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Abstract

The dimensionality offace spaceis measured objectively in a psychophysical study. Within this

framework we obtain a measurement of the dimension for the human visual system. Using an eigenface

basis, evidence is presented that talented human observers are able to identify familiar faces that lie in

a space of roughly 100 dimensions, and the average observer requires a space of between 100 and 200

dimensions. This is below most current estimates. It is further argued that these estimates give an upper

bound forface spacedimension, and this might be lowered by better constructed "eigenfaces", and by

talented observers.

I. I NTRODUCTION

The general face recognition problem, seeks the identification of a person in a scene, based

on known faces in a stored database. This problem may be regarded in three stages [1]: face

detection [2], [3]; feature extraction [4]; face identification [5], [6], [7], [8]. The present study

focuses on the third stage, which includes representation [5], [6] and recognition [7], [8].

Implicit to the present approach is the fact that the image of a face is dealt with in its entirety

and not in terms of its parts or elements, thus in essence this approach is holistic. This procedure

has its origin in a body of related mathematical methods having the acronyms SVD, PCA, KL,

EOF, POF and so forth, an approach that has been discovered and rediscovered many times

over [9]. Common to all of these is a reliance upon empirical data to generate a mathematically
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optimal coordinate system that is intrinsic to the data. The coordinates are eigenfunctions of a

data generated operator, and thus may be referred to in general as empirical eigenfunctions. We

avoid the fine points of the various acronyms, although SVD best describes the approach used

here. The introduction of this approach for face recognition first appears in [5], where it was

shown to lead to a low-dimensional description offace space. The appropriate dimension of this

space is a central concern of this paper. Mention should also be made of other holistic-based

methods [10], [11], [12], [13], [14], [15], [16], [17].

The eigenface approach, perhaps the first face recognition model aimed at extracting infor-

mation important for recognition, was based on the premise that a relatively small number of

elements or ’features’ could be efficiently used for face recognition [7], [8]. Dimension reduction

should be expected since faces share the same basic configuration and shape. Eons of evolution

suggest that the human brain possesses an optimal algorithm for face recognition. Given the

sheer size of an individual’s lifetime database, it is astonishing that as little as 75 milliseconds

of viewing time is needed for face identification and only 800 milliseconds to solve the face

recognition problem [18]. Sorting through a lifetime database in this short span of time is

inconceivable without some sort of compact representation. The eigenfunction approach [5],

[6], [7], [8] was the first successful attempt to find global ’features’ that are important for

discriminating faces and to model a compact representation in an automated face recognition

setting.

The dimension offace spacemay be reasonably defined as an acceptable threshold number

of dimensions necessary to specify an identifiable face. Performance of various face recognition

algorithms is largely evaluated in terms of recognition accuracy as a function of dimension.

Recognition performance is calculated as the proportion of test images that are correctly

identified. In the common scheme, eigenfaces are constructed from atraining set of face images

and particular test faces are recognized by comparing the eigenface weights [8]. Correlation of

two sets of weights may be used as a comparison measure.

Recognition performance will suffer from insufficient information if dimensionality is under-

estimated. On the other hand, an over-estimate of dimension will introduce noisy components
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which also reduces performance [19], [20]. The number of dimensions offace spacealso figures

in the speed and accuracy of processing large face databases. In addition, the dimensionality

question is critical to performance of schemes based on dimensionality reduction [20], [21],

[22]. In all this it is important to note thatface spaceis specific to the representation of human

faces, and any image which diverges from a conventional human face, e.g. a monkey face, [23],

is not as well captured byface space.

A typical approach to the determination of dimensionality is to examine the variance captured

by the eigenfaces and to search for the location of significant drop-off in the variance (eigenvalue)

spectrum [5], [6], [21]. The question of dimensionality within a probabilistic framework looks at

the signal-to-noise ratio(SNR) of the reconstructions [20]. Both methods allow us to determine

how much pixel information has been captured in a reconstruction, from an original image;

however, they do not inform us whether or not information critical for the identification of a

face has been captured.

While the empirical eigenfunction approach is both objective and optimal, like the less efficient

pixel representation, it isman-made. It is plausible that the human face recognition system is

using some otheralgorithm. This is relevant since, in this study, we hope to gain some sense of

the representation used by human observers, albeit with the eigenface approach.

[20] implicitly suggest that perceived image quality can be used to measure the dimensionality

of face space, however no objective assessment of this aspect of images was studied. Here

we report on a human psychophysics experiment which interrogates the human visual system

to estimate the number of dimensions necessary for recognition of a face. By measuring, the

recognition threshold at which enough information is present for human observers to classify a

face as familiar, we can come closer to the intrinsic dimensionality of humanface space. A related

but complementary, psychophysical approach to face classification was recently considered by

[24] (also see [25]).

The use of error or variance as a determinant of identification, may be required for machine

identification, and in such terms a dimension of O(500) has been contemplated [20]. From

another perspective there is the intrinsicdimensionof the algorithm used by the human visual
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system. Our results indicate a dimension that is closer to 100. In determining this estimate, we

have used the eigenface framework, aman-madecoordinate system. It is possible, and probable,

that our visual apparatus uses a more efficient ’basis’, perhaps some sort of sparse coding of faces

[26], or other efficient coding [27]. From this perspective our estimate of O(100) dimensions

for identification is an upper bound for theintrinsic dimension. It should also be noted that

non-holistic methods which parse a face into component parts offer another approach which

may further reduce the dimension. In particular Gabor transforms and Gabor jets which focus

on fiducial facial locations are appealing [28], [29], [30], [31].

II. BACKGROUND

In the experiment, facial images viewed by human observers appeared on a computer

monitor. All face images were converted to gray scale levels, and then normalized by an affine

transformation that set the centered inter-eye line horizontal, and 24 pixels apart. Images were

cropped to 128× 128 pixels, and an oval mask, the shape of an average face, was applied to

each image. Pixels outside the mask were set to 0. There were 3,496 pixels inside the mask.

Every image was normalized so that the reflectance of cheek areas were on average the same

[5].

The basic ensemble of facial images which was used contained 993 frontal images from the

2003 U.S. Army FacE REcognition Technology (FERET) [32] color database, and this set was

augmented by 40 images acquired by us. As described in [6] there are a number of advantages in

doubling the ensemble by including mirror images of each ensemble member. On so doubling the

augmented FERET database we obtained atraining set of 2,066 images. An additional 40 images

were sequestered for later use, and not included in the basic population. SVD of thetraining set

ensemble of 2,066 faces was performed and resulted in the eigenfunctions (eigenfaces) ,ψn(x)

and the corresponding eigenvaluesλn, (see Appendix).

Eigenvalues are non-negative and the ratioλn/Σnλn furnishes the average probability that a

corresponding eigenfaceψn(x) appears in the representation of a face. In Figure 1 shows the

probability spectrum of the FERET augmented database from index 2 to 1,500 components. The

first eigenface lies close to the average face, and thus has a disproportionately large eigenvalue,
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Figure 1. Log-log plot of probability projection along the eigenface directions for the first 1500
components. The curve is fit with 2 dotted lines. We drop out the first point in this plot because
the first eigenface is close to the average face of the population. The two power law fits cross
at n ≈ 200.

which we leave out of thus plot. As might be supposed, and is supported by the eigenfaces seen

in Figure 2, high index eigenfaces capturenoise, and early indices relate to the actual components

of a face, and thus indicatesignal. As shown in Figure 1 the spectrum is well fit by two straight

lines, suggesting two power law regions. The line which captures thesignal components has a

slope of -1.43 and the line that captures thenoisecomponents has the slope -2.14. In [20] it is

observed that the remnants of facial structure in the eigenfaces decay slowly after the first 100

components, as seen in Fig. 2. The cross-over point of Figure 1 lies at roughlyn = 200, which in

[5] and [6] was used as a basis for establishing a dimension estimate. Similarly, the deliberations

of [20] are in large part based on the error incurred in reconstructing a face from its projection

onto a truncated number of eigenfaces. Since, the norm of the ratio of the reconstruction, to the

residual error was used as a measure, this was termedsignal-to-noise ratio(SNR), a usage we

follow. SNR is a measure of error in the reconstruction, i.e., the amount of variance that has

been captured in the reconstruction. Thus, a reconstruction which is a better fit to the original

face will have a larger SNR. [20] suggested that most face identify information necessary for
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Figure 2. The first 16 and 8 other eigenfaces of thetraining set.

recognition is captured within a SNR span of approximately 7-7.5 octaves, which in their case

could require O(500) components. The SNR and related issues are reviewed in the Appendix.

It is important to realize that the dimensional estimates of [5], [6], [20] and related studies are

based on Euclidean distance measured in the pixel space of face images. Clearly, this distance,

and in particular SNR does not inform us about error tolerance, and hence dimension, for the

human visual system that monitors face recognition. A goal of this paper is the exploration of

the issue of dimension by measuring this error tolerance.
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III. E XPERIMENT

The goal of the experiment was to arrive at an estimate of the dimension offace spaceas it

might appear in thealgorithm for recognition used by the human visual system. To achieve this

goal we designed an experiment in which human observers were shown partial reconstructions

of faces and asked whether there was recognition.

Ten healthy volunteers participated in the experiment (5 men and 5 women, mean age 27,

range 20-35, all right handed): all had normal or corrected-to-normal vision. The observers

viewed images on an optimally placed computer monitor.

In more detail the experiment was performed in two parts:

The first part sought to assess a baseline for the observers’ knowledge offamiliar faces.

Images of 46 people (3 images of each) deemed to befamiliar, i.e., popularly recognizable

faces, were shown to observers. Participants were asked to respond with one of the following

options: high familiarity, medium familiarity, low or no familiarity. None of the images used,

in this preliminary part of the experiment, figured in thetraining set or in later stages of the

experiment. In addition, six of the baseline people were left out of second part altogether, so

that observers would not be able to use the process of elimination in classification. Baseline

familiarity ratings for each observer are plotted in Figure 7, which we discuss later.

In the second part of the experiment the observers viewed the truncated versions of 80 faces,

referred to as test faces: 20 familiar and 20 unfamiliar images, that were added to the FERET

training set, an additional 20 familiar and 20 unfamiliar images not in the training set that

were added in order to monitor differences in recognition ability of truncated images not in the

training set. Sex of the test faces was balanced across familiarity andtraining set inclusion. In

the interest of simplifying the problem we chose only Caucasian faces, and hence a relatively

homogeneous population was used in classification. In the same vein, test faces with facial hair,

extreme features or any other distinguishing characteristics were excluded. In order to match the

unfamiliar and famous test faces in attractiveness, we used photographs of unknown models and

actors for the unfamiliar test faces.

In Figures 3a, 3b and 3c an unfamiliar and two familiar test faces from outside thetraining
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population are reconstructed to successively higher degrees. The number of eigenfaces appears

on the top and the SNR on the bottom. These three, out-of-population faces appear to need no

more than 200 elements, as suggested by Figure 1, however, different observers make varying

judgements. To estimate the error tolerance of the human face recognition system we performed

an experiment asking observers to discriminate between familiar/unfamiliar faces reconstructed

as a function of varying SNR.

Observers first viewed all 80 test faces in a random sequence reconstructed to SNR of 5.

Then, in the same manner, images reconstructed for each subsequent SNR were viewed. SNR

was incremented in even steps of 0.5 until 10 was reached, eleven steps in all.

In reconstructing an image faces were incremented in equal steps of SNR instead of count

by eigenfaces. This ensures that, with each new face stimulus, equal amounts of variance are

captured, a procedure intrinsic to the face. Thus faces are reconstructed at slightly different rates

depending on how distinct they are from the faces that are used to generate the eigenfaces [33].

Observers viewed 880 images in this part of the experiment.

Half of the test faces classified by the observers in the psychophysics experiment were in-

population, i.e., they were part of thetraining set used in the construction of the eigenfaces, and

the other half were out-of-population. This furnished a baseline comparison of reconstruction

error. Mean SNR of each group is plotted as a function of component count in Figure 5,

confirming the fact that in-population faces are better reconstructed. The standard error of the

mean (µ/
√
n, where µ is the standard deviation from the mean andn = 40 is the sample

size) shows small variation in the rate of reconstruction, and remains constant as a function

of dimensionality. Figure 5 gives the specific relationSNR = f(n), i.e., SNR as a function of

eigenface index. Both curves are well fit by power lawsSNR ∝ np, with p ≈ 1/7− 1/6. In

passing we remark that in the limit of an unboundedtraining set the two curves of Figure 5

should converge to each other, thus Figure 5 also measures the completeness of the eigenface

basis.
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Figure 3. An example of the reconstructions of an unfamiliar(a) and familiar(b, c) out-of-
population faces. Each reconstructed image is labeled with the number of components,ψn on
the top, and the SNR on the bottom.
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IV. A NALYSIS OF DATA

Data gathered in the experiments were analyzed using Receiver Operating Characteristic (ROC)

curves [34], [35], [36], [37], [38] to classify familiar versus unfamiliar faces. An ROC curve is

essentially a plot of false positives versus true positives. ROC analysis, invented for dealing with

noisy radio transmissions, deals with threshold effects in the trade-off between false positives

and false negatives. It has been used in studies of object detection [38], edge detection [37] and

machine learning [34]. In the present psychophysical study the "device" experiencing uncertainty

is a human observer who supplies a response based on an internal decision on face recognition.

Typical ROC analysis factor the variation of thresholds of certainty. In our study, the human

observers, distinguish the degree to which a face is familiar or unfamiliar. Observers were asked

to respond with one of the following options: (1) high certainty a face is unfamiliar; (2) medium

certainty a face is unfamiliar; (3) low certainty a face is unfamiliar (4); low certainty a face is

familiar; (5) medium certainty a face is familiar; (6) high certainty a face is familiar. This is a

standard rating procedure in psychophysics [39], [40], [41]. This 6 point response is transformed

into a binary for recognition, based on five different thresholds for the observer’s responses, r:

r>(5), r>(4), r>(3), r>(2), and r>(1). Thus r>(5) may be regarded as the probability that the

observer is certain that he/she is viewing a familiar face, given that a familiar face is indeed

being viewed. r>(4) is this probability plus the probability of medium certainty, and so forth

with corresponding cumulative probabilities. Thus, an image which received a score above a

specific threshold was classified asfamiliar and otherwise it was classified asunfamiliar. The

proportion of true positive responses was determined as the percentage of familiar faces that were

classified asfamiliar at a particular threshold, while the proportion of false positive responses was

determined as the percentage of unfamiliar faces that were classified asfamiliar at a particular

threshold. Each threshold setting corresponds to one point on the ROC curve.

To illustrate the use of this procedure consider Figure 4 which shows the series of ROC curves

for a single observer. Clearly pure chance is described by a45◦ line, shown as a dashed line.

Each SNR appears at the five thresholds and these appear as we move from left to right in

the plots, going from low false positives to high false positives. The data for SNR<7.5 hovers
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Figure 4. A sample ROC plot for a single observer. The area between each curve and the45◦

line corresponds to the observer’s classification accuracy (identification probability) for a specific
SNR, as labeled in the legend.

near the45◦ line, and might be regarded as being noisy in contrast to SNR≥ 7.5, which carry

high signal. Evidentally, the area between each curve, and45◦ line corresponds to classification

accuracy, an increasing function of SNR. We follow common practice, and use the area under

the ROC curve which simply adds a baseline value of 0.5 to the numerical classification of

accuracy.

V. RESULTS

The plot of face classification accuracy (identification probability) as a function of SNR

is referred to as the observers’ psychometric function [43]. Following standard practice, the

psychometric function is fit by the Weibull distribution:p(SNR) = 1− 0.5 ∗ exp(−(SNR/α)β),

wherep is the proportion of faces identified computed as a function of SNR, parameter values

are given in Table 1. Figure 6 shows the average face classification accuracy of 10 observers

as a function of SNR. Classification accuracy of 1.0 indicatesperfect stimulus detection and

conventionally, the point at which there is a 50% improvement over chance in classification

accuracy (signal detection probability of 0.75) is chosen as the detection threshold [42], [43].
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Figure 6. Average psychometric function for face classification. Average classification accuracy
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determined for the 3 ’best observers’ (circles) who were most familiar with the familiar faces,
selected based on familiarity ratings in Figure 7.
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SNR where p(SNR)=0.75 α β
Average (Fig. 6) 7.74 8.29 5.31
3 Highest Familiarity Scores (Fig.6) 7.24 7.72 5.68
OUT Faces (Fig. 8) 7.66 8.2 5.41
IN Faces (Fig. 8) 7.9 8.42 5.72

Table 1. Parameter values for the Weibull distribution [43] in Figures 6 and 8.
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Figure 7. Famous face familiarity rating. The combined histogram for each observer adds to 40,
the total number of familiar test faces.

It can be seen in Table 1 (see Appendix) that the accepted standard of 0.75 for classification

accuracy threshold [42], [43] for the average of all observers is reached at an SNR of 7.74. Thus

from Figure 5 we can conclude that 161 in-population and 196 out-of-population eigenfaces are

sufficient for recognition. These observations are in agreement with earlier remarks and with

Figure 1.

Next we consider the important issue of the relationship between dimensionality and how

well faces are stored in memory. Unlike most machine face recognitiontraining sets, the human

lifetime database of facesis drawn from a virtually limitless reservoir of images. We can expect

that some familiar faces are better coded for than others, especially since there is a more general

eigenface basis, or counterpart to it. In addition the number of exemplars can play a role, e.g.,

the database of a person who watches the news frequently may contain more exemplars of
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particular politicians, such as Bill Clinton or George Bush. To address this issue, at the outset

we asked observers to subjectively rate their familiarity with 3 different baseline photographs.

Once again we emphasize that these images were not used in the second part of the experiment.

In Figure 7 it can be seen that not all observers were equally familiar with the faces. Observers

2, 8 and 10 appeared to have a particularly good representation of the familiar faces in memory,

as evidenced by their familiarity ratings in Figure 7. The average psychometric function of these

three observers is plotted separately in Figure 6, with circles. These observers reached a 0.75

perceptual recognition threshold at a SNR of 7.24, which when converted by Figure 5 yields

to an in-population dimensionality of 107 and an out-of-population dimensionality of 124. The

dimensionality measure based on observers that have the highest baseline familiarity ratings is

significantly lower than the estimate based on the average observer. This indicates that a person’s

measure of dimensionality might be dependant upon how well these familiar faces are coded in

memory, amongst other possibilities.

In Figure 8 we plot the average psychometric function for faces that were in- and out-of-

population separately. We can see that there is no significant difference in classification accuracy

as a function ofsignal-to-noise ratio, as displayed by the error bars, and therefore there is little

reason to regard this as a confounding issue.

VI. D ISCUSSION

Factors that could affect our estimates of dimensionality are differences in face image

composition such as facial expression, facial hair, lighting, race, sex and presence or absence of

glasses. The FERET database is rather heterogeneous, containing images with an assortment of

these attributes, and our measure of dimensionality could be influenced by such attributes. In

selecting the test faces to use for the psychophysics experiment we endeavored to be consistent

in controlling for these factors. All test faces were centrally lit, had neutral facial expression,

didn’t have glasses or facial hair, were equally split between the sexes, and were Caucasian.

We have determined that on average the dimension offace spaceis in the range of 100-200

eigenfeatures. This estimation was made within aface spaceas parameterized by eigenfaces. In

past works the question of how much error the human face recognition system can tolerate within



15

4 5 6 7 8 9 10 11
0.4

0.5

0.6

0.7

0.8

0.9

1

A
V

E
R

A
G

E
  C

LA
S

S
IF

IC
A

T
IO

N
  A

C
C

U
R

A
C

Y

SIGNAL−TO−NOISE RATIO

 

 

IN−POPULATION FACES
OUT−OF−POPULATION FACES

Figure 8. Psychometric function for face classification accuracy of all observers (same as Figure
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this eigenface framework was touched upon [20], [5], [6], but not really settled. By performing

a human psychophysics experiment we have obtained a measure of this error tolerance for the

human visual system. However, the human face recognition norm was arrived at within the

eigenfunction framework. There is no reason to assume that the human perceptual system uses

a Euclidean norm, nor that it uses eigenfunctions. As mentioned earlier the visual system may

parse a face into its parts. Thus, it is plausible that evolution has improved on our man-made

construction, in which case ours is an upper bound for face dimension.

We also found an indication that the error tolerance of observers may be related to an observer’s

prior familiarity with the familiar faces, in which case it might be supposed that such observers

had somehow incorporated moretraining samples of these faces in theirlifetime database of

faces, or had a betterbasis setin their memory. Observers who were better acquainted with the

familiar faces performed better. These observers would appear to provide an indication that there

exists a range of dimensions, reflecting a range of talents. This may be a reflection of what is

anecdotally referred to as a "good memory for faces." Thus the best thresholds, 124 for out-of-

population faces and 107 for in-population faces, might be diminished by better "eigenfunctions"

and by more "talented" observers.
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It should also be emphasized that our estimates of dimension given above and also those

that follow, should be interpreted in the somewhat narrow framework of our experiment. These

dimension estimates should in no way be regarded as applying to the entire entity of human

faces. It is rather the case that we are presenting a perspective and a guide for dealing with the

issue offace spacedimension, viewed as an innate measure in contrast to a metrical construct.
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APPENDIX I

EIGENFACES

A face which has been normalized as described in 2.2.1 can be represented by image intensity

valuesf(x) wherex is the pixel location andV is the total number of pixels in the image. We

consider the ensemble ofT pictures{f(t,x)}t∈T with its SVD representation [43] denoted by

f(t, x) = ΣM
n=1an(t)σnψn(x), (1)

where M = min (T,V) is the rank of the ensemble. Following conventional notation, we have

the orthonormality conditions.

(an, am)t = Σtan(t)am(t) = δnm = Σxψn(x), ψm(x), (2)

The weightingconstantsσn, are referred to as thesingular values.

One can easily show that

((f(t,x), f(t,y))t, ψn(y))y = λnψn(x) (3)

whereλn = σ2
n is said to be the eigenvalue and

((f(t,x), f(s,x))x, an(s)) = λnan(t) (4)

The reader should be cautious in comparing these deliberations, with their counterparts in [23]

since thelatter uses an unconventional notation.

Thepictures{ψn}are the eigenfaces of the ensemble. For a given dimensionality N the image

reconstruction and the image error are given by

f rec
N = ΣN

n=1anσnψn and f err
N = f − f rec

N , (5)

respectively, Thesignal to noise ratio(SNR) is defined as

SNR = log2(||f ||2/||f err
N ||2) = log2(Σ

M
n=1a

2
n/Σ

M
n=N+1a

2
n) (6)


