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The essential midline symmetry of human faces is shown to play a
key role in facial coding and recognition. This also has deep and
important connections with recent explorations of the organiza-
tion of primate cortex, as well as human psychophysical experi-
ments. Evidence is presented that the dimension of face recogni-
tion space for human faces is dramatically lower than previous
estimates. One result of the present development is the construc-
tion of a probability distribution in face space that produces an
interesting and realistic range of (synthetic) faces. Another is a
recognition algorithm that by reasonable criteria is nearly 100%
accurate.

face dimension � probability distributions � face recognition

V isual space may be conveniently regarded as a tableau of
gray levels assigned to a square of O(105) pixels. Human

faces belong to a subspace of this high-dimensional space, and
the representation/identification of faces termed the Rogue’s
Gallery problem (1, 2) can be carried out in the reduced space,
defined by the masks of Fig. 1. Dimension might be halved by
exploiting the latent symmetry of faces and associating each face
with its midline symmetrized counterpart (see Fig. 1 A). Recent
laboratory experiments strongly imply that the primate visual
system adopts this right/left symmetry, and, moreover, does so
for a full range of poses (3); in fact, right and left poses equally
angled from the frontal position give rise to equal neuronal
response. As will be demonstrated, this thread leads to an
exceptional dimension reduction. After a correction for the
illumination artifact, a probabilistic exploration of face space
leads to a Gaussian probability description in terms of appro-
priately transformed variables. One result of this is that synthetic
faces, i.e., faces drawn from the probability distribution, result in
realistic human faces that pass the test of visual inspection. This
is illustrated (see Fig. 5) by a small range of reasonable faces,
drawn from the probability distribution and are, hence, faces of
people we will never encounter.

Mounting evidence indicates that in the primate brain,
appreciable resources involving many cortical areas are ded-
icated to face perception (3–7). As emphasized in the last
reference, (see also ref. 8), this provides compelling evidence
for the modular character of face recognition in support of the
single ‘‘domain-specific’’ side in the cognitive science debate
on whether mechanisms are specific or general. As a conse-
quence, as has been observed in many studies faces are our
biologically most significant stimuli. For this reason, the role
of the Rogue’s Gallery problem takes on an importance well
beyond its practical applications. Another consequence of
these deliberations impacts on the face-recognition debate on
whether a face should be parsed or viewed holistically (9). In
early physiological studies on macaque, it was found that
elements of incomplete faces elicited little or no response, in
contrast to the robust response produced by a complete face
(10). This is supported by a recent human psychophysical
investigation (11) showing dramatic responses to full-face
stimuli and virtually no effect arising from partial faces.
These studies provide evidence that the human visual system
chooses the holistic approach taken here, although for
purposes of machine face recognition, parsing may yet prove
more efficient.

On a practical note, this investigation leads to a recognition
algorithm which, by reasonable criteria, gives nearly perfect
frontal identification even under naturally diverse lighting
conditions.

Background
Face-recognition investigations are largely based on derivatives
of pixel image representations in the form of an empirical
eigenfunction decomposition. Specifically, if {fn(x)} denotes an
ensemble of faces in terms of gray level f at pixel locations x, then
a face can generally be represented by some orthonormal
function set {�n(x)}, so that

fj�x� � �
n�1

N

a n
j �n�x� , [1]

where the coefficients for the jth face are given by the projections

a n
j � ��n, fj�x � � �n �x) fj (x� dx. [2]

If the set {�n} are the eigenfunctions of the covariance operator
of the ensemble, these are termed eigenfaces, and it can be
shown that for any fixed N, Eq. 1 produces the minimal average
Euclidean error. These considerations, which were first applied
to the Rogue’s Gallery problem (1, 2), have become standard
(see, e.g., cited references and www.face-rec.org/new-papers/).†
Based on a tolerable average error of �3%, one can fix N and
then regard this as a dimension estimate. For the limited early
ensemble (1, 2) of �125 faces, this dimension estimate was
estimated to be �100. A subsequent study with a larger ensemble
suggested O(500) (12). Another approach with origins in signal
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Fig. 1. Face elements. (A) Example of a typical face. (B) A cameo represen-
tation of a typical face, where the background is removed with a mask. (C) The
average or mean face. (D) B � C; the face in C is subtracted from the face in B,
resulting in a caricature, i.e., the departure of the face from the mean.
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filtering considers the eigenvalue spectrum of the covariance
operator as being divided into signal and noise, with each
approximately obeying a different power law (13). Applying this
in the present case leads to a dimension of N � 175. Such
deliberations are based on Euclidean measures and, as such, lie
within the framework of a machine recognition perspective. A
recent psychophysical study furnished a cortical estimate of face
space dimension and found this to be O(100) (13), which as we
show, can be further reduced. An interesting feature of that study
was the subjective variation in dimension. Perhaps not surpris-
ingly, some subjects appeared to be exceptional in recognizing a
face from significantly less information, thus leading to a sig-
nificantly smaller individual dimension estimate.

Informally, it is reasonable to estimate a tolerable standard
deviation in determining a single dimension as � � 0.1. On
estimating this by 1/�n, for a sample size of N implies O(102)
images per dimension. Each dimension may be regarded as
independent because eigenfaces decorrelate dimension. Thus,
even a modest estimate of 102 dimensions would require O(104)
members for the underlying ensemble. It therefore becomes
compelling that we pursue our investigation within the frame-
work of a homogeneous population, and only for this reason we
restrict attention to Caucasian males, without facial hair, glasses,
and so forth. Experience has taught us that merging this popu-
lation with a like female population increases the dimension by
at least 40% (13). Although there is no like estimate for inclusion
of images with facial hair, eyeglasses, etc., or for that matter,
racial/ethnic classes, consideration of a diverse population pro-
duces a compounding effect that quickly elevates the needed
ensemble size to unattainable proportions. Thus, the reasons for
restricting attention to 1 homogeneous population appears to be
compelling in initial studies.

Results
A typical face from the population is shown in Fig. 1 A. In Fig.
1B, background was removed with a mask; for comparison, the
mean face of the ensemble is shown in Fig. 1C; and when the
mean is removed from Fig. 1B, the caricature, Fig. 1D, results.
Representative eigenfunctions are shown in Fig. 2. The 2 high-
index examples show the noisy quality at the tail of the spectrum.
The actual population contains 329 individuals, which exploiting
the latent symmetry of faces (2), is doubled by including the
midline mirror image faces. Recent remarkable experiments (3)
strongly suggests that the cortex also makes use of this latent
symmetry (also see ref. 14). For sound mathematical reasons, the
use of symmetry renders all eigenfaces as even or odd, in the
midline (2). This dichotomy is evident in Fig. 2, where odd
eigenfaces are indicated by white background numbers.

The corresponding eigenvalue spectrum, in log–log form, is
displayed in Fig. 3, and if one is not too exacting, the spectrum
can approximately be separated into 2 power law regimes. Low
indices (low spatial frequency) are characteristic of signal, and
high indices (high spatial frequency) are characterized by noise.
The eigenfaces are sorted by the decreasing size of eigenvalues
and are found to be well-correlated with increasing spatial
frequency. The crossing point at N � 175, furnishes an estimate
of face space dimension. According to our earlier deliberations,
we might need �17,000 exemplars to confidently deal with this
dimensionality. Thus, with the available ensembles, we are only
sparsely sampling face space. Therefore we explore leveraging
the limited data by means of a probabilistic description.

Probability Considerations
The goal is to obtain a representative probability distribution
function (pdf) that will reasonably describe face space, so that a
face selection based on the pdf results in a corresponding
(synthetic) face that is reasonable by the standard of visual
inspection. To pursue this thread, we adopt the following null
hypothesis: that gray levels of pixels are independent identically
distributed random variables.

In Eq. 1, the coefficients are determined by the inner product
(Eq. 2), and hence from the form of the eigenfaces, as illustrated
in Fig. 2, each coefficient is a sum over many pixels, and
therefore under the null hypotheses and the central limit theo-
rem (15) we infer that coefficients {an

j }, (n fixed), should obey
a Gaussian pdf.

an
j is calculated as the nth coefficient of the expansion (Eq. 1)

of the jth face in the population (Eq. 2), and we can estimate the
pdf of an by

p*�an� �
1
N �

j�1

N

��an � an
j �. [3]

As pointed out in ref. 16, this is the basis of a maximum-
likelihood estimate, a zero-bias estimate and a bootstrap proce-
dure. For our purposes Eq. 3 is ideally suited to dealing with the
difficulties of relatively small amounts of data. We denote the
cumulative pdf of Eq. 3 by C*, and use the zero-bias estimate to
construct the cumulative Gaussian pdf denoted by CG. The
following variant of the Kolmogorov–Smirnov (KS) statistic,

KS � ��CG � C*�2

�CG�2 [4]

Fig. 2. Typical eigenfaces. The first 10 eigenfaces that are in the signal range
and 2 of the eigenfaces that are in the noisy range are shown. It should be
noted that the odd eigenfaces (2, 10, and 620) are labeled with a white square
around the index number. Eigenfaces are sorted according to decreasing
eigenvalue.

Fig. 3. Covariance spectrum. A log–log depiction of the covariance spectrum
is shown. Dashed lines are regression fits to signal and noise ranges. The
intersection of the 2 dashed lines furnishes the estimate of the dimension as �
75. Eigenvalues have been normalized by their sum and thus appear as
probabilities. Note that the eigenvalues corresponding to odd and even
eigenfaces are shown as different symbols.
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is taken as the criterion statistic for normality of the pdf. For the
ensemble under consideration the results are depicted in Fig. 4.
In Fig. 4B, the KS statistics of the coefficients (Eq. 2) are
presented, with even (red dots) and odd coefficients (blue dots)
distinguished.

Fig. 4 contains diverse statistical information. For example in
Fig. 4B the KS statistic (Eq. 4) is displayed for even (red) and odd
(blue) coefficients. Clearly for KS small normality of the pdf is
implied, and the question of a threshold arises. In this connec-
tion, we mention that the appearance of odd eigenfaces at low
indices was greeted with surprise in the investigation leading to
ref. 1 until it was realized that this was due to the daily variation
of sunlight as images were acquired.

It is our contention that if face images could be acquired under
ideal conditions of totally diffuse light, then odd eigenfaces
would be relegated to the high indices especially if hair is
removed, as we have with the mask shown in Fig. 1. Therefore
the presence of odd eigenfunctions at low indices is an indicator
of the lighting artifact. It is clear from Fig. 4B that after the first
red point, the ratio of cumulative blue points to cumulative red
points climbs to a sharp maximum as KS is decreased. After this
the ratio falls rapidly into basic parity with the red dots. At this
point KS � 0.046, and this is taken as the criterion point for
normality of the pdf. This is indicated by the horizontal line
shown in Fig. 4B. For the relevant range of n � 175 just 2 even
eigenface coefficients are non-Gaussian. Thus the null hypoth-
esis is refuted for a large portion of the odd eigenfaces and only
for 2 even eigenfaces.

Some insight into this result is provided by Fig. 4A which
furnishes a pixel map as measured by the KS statistic. Essential
to the central limit theorem is that the summed quantity be
independent and random. Application of the theorem in this
instance depends on correlation lengths, random light sources,
pixel size, and ensemble size. Highly correlated regions such as
hair and eyes are clearly nonrandom, as indicated in Fig. 4A.
Other sources that lack randomness are the mask boundaries,
where the vector normal to the original face surface can be nearly
perpendicular to incident light.

As has been pointed out in (17) illumination variation very
likely exceeds actual face variations, and from our investigation
illumination appears to be the greatest source of non-random
behavior. In most instances lighting for capture of a facial image
is frontal, and as Fig. 4A indicates the forehead is a large area
of highly non-random pixels. The forehead behaves almost as a
mirror which, along with the hair artifact, is largely accounted for
by eigenfaces 3 and 5 of Fig. 2 (second and fourth even
eigenfaces), the 2 non-Gaussian cases.

Synthetic Faces
In keeping with the contention that odd eigenfaces are largely
the result of the lighting artifact, we explore dropping these from

consideration. In addition we drop the 2 special even eigenfaces.
The remaining coefficients are regarded as normally distributed
with zero mean, and variance proportional to the eigenvalue of
the covariance as given in Fig. 3. We can then construct synthetic
faces out of just the even eigenfaces by drawing even coefficients
{an

e} from the specified appropriate normal probability distri-
bution, thus generating the form

S�x� � �
n	2,4

an
e�n

e �x� . [5]

Four exemplars of this construction are exhibited in Fig. 5 A–D,
where for viewing purposes, the mean has been added to each
representative as well as (��2�2

e 
��4�4
e), so as to give the

impression of frontal lighting. Each example passes the visual
test of being a face, but being generated at random from a
probability distribution, it is unlikely that we will meet an
individual with such a face. A small fraction of the so-generated
synthetic faces appeared to be androgenous or even feminine, as
typified by Fig. 5A. This image appears to bear a resemblance to
van Gogh’s ‘‘Kop van een vrouw’’ Fig. 5E, which shows some of
the range of faces that can appear based on Caucasian males.
Along these lines we observe that Fig. 5C bears at least a
superficial resemblance to the great baseball star of the 1980s
New York Mets, Darryl Strawberry, a black athlete, shown in
Fig. 5G.

We note in passing that the idea of synthetic faces appeared
earlier (18), where less realistic ‘‘pseudofaces’’ are used to
explore cortical organization of faces.

If the full probability distribution, comprising all odd and even
eigenfaces is used in a Gaussian fit, then grotesque images can
emerge. To illustrate this we have taken the images of Fig. 5 B
and D and added to them the contribution of terms excluded
from Eq. 5, using an appropriate Gaussian distribution for the
coefficients. These are shown in Fig. 5 F and H, and they are
clearly distorted and unnatural. The mottled appearance of the
lower row of Fig. 5 can be traced to the odd eigenfaces, which
carry localized variations in lighting.

Fig. 4. KS statistic. (A) The KS statistic is calculated for each pixel over the
population of all faces. (B) The KS statistic is calculated in coefficient an space;
this can also be referred to as PCA space. For region of significance n � 140, 61
of the eigenfaces are odd in the midline. The absence of red or blue dots for
KS � 0 is purely a result of sampling. It can be shown that (6N)�0.5 is a diffuse
boundary for KS, where N is the number of samples.

Fig. 5. Synthetic and other faces. (A–D) Male synthetic faces generated
from male even eigenfaces. Each face is of the form (4), with the mean and
the constant contribution from �3 and �5, as indicated in Synthetic Faces.
The latter gives the impression that there is lighting from behind the
camera. (E–H) B and D are the same as F and H except that all odd and even
eigenfaces are used in constructing the faces, and all coefficients are
chosen from a Gaussian, based on variances; E and G are discussed in
Synthetic Faces.
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Rogue’s Gallery Problem
The even rendering of a face results in a visually recognizable
face. This transformation was applied to Fig. 1 A clearly without
loss of identity. Thus, ignoring odd components removes the
lighting artifact without cost to identification. To follow up on
these observations, we next explore the face recognition prob-
lem. In anticipation of this, additional male images were ac-
quired from the 3 face databases (19–21). Each of these collec-
tions contained 3 images of each individual: 1 frontal image with
center lighting and 2 frontal images that are marred by variable
lighting from the right or left. All center-lit images, 47 in number,
were included as in-population faces of the male population.‡
The corresponding 94 male images with pronounced lighting
variations were reserved for testing recognition and were not
included in the population.

Recognition was based on the L2 norm of the 175 coeffi-
cients that were deemed to carry the signal. Table 1 contains
the results leading to what we deem to be an optimal proce-
dure. Less optimal results are included for their informational
content. If all coefficients are considered, 82 (of 94) errors are
made, an 87% error rate. If only the subspace of even
coefficients are considered, the error rate drops to 22%, and
if the subspace is further reduced by dropping a2

e and a4
e, the

error rate drops to 4%. The 4 errors in this case are depicted
in Fig. 6, and in each instance, one sees that contrary to the
instructions from the ‘‘photographer,’’ the subject changed his
pose for the marred image.

For the procedure thus far, coefficients carry their natural
weighting, which because �ak

2� � �k says only that a coefficient’s
weight diminishes with index. Under the ideal of an ensemble
of unlimited number, each eigenface would be perfectly re-
solved, which would then argue for weighting the ak term in the
L2 norm by the reciprocal variance, �k

�1, the so-called whitened
norm. In our case, this leads to negligible improvement, 1 less
error. We adopt a geometric compromise and weight each ak
term in the L2 norm by 1/��k, the reciprocal of the singular
value that is proportional to the standard derivation. The result
as indicated in Table 1 is just 1 error, namely Fig. 6C. In
anecdotal terms, in resolving Fig. 6C by eigenfaces, for the fit,
the procedure attempts to open the closed eyes. As a result, the
fit wanders too far from the correct result. Earlier authors (20,
21) noted that dropping some of the early eigenfaces improved

recognition, and our discussion provides an objective and
specific basis for the observation as well as another norm. On
a cautionary note, the face recognition algorithm does not do
as well for faces with artificial vertical illumination, artifactual
hair display, facial distortion, and similar impediments to
recognition.

Discussion
The data for frontal poses marred by lighting artifacts is some-
what limited but has been acquired from 3 different databases
(19–21). The sole error of recognition occurred because the
subject did not follow instructions and closed his eyes. If on this
basis, we exclude this case, recognition becomes 100%.

Face recognition was accomplished by using the even subspace
minus the 2 non-Gaussian eigenfaces of the estimated 175-
dimensional face space, and is therefore of dimension �110. This
form of recognition takes place using an L2 norm and therefore
lies in the framework of machine recognition. An earlier psy-
chophysical study (13), involving a merged population of male
and female faces, demonstrated that human observers require on
average only dimension � 100 (of N � 200) for recognition.
However, the reduction to even eigenfaces was not applied in
that study. With the estimate that �30% of the relevant eigen-
faces are odd, we can revise the earlier estimate (13) to �70
dimensions for the human recognition system. This framework
is consistent with the physiological studies (3, 6) discussed in the
introduction.
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