
Introduction

The role of correlated firing for representing information 
has been a subject of much discussion. Several studies 
in areas including retina, visual cortex, somatosensory 
cortex, and motor cortex, have suggested that it plays only 
a minor role, carrying less than 10% of the total information 
carried by the neurons [3,5-7]. A limiting factor of these 
studies, however, is that they were carried out using pairs 
of neurons; how the results will extend to large populations 
isn’t clear. Recently, new methods for modeling network firing 
patterns have been developed [8]. These open the door 
to answering this question for more complete populations 
of cells. Pillow et al [8] used this approach to assess the 
importance of correlations in primate retina. Using a binary 
checkerboard stimulus, his group decoded ganglion cell 
responses when correlations were and were not included. 
Their results showed that 32.9 +/- 0.5% of the information 
about the stimulus could be obtained when correlations were 
included, and 27.2 +/- 0.5% when they were not.  While this 
constitutes a gain, the gain is several fold smaller than what 
might be expected from extrapolations using the pairwise 
data [see Ref. 8, Fig, S9 or attachment to this poster]. Here 
we performed the same analysis on mouse retinal ganglion 
cells, using cells with correlations as high as those found in 
primate retina [8]. The results showed that 25.5 +/- 1.35% of 
the information about the stimulus could be obtained when 
correlations were included, and 22.6 +/- 1.45% when they 
were not. An even smaller difference was found when the 
same analysis was performed on natural scenes.

These results suggest generalization. The pairwise analysis 
in many brain areas in several species show that correlations 
account for very little of the total information (<10%) [3,5-7]. 
Now, in retina in two species, the analysis with large 
populations show a similar result, that correlations still 
account for a small fraction of the total information.

Fig 3. Typical cross-correlerograms for pairs of mouse ganglion 
cells from 2 retinas. A cross-correlerogram gives the firing rate 
of one cell relative to spikes generated by the other.  Black, 
the raw cross-correlerogram; blue, the shifted (stimulus) cross-
correlerogram; red, the noise cross-correlerogram. The stimulus 
cross-correlerogram gives the correlations produced only by the 
stimulus and is generated by presenting the stimulus multiple 
times and cross-correlating the responses of the cells when 
they ‘saw’ the stimulus at different times. The noise cross-
correlerogram is the raw cross-correlerogram minus the stimulus 
cross-correlerogram. 

Fig 1. Typical ganglion cell responses to the movies. Each raster 
plot shows the response of a ganglion cell to 100 repeats of a 
movie. Each plot is from a different cell. The top and bottom rows 
are from different retinas. 

Fig 4. Distribution of Excess Correlated Fractions (ECFs) for all 
cell pairs.  The ECF is the number of correlated spikes divided 
by the total number of spikes fired by the pair [5]. The ECF for 2 
retinas are shown. The degree of correlation is in the same range 
as reported for other species:  up to 27% for cat [4], up to 28% for 
rabbit [2], up to 34% previously reported for mouse [5], up to 5% 
for monkey [8]. Note, through, that the majority of ECF’s in the 
mouse are less than 5%.

Figures 1 and 2 show the reliability of the 
data, that is, that the cells in our datasets 
are clearly and consistently driven by the 
stimulus.

Fig 5. Distribution of correlation timescales (from 2 retinas), as 
measured by the width of the cross-correlerogram, for cell pairs 
with ECFs above 0.5% . Widths were computed by measuring 
the width at half-height of the noise cross-correlerogram for each 
cell pair. This is similar to cat [4], rabbit [2] and monkey [8], but 
extends to shorter values . Short time scale correlations have been 
reported in cat LGN [1].

Fig 7.  The quality of the fits from 2 retinas was evaluated by 
comparing the log likelihood of the true spike trains under coupled 
and uncoupled models; the coupled model achieves higher 
accuracy, predicting multi-neuronal spike responses on a single 
trial.  
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Fig 10. Comparison of decoding performance with and without 
coupling. a. White noise decoding results using the log signal-
to-noise ratio (log SNR) of Bayesian decoding for a previously 
reported macaque retina. Height of y-axis indicates stimulus 
entropy. b. Average white noise decoding results for mouse. 
Height of y-axis indicates stimulus entropy. Error bars show 95% 
confidence intervals, based on 2000 bootstrap resamplings of  
3000 decoded stimulus segments (primate) and 1000 bootstrap 
resamplings of 200 decoded stimulus segments (mouse). c. 
Decoding performances for a mouse retina on a natural scene 
stimulus. For the natural scenes, information was calculated by 
directly estimating discrete entropy across a fixed natural scene 
library of 200 segments, rather than taking the log(SNR). Error 
bars show 95% confidence intervals, based on 1000 bootstrap 
resamplings of 50 decoded stimulus segments.

Discussion

Previous work has shown that correlations among mouse 
retinal ganglion cells add little information above what can 
be obtained from the independent responses [5]. However, 
this work was done with pairs of neurons. Now, with the aid 
of a neuronal population model [8] we were able to address 
this question for much larger populations. We tested this with 
both binary checkerboard and natural scenes. The results 
show that, for the white noise stimulus, there was only a 
small information increase, and, for the natural scenes, there 
was no clearly detectable increase.  

Some caveats should be taken into account when interpreting 
this result. First, the analysis was done with a model’s output 
rather than direct measurements (although the model was 
clearly capturing the correlations as shown in Figures 8 
and 9). Second, for the white noise stimulus, information 
was measured using a Gaussian assumption, although a 
binary stimulus was used. Third, the natural scene decoding 
performance was estimated using a discrete entropy 
calculation with a lower stimulus entropy than the white noise, 
and hence may not be directly comparable.
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Figures 3-5 show the properties of the 
correlations in our model system, the 
mouse retina:

Fig 2. Typical Spike Triggered Averages (STAs) from 6 different ON 
cells from 2 retinas. The spatial component of the full STA which 
contains the peak of the STA is shown.  

Fig 8. Example of cross-correlation functions of retinal responses 
from Retina 1. Black, the raw cross-correlerogram; red, the 
coupled simulated cross-correlerogram; blue, the uncoupled 
simulated cross-correlerogram (plotted -10 to 10 ms). It is clear 
that the coupled model is capturing correlations in the data while 
the uncoupled model is not.

Fig 6. A diagram of the multi-neuron encoding model for two 
coupled neurons (modified from [8]).  Each neuron has a stimulus 
filter and coupling filters that capture dependencies on spiking 
in other neurons.  Summed filter output passes through an 
exponential nonlinearity to produce the instantaneous spike rate. 

Fig 9.  Shown is a Baysian decoding schematic [8] to estimate 
an unknown stimulus segment from a set of observed spike times 
(highlighted in boxes). The posterior mean is the Bayes’ least-
squares stimulus estimate. 

Modeling the Correlations:

Figures 7 demonstrates that including 
the coupling both improves the encoding 
model. Figure 8 shows, as expected, that 
the correlation peaks are now captured 
in the simulated responses.

The coupled model accurately captures 
dependencies in the activity of neurons; 
however, this does not tell us whether 
this extra component is important for 
conveying visual information to the rest 
of the brain. In other words, if we decode 
spike trains using the coupled model, 
will we capture more information about 
the visual stimulus than if we decode 
with the uncoupled model (i.e. the 
independent model)?


