fire. This movie was
denoted I(x, t), where x � (x, y) labels spatial position and t labels
time before a spike. The intensity was normalized so that I � �1
corresponded to a dark square and I � �1 corresponded to a light
square. The maximum absolute value of the movie, denoted I(xmax,
tmax), defines tmax, the time at which the movie peaks. The center of
the receptive field xcenter was then set to the center of mass at the peak
time

xcenter �

�
x

xI�x, tmax�

�
x

I�x, tmax�

where the sum on x is over only those intensities larger than threshold;
that is, the sum contains intensities only for which �I(x, tmax)� �
Ithreshold. The threshold intensity Ithreshold was taken to be 2.5 SDs
above the noise, where the SD, �, is defined by �2 � (1/N) �x,t

I(x, t)2. Here, the sum is over all checkerboard squares and all time
bins and N is the total number of squares 	 the number of time bins.

Finding the optimal spot for each cell

For each cell, spots of various diameters were positioned over the
cell’s receptive field center, xcenter (see Finding the receptive field for
each cell) and then flashed on and off as described above. A spike
density function for each spot diameter was computed by convolving
the spike trains with a Gaussian of width 50 ms. The peak of the spike
density function was taken to be the cell’s response. Response versus
spot diameter for a typical cell is plotted in Fig. 1A. To find the peak
of the response versus diameter curve, we fit a quadratic through three
points: the spot with the largest response and spots one size smaller
and one size larger. The peak of the quadratic provided an estimate of

FIG. 1. Finding optimal spot and measuring parameters of response time
course: amplitude, latency, and duration. A: series of spots of different sizes
presented to ganglion cell receptive field center; peak response to each spot
plotted as function of spot size. To find size of receptive field center, this
function was fitted to a quadratic (solid line), using spot with largest response
and spots on either side. Location of peak of quadratic (dotted line) provided
estimate of receptive field center size. Largest spot smaller than this estimate
was taken to be optimal spot. B: measuring parameters of response time course,
using optimal spot. Amplitude, Ai, is difference between peak response and
baseline (i � 1 for response to light spot; i � 2 for response to dark spot).
Baseline firing rate (gray line) is computed by averaging firing rate over last
250 ms of each 2-s interval of stimulus. Latency, Li, is time between stimulus
onset (dark-to-light transition for i � 1, and light-to-dark transition for i � 2)
and peak response. Finally duration, �i, is time over which response i falls from
Ai to Ai/e above baseline. If decay were exponential, �i would be decay time
constant.

1705CLASSIFICATION OF GANGLION CELLS

J Neurophysiol • VOL 90 • SEPTEMBER 2003 • www.jn.org



the receptive field center size. The largest spot smaller than this
estimate was taken to be the optimal spot.

Measuring response latency, bias index, and duration to the
optimal spot stimulus

The optimal spot was presented periodically and a spike density
function was computed. Response latency, relative amplitude of the
ON and OFF responses, and duration were measured (Fig. 1B). Latency,
Li, was defined as the time from stimulus onset to the peak of the spike
density function (i � 1 for the response to the light spot; i � 2 for the
response to the dark spot). Relative amplitude of the ON and OFF

responses was defined as a bias index, where the bias index is (A1 �
A2)/(A1 � A2), and A1 and A2 are the peak responses of the first and
second interval, respectively, relative to baseline. Baseline, shown as
a gray line, was the firing rate averaged over the last 250 ms of both
intervals. Duration, �i, was the time over which the response decays
from Ai to Ai/e above the baseline.

Measuring the degree of nonlinearity

Linearity of the stimulus-to-response transformation was evaluated
using contrast-reversing sine wave gratings following the method of
Hochstein and Shapley (1976) (Fig. 2). At each spatial frequency and
phase, a peristimulus time histogram (PSTH) of the response was
constructed using 10-ms bins, and the discrete Fourier transform of
the PSTH was taken. At each spatial frequency, the ratio of the mean
amplitude of the second harmonic across phases to the maximum
amplitude of the first harmonic across phases was computed. (The
amplitude of the second harmonic is, for the most part, invariant
across phase, whereas the amplitude of the first harmonic varies
sinusoidally; see Fig. 2.) The maximum second to first harmonic ratio
with respect to spatial frequency was used as the nonlinearity index
(Hochstein and Shapley 1976). The amplitude of the nth harmonic, an,
was determined in the standard way

an � � 1

Nc
�
l�1

Nc 1

ClTtotal
�

j
vl�tj� exp��in�tj��

where Nc is the number of contrasts presented, Cl is the lth contrast,
Ttotal is the total number of bins in the averaged response, � is the

temporal frequency (2� radians/s), vl(tj) is the average firing rate of
bin j in response to the lth contrast, and tj is the time of bin j.

Statistical analysis—the bootstrap test

To determine whether a distribution forms more than one mode, we
used the bootstrap algorithm described in Silverman (1981) with one
addition: a normalization factor to prevent the development of false
modes at boundaries [see Silverman (1986); for general review, see
Efron and Tibshirani (1993)].

The following outlines the method. Consider a set of n measure-
ments, z1, . . . , zn (for example, zi might be the nonlinearity index of
cell i, and n, the number of cells). The first step is to take these
measurements and construct a smooth distribution. To do this, we
treat each measurement as a �-function and convolve the set of
�-functions with a Gaussian. The resulting smoothed distribution,
denoted f (t; z, h), is given by

f �t; z, h� �
1

n
�
i�1

n 1


�zi)�2�h2
exp��

�t � zi�
2

2h2 �
where h is the width of the Gaussian and 
(zi) is a normalization
factor that is needed whenever t is restricted to a limited range (e.g.,
in the case of bias index, t would lie in the range [�1, 1]). If t is
limited to the range [a, b], then 
(zi) � (2�h2)�1/2 �a

b dt exp[�(t �
zi)

2/2h2]. If t is not limited, then a � ��, b � ��, and 
(zi) � 1.
The second step is to determine how much the distribution has to be

smoothed to make it unimodal. The smoothness is determined by the
width of the Gaussian; thus we are asking how large h must be to
make f (t; z, h) unimodal. If the set of measurements we started with
was drawn from a unimodal distribution, then little smoothing will be
needed (h will be small). If, on the other hand, the set of measure-
ments we started with was drawn from a multimodal distribution, then
a lot of smoothing will be needed (h will be large).

The third step is to set up the null hypothesis and determine whether
it can be rejected. The null hypothesis is that the distribution is
unimodal. To determine whether it can be rejected, we do the follow-
ing: We find the smallest value of h that makes f (t; z, h) unimodal and
denote this h1. We then draw a sample of n numbers from f (t; z, h1)
and call these numbers ẑi , i � 1, . . . , n. We then find the smallest

FIG. 2. Measuring degree of nonlinearity using Hochstein and Shapley’s nonlinearity index (Hochstein and Shapley 1976).
Amplitudes of first and second harmonic responses to contrast-reversing grating are shown as function of phase. Columns
correspond to 4 different spatial frequencies; rows, to two different cells. First harmonic responses indicated by crosses; second
harmonic responses, by squares. At low spatial frequencies first harmonic was a sinusoidal function of spatial phase, and sinusoids
that fit those responses are shown (line). Sign of first harmonic response was chosen to ensure a continuous plot. Top cell exhibited
a small second harmonic response, giving it a low nonlinearity index (index � 0.93). Bottom cell exhibited a large second harmonic
response, giving it a high nonlinearity index (index � 4.0). Each plot is labeled with ratio of maximum first harmonic response to
mean second harmonic response rL. Maximum value of rL is nonlinearity index for cell.
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value of h that makes f (t; ẑ, h1) unimodal. This value is denoted ĥ1.
We repeat this process N times. The fraction of time ĥ1 exceeds h1 is
the significance level for our test of the null hypothesis; in other
words, the probability P that our data came from a unimodal distri-
bution is given by

P � �# of times ĥ1 	 h1�/N

where N is the number of bootstrap samples. If P  0.05, we reject the
unimodal hypothesis and test the bimodal hypothesis using the same
procedure. This process is repeated with successively higher modal-
ities until we reach a number of modes that cannot be rejected. For
example, to test for bimodality, we determine the smallest value of h
that makes f (t; z, h) bimodal, denote this h2, and then proceed as
described above. For our analysis, we used N � 500, which gave us
an absolute error of [P(1 � P)/N]1/2 in our estimate of P. When P �
0.05, [P(1 � P)/N]1/2 � 0.01.

A limitation of this method is that it assigns modes to single cells
lying far from the main distribution. It is hard to know whether these
single cells are outliers or reflect real modes, given that the sampling
of the distribution is not dense enough. Rather than creating extra cell
classes associated with the extra modes, we excluded isolated data
points that were �3 SDs from the mean. On average, slightly fewer
than 3% of the cells per retina were excluded as outliers.

Serial approach to cell classification with respect to latency,
bias index, and duration

The most rigorous way to determine whether ganglion cells fall into
distinct groups is to evaluate several parameters at once: that is, for n
parameters, construct an n-dimensional histogram and test for multi-
modality. Because the amount of data needed scales exponentially
with n, a prohibitively large amount of data is needed even for 2
parameters. For this reason we evaluated parameters one by one in
series. We first tested for multimodality with respect to one parameter,
then moved onto the next, and so forth. If, at any stage, more than one
mode appeared, then all modes were evaluated separately along the
next parameter. The last stage was to backtrack—that is, to take the
final set of modes and evaluate them for division on any previous
parameters. For example, if the short latency group divided by dura-
tion, then each duration group was retested for division by latency.
What finally stops the analysis is when a group cannot be further
divided or it contains too few cells for further evaluation. (Our
criterion, set arbitrarily, was that a group had to contain more than 20
cells.)

To explore as large a space as possible, we varied the order of
parameters evaluated. This was done because some parameters were
not measurable for all cells. For example, when we started with
analysis of latency to the light spot, we found 3 cells that could not be
evaluated because they showed no response to this spot. These cells
were then lost for subsequent analysis because subsequent analysis
focused on whether the modes found with respect to latency to the
light spot further subdivided. To correct for this, we simply started the
analysis with other parameters (e.g., latency to the dark spot). This
way the cells eliminated by one order were included in another, and
a different group was lost. We did this with all possible orders to find
the largest number of modes for the data set. The order presented in
RESULTS is just one of the many orders examined: it was chosen
because 1) it revealed as many modes as were ever produced by any
of the other orders and 2) no other order produced any type of mode
it did not also produce.

All procedures on experimental animals were carried out under the
regulation of the Animal Research Committee of the University of
California at Los Angeles.

R E S U L T S

Sorting by response time course

Each ganglion cell was presented with the standard stimulus
for evaluating response time course, a flashing spot that tar-
geted only the receptive field center (see METHODS). The stim-
ulus was periodic and consisted of a light spot presented for
2 s, followed by a dark spot presented for 2 s. Three standard
parameters associated with response time course were then
measured: the latency of the response to the light and dark
spots, the relative amplitude of the responses to the light and
dark spots, and the duration of the response to the light and
dark spots. Finally, the distribution of each parameter was
tested for multimodality. Division into more than one mode
would indicate that the cells divide naturally into more than
one class.

Multimodality was examined using a bootstrap algorithm
(Silverman 1981). With this method, the distribution is first
tested for unimodality. If this is rejected, the distribution is then
tested for bimodality. The process is repeated using succes-
sively higher modes, until the number of modes that cannot be
rejected is identified (see METHODS).

The first parameter examined was the latency of the response
to the light spot. Latency was defined as the time between spot
onset and peak response (see METHODS, Fig. 1B). The distribu-
tion of latencies was found to be bimodal: unimodality was
rejected (P  0.01); bimodality was not (P � 0.25; n � 108)
(Fig. 3). This indicates that ganglion cells divide into two
latency classes: one containing short latency responses (400
ms) and one containing long latency responses (�400 ms).

These classes were then further evaluated for division by the
latency of their responses to the dark spot. No such divisions
were found: unimodality was not rejected for either class (P �
0.26, n � 43 for the short latency class; P � 0.08, n � 37 for
the long latency class) (Fig. 4).

FIG. 3. Histogram of response latencies using light spot. Smoothed distri-
bution is overlaid (line). Unimodality was rejected (P  0.01); bimodality was
not (P � 0.25; n � 108), indicating two latency groups. Note that test for
multimodality is independent of bin size; binned histogram is just for visual-
izing data.
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Next, the classes were examined for division attributed to
differences in the relative amplitude of their responses to the
light and dark spots. This was measured using a bias index,
which is the amplitude of the response to the light spot minus
the amplitude of the response to the dark spot divided by their
sum (see METHODS, Fig. 1B). It is �1 for cells that respond only
to the light spot and �1 for cells that respond only to the dark
spot.

Our analysis showed that the short latency class did, in fact,
subdivide by bias index: unimodality and bimodality were
rejected (P  0.02 and P  0.002, respectively), but trimo-
dality was not (P � 0.52, n � 70) (Fig. 5A). This indicates that
the short latency class divides into 3 bias index classes: one
containing cells with a bias index near �1 (ON cells), one
containing cells with a bias index near �1 (OFF cells), and one
containing cells with a bias index near 0 (ON-OFF cells). The
long latency class, on the other hand, did not subdivide: uni-
modality was not rejected (P � 0.15, n � 38) (Fig. 5B).

The analysis of latency and bias index revealed 4 classes:
short latency and long latency cells, with the short latency cells
dividing into ON, OFF, and ON-OFF classes. These classes were
then examined for further subdivision on the basis of differ-

ences in response duration. Duration of the response to the
light spot was examined first. This was measured as the time
from peak response to 1/e of the peak (see METHODS, Fig. 1B).
Of the 4 classes, only 2 had a sufficient number of cells for this
analysis (49 cells in the short latency ON class and 38 cells in
the long latency class. The short latency OFF class and the short
latency ON-OFF class contained 10 and 11 cells, respectively).
Our analysis showed that the short latency ON class subdivided:
unimodality was rejected (P  0.02), bimodality was not (P �
0.78, n � 46) (Fig. 6A). This indicates that the short latency ON

class divides into 2 duration classes: one with responses 200
ms (transient cells) and one with responses �200 ms (sustained
cells). The long latency class did not subdivide: unimodality
was not rejected (P � 0.24, n � 38) (Fig. 6B).

The short latency ON class and the long latency class were
then examined for division by response duration to the dark

FIG. 4. Histograms of response latencies using dark spot. The two groups
found in Fig. 3, that is, the group with short latency responses to light spot and
the group with long latency responses to light spot, were evaluated separately.
A: histogram for cells with short latency responses to light spot. Unimodality
was not rejected (P � 0.26; n � 43). B: histogram for cells with long latency
responses to light spot. Unimodality was not rejected (P � 0.08; n � 37).

FIG. 5. Histograms of bias index, evaluated separately for groups found in
Fig. 3. A: histogram for cells with short latency responses to light spot.
Unimodality was rejected (P  0.02); bimodality was rejected (P  0.002);
trimodality was not rejected (P � 0.52; n � 70). This indicates that the
distribution divides into 3 groups: OFF, ON-OFF, and ON groups. B: histogram for
cells with long latency responses to light spot. Unimodality was not rejected
(P � 0.15, n � 38). The distribution shows more ON than OFF cells or ON-OFF

cells, consistent with previous observations, both in vivo (Balkema and Pinto
1982) and in vitro (Nirenberg and Meister 1997). Stone and Pinto (1993) also
observed more ON than OFF cells, but to a lesser extent than in these other
studies.
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spot. No divisions were found: unimodality was not rejected
for either group (P � 0.21 for the short latency ON cells, n �
26; P � 0.72 for the long latency cells, n � 35) (Fig. 6, C
and D).

Finally, the last stage of analysis was reached. The preceding
step brought the total number of classes up to 5, given that the
short latency class divided into 2 duration groups. The last
stage was to take the 5 classes and back track—that is, test
whether they produce any further subdivision on the basis of
differences in parameters previously tested. All classes were
examined for all possible subdivisions with these parameters,
and no new divisions emerged: unimodality was not rejected
for any class (P � 0.25 for all).

Taken together, our analysis of latency, bias index, and
response duration revealed 5 classes of ganglion cells. They are
short latency, transient ON cells; short latency, sustained ON

cells; short latency ON-OFF cells; short latency OFF cells; and
long latency cells (Fig. 7). To be certain that no other classes
were present (see DISCUSSION), we performed the analysis with
different parameter orders (e.g., duration to the dark spot, then
latency to the light spot, etc.; see METHODS.) All possible orders
were evaluated and no additional groups emerged.

Sorting by the degree of nonlinearity in the
stimulus-to-response transformation

To evaluate the degree of nonlinearity in the stimulus-to
response transformation, the retina was presented with con-
trast-reversing sine wave gratings, the responses of the gan-
glion cells were Fourier analyzed, and the degree of nonlin-
earity was measured using the classic nonlinearity index de-
veloped by Hochstein and Shapley (1976). This index
measures the strength of the second harmonic of the response
relative to the first (see METHODS, Fig. 2). An index of zero

indicates a stimulus-to-response transformation that is essen-
tially linear, and any value above zero indicates some nonlin-
earity. Finally, the distribution of nonlinearity indices for all
cells in our data set was plotted and evaluated for multimodal-
ity.

Our analysis showed that the distribution of nonlinearity
indices was unimodal—that is, unimodality could not be re-
jected (P � 0.43, n � 137). Although the distribution showed
a broad range of indices, from near 0 to as high as 9 (Fig. 8A),
there was no gap dividing the cells into distinct linear and

FIG. 6. Histograms of response durations using
light and dark spots, evaluated separately for 2 of
4 groups found in Fig. 5: short latency ON cells and
long latency cells. Other 2 groups had too few cells
for evaluation (see RESULTS). A: histogram of re-
sponse durations to light spot for short latency ON

cells. Unimodality was rejected (P  0.02); bimo-
dality was not rejected (P � 0.78; n � 46). This
indicates that the distribution divides into 2
groups, one with transient responses and one with
sustained responses. B: histogram of response du-
rations to light spot for long latency cells. Unimo-
dality was not rejected (P � 0.24, n � 38). C:
histogram of response durations to dark spot for
short latency ON cells. Unimodality was not re-
jected (P � 0.21, n � 26). D: histogram of re-
sponse durations to dark spot for long latency
cells. Unimodality was not rejected (P � 0.72, n �
35).

FIG. 7. Ganglion cells divide naturally into five classes using spot stimulus.
Latency to light spot divides cells into two classes, long latency and short
latency. Bias index then divides short latency class into ON, OFF, and ON-OFF

classes. Duration of response to light spot then further subdivides short latency
ON cells into transient and sustained classes.
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nonlinear groups. Thus there was a continuum, with cells
showing varying degrees of nonlinearity in their responses.

We addressed this further by testing whether the distribu-
tions at each spatial frequency showed multimodality and
found, as above, that no significant divisions were present
(unimodality could not be rejected in all cases: at 0.055 cycles/
deg, P � 0.07; at 0.11 cycles/deg, P � 0.57; at 0.165 cycles/
deg, P � 0.31; at 0.22 cycles/deg, P � 0.32; at 0.275 cycles/
deg, P � 0.18; at 0.55 cycles/deg, P � 0.35). Note that for this
analysis “nonlinearity index” means simply the ratio of the
mean of the second harmonic to the maximum of the first
harmonic at a given spatial frequency. The nonlinearity index
used in the preceding paragraph is the maximum of this ratio
across all spatial frequencies.

D I S C U S S I O N

The issue of how ganglion cells divide into distinct classes
has long been a subject of debate. This issue has been difficult

to resolve because the criteria used to define cell classes are
often qualitative. Many classifications are defined primarily by
descriptions of a typical example of each class, leaving atypical
or borderline examples difficult to classify. In addition, when
the criteria are qualitative, they are to some extent dependent
on the interpretations of the investigator, creating the possibil-
ity that classifications may vary over time or between labora-
tories. Our aim was to build on the theoretical work of Hoch-
stein and Shapley (1976), Rodieck and Brening (1983), and
Rowe and Stone (1977), and lay out a straightforward method,
extracted from the statistical literature (Silverman 1981), for
testing which parameters divide cells into discrete groups.

Our approach was to take a physiological response param-
eter that had been previously used to group cells (e.g., the
degree of nonlinearity in the stimulus-to-response transforma-
tion), plot the distribution of that parameter (e.g., the distribu-
tion of nonlinearity index values for all cells in the data set),
and then test the distribution for multimodality. The null hy-
pothesis in each case was that the distribution was unimodal. If
unimodality was rejected, then the distribution was tested for
bimodality, and so forth. With this approach, one can obtain
definitive evidence, that is, statistically significant evidence,
that the cells divide into distinct groups with respect to that
parameter, and identify where the divisions lie.

We first tested whether ganglion cells divide into distinct ON,
OFF, and ON-OFF classes; whether they sort into transient and
sustained types; and whether they form short and long latency
groups, three widely used classification schemes (Balkema and
Pinto 1982; Barlow 1953; Cleland et al. 1971; DeVries and
Baylor 1997; Kuffler 1953; Nirenberg and Meister 1997; Stone
and Pinto 1993). We found that the cells did divide into classes
with these parameters, although there were some departures
from the standard models. First, only a subset of cells, those
with short latency responses, showed division into ON, OFF, and
ON-OFF classes. Second, only the short latency ON cells showed
division into transient and sustained types. Assessing subdivi-
sion by duration for the OFF and ON-OFF cells was not possible,
because these groups contained too few cells for analysis.

Next, we tested whether ganglion cells clustered by degree
of nonlinearity in the stimulus-to-response transformation, and
found that the result did not conform to previous predictions
(Stone and Pinto 1993)—the cells did not cluster into linear
(X-like) and nonlinear (Y-like) groups. Instead, they formed a
continuum with varying degrees of nonlinearity in their re-
sponses.

This was a surprising result. One possibility is that it oc-
curred because data across all eccentricities were included,
following Hochstein and Shapley (1976). In studies of den-
dritic tree size, a property associated with degree of nonlinear-
ity, clusters occur only when eccentricity is taken into ac-
count—at least in cat, where it has been examined in detail
(Boycott and Wassle 1974). Thus we tested whether the linear/
nonlinear distinction might appear if we focused our analysis
on a narrower region of retina and used the region immediately
adjacent to the optic nerve. [In mouse, the optic nerve is very
close—within a few hundred microns—of central retina (Jeon
et al. 1998; Sun et al. 2002).] We found that it did not (P �
0.07, n � 36) (Fig. 8B). Note that the only dips in the distri-
bution were well above 1, the index value that would be
expected to separate linear and nonlinear cells.

We also tested whether the linear/nonlinear distinction

FIG. 8. A: histogram of nonlinearity indices. Smoothed distribution is over-
laid (line). Unimodality was not rejected (P � 0.43; n � 137), indicating there
are no distinct linear and nonlinear groups. B: histogram of nonlinearity indices
for subset of ganglion cells all found at similar, central retinal eccentricity
(within 600 �m of optic nerve head). As with larger data set in A, unimodality
was not rejected (P � 0.07; n � 36), indicating that linear and nonlinear cells
form a continuum even when evaluated at one eccentricity. Note that any
potential gaps in the distribution occur at index values well above 1, the value
that would be expected to separate linear from nonlinear cells.
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would appear if we used alternate versions of the nonlinearity
index that have been proposed (Mechler and Ringach 2002; So
and Shapley 1979), such as the log of the index, the F2/F1
ratio, and the log of the F2/F1 ratio (where F1 and F2 are the
amplitudes of the first and second harmonic, and the maximum
ratio is used as the F2/F1 ratio). These also did not reveal a
division. Analyses using these versions all gave the same
answer: ganglion cells do not divide into distinct linear and
nonlinear groups in the mouse retina, whether evaluated as a
whole population or as a subpopulation near the optic nerve.
(Using data from the whole population: for the log of the
nonlinearity index, unimodality could not be rejected, P �
0.39; for the F2/F1 ratio, P � 0.48; for the log of the F2/F1
ratio, P � 0.44. Using data from the optic nerve region: for the
log of the nonlinearity index, unimodality could not be re-
jected, P � 0.26; for the F2/F1 ratio, P � 0.11; for the log of
the F2/F1 ratio, P � 0.22.)

Number of cell classes detected constitutes a lower bound

The most rigorous way to identify cell classes is to charac-
terize them with respect to several parameters and then eval-
uate then simultaneously—that is, construct an n-dimensional
plot, where n is the number of parameters, and then test for
clustering in n-dimensional space (Rodieck and Brening 1983).
Unfortunately, this approach is not currently possible because
a prohibitively large amount of data is required—the amount of
data needed scales exponentially with the number of parame-
ters. For this reason, we used a serial approach. We started with
one parameter and tested the distribution of that parameter for
division into clusters; we then chose another, and so forth.
Whenever clusters appeared in a distribution, we tested each
separately for further clustering along all other parameters.
This approach was repeated in several different orders to
explore as much of parameter space as possible (for further
detail, see METHODS).

Although this approach covers a lot of ground, it is not
complete—clusters can be missed. For example, some clusters
may be detectable using only 2 parameters at once, that is, by
plotting the data in two dimensions (e.g., see Boycott and
Wassle 1974). If such clusters exist, they would be missed by
the serial analysis. For this reason, the number of cell classes
we identified should be regarded as a lower bound on the total
number that exists with a given stimulus and set of response
parameters. Thus with the spot stimulus and the parameters of
latency, duration and relative amplitude of the ON and OFF

responses, 5 clusters were identified, but the possibility re-
mains that multidimensional analysis would have revealed
more. Along the same lines, with the grating stimulus and the
nonlinearity index, no divisions were found, but the possibility
remains that the index would produce clusters if evaluated
simultaneously with other parameters. These possibilities may
soon be testable as techniques for mass screening of neuronal
activity (e.g., genetic sensors, activity-dependent dyes) become
more advanced and expand the size of data sets (Nakai et al.
2001; Smetters et al. 1999; Yu et al. 2003; Zochowski 2000).

Importance of cell classification

Why is it important to know, using an objective approach,
how ganglion cell responses sort? There are 3 main reasons.

First, this information is needed for building reliable quantita-
tive models of downstream processing. The output responses
of the retina serve as the building blocks for circuits in higher
brain areas, and different building blocks lead to different
model predictions. Our findings provide evidence that models
of downstream processing that assume separate ON and OFF

inputs (e.g., for constructing ON and OFF subregions of cortical
receptive fields) are applicable to the mouse visual system
(Hubel and Wiesel 1962; Palmer and Davis 1981; Schiller,
1982; Worgotter and Koch 1991), although some adjustments
may be needed. Specifically, the ON and OFF classes are made
up of broader distributions than are typically assumed, which
will have bearing on model predictions. In contrast, models
invoking separate linear and nonlinear channels at the level of
the retina (Mastronarde 1987a,b; Shapley and Perry 1986;
Sherman 1985) may not be readily applicable to the mouse,
given that we were unable to find clear evidence of distinct
linear and nonlinear classes. This is consistent with findings in
primate, where evidence for distinct linear and nonlinear
classes is also weak or not present (Derrington and Lennie
1984; Usrey and Reid 2000). When distributions of nonlinear-
ity indices were evaluated in the magnocellular and parvocel-
lular pathways, no visible gaps emerged (Derrington and Len-
nie 1984). Likewise, when the data from the two pathways are
superimposed, no visible gaps appear. These results suggest
that models based on the linear/nonlinear scheme may be less
applicable across species than previously thought, whereas
those based on the ON versus OFF scheme may be universal.

The second reason it is important to have objective infor-
mation about how ganglion cell responses in the mouse retina
sort is that it guides us as to how circuits in this species are laid
out. For example, the fact that there are distinct transient and
sustained groups for the ON channel indicates that there are two
separate ON microcircuits. Likewise, the fact that there are two
ON latency groups also implies that there are two separate
microcircuits. In addition, the finding that there are 2 classes of
cells that show responses to the light and dark spots, the short
latency ON-OFF cells and the long latency cells, indicates that
there are 2 places in the circuitry where ON and OFF pathways
converge (see Masland et al. 1984).

Finally, the third reason, it is important to have a quantitative
description of visual responses and their classification is that it
provides a baseline for comparison with mutant or perturbed
retinas, such as models of retinitis pigmentosa (An et al. 2002;
Strettoi et al. 2002), night blindness (Gregg et al. 2003; Pardue
et al. 1998), microphthalmia (Green et al. 2003; Steingrimsson
et al. 1994), and knockout mice that lack specific receptors or
neurons (Masu et al. 1995; McCall et al. 1996, 2002; Nirenberg
and Meister 1997; Soucy et al. 1998) or show developmental
defects in their circuitry (Bansal et al. 2000; Hammang et al.
1993; Wang et al. 2002). This baseline is also critical for
measuring the success of treatments for such defects, such as
retinal transplantation (Litchfield et al. 1997; Radner et al.
2001, 2002), regeneration (Porciatti et al. 1996; Travis et al.
1992), or prostheses (Humayun 2001; Margalit et al. 2002),
which aim to duplicate normal visual responses. By defining
cell classes as clusters in an easy-to-measure parameter space,
we provide an objective description of what normal visual
responses are, which can be retraced exactly by other investi-
gators.
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Further classifications

Many other properties, besides those investigated here, both
physiological and anatomical, have been used to classify gan-
glion cells in other species and are likely to be important for
classifying ganglion cells in mouse as well, such as direction
selectivity, orientation selectivity (Amthor 1989a,b; Cleland
and Levick 1974), intrinsic membrane properties (membrane
time constant, input resistance, resting potential) (O’Brien et
al. 2002), aspects of the autocorrelation function (DeVries and
Baylor 1997), degree of rod input (Deans et al. 2002; Sterling
1983), sensitivity to 2-amino-4-phosphonobutyric acid
(Slaughter and Miller 1981), and numerous anatomical prop-
erties, such as depth of ramification in the inner plexiform layer
(Dacey et al. 2003; Famiglietti and Kolb 1976; Nelson et al.
1978; Pang et al. 2002; Rockhill et al. 2002; Roska and
Werblin, 200l), soma size, dendritic diameter, branching den-
sity, dendritic coverage (Amthor et al. 1989a,b; Boycott and
Wassle 1974; Dacey et al. 2003; Rockhill et al. 2002; Sun et al.
2002), synaptic input (Calkins et al. 1998), and location of
projection in target tissue (Vaney et al. 1981). Cluster analysis
using these parameters will provide a way to test their roles in
mouse classification.

Recent studies specifically in mouse suggest that more phys-
iological classes are likely to be found. Using morphological
properties (depth of stratification, soma size and shape, and
dendritic field size and branching patterns), Sun et al. (2002)
posited 14 types, suggesting that more stimuli and response
parameters will be needed to complete the physiological char-
acterization. In addition, Deans et al. (2002) suggest that de-
gree of rod input provides a basis for division of ON cells; thus
there may be subdivisions, using this parameter, among the
clusters we found.
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