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Standard	Short-Read	Sequencing
BIG amount of sequencing DATA 

Fast and cheap! 

Terabyte per day for Illumina/HiSeq 2500



1	Million	genomes?



Standard	short-read	sequencing

Paired-end	sequences	of	a	fragmentCells	 DNA	is	fragmented
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Paired-end	reads	are	mapped	to	the	reference

Concordant	mapping
Discordant	mapping

5

Korbel et	al.	2007,	Kidd et	al.	2008,	Hormozdiari et	al.	2009,	Sindi	et	al.	2009

Determining	Sequenced	Genomes	

Sequenced	(Test)	Genome	

Reference		Genome	 Deletion



Limitations	of	NGS	technologies		

The human genome is repetitive!
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55% 

45% 

Repetitive	
elements	

Human genome

NGS produce “short reads” (e.g. 50bp to 150bp)

Sequenced	(test)	Genome	

Reference		Genome	

Ambiguity	in	the	mappings!



Challenges	to	determine	sequenced	
genomes	and	metagenomes

Structural	Variations,	including	those	
within	repetitive	regions	or	complex	
events.

The	reference	genome	is	incomplete	or	
often	nonexistent	for	metagenomes.

In	metagenomics,	we	need	to	reconstruct	
the	entire	mixture.



Increased number of 
somatic mutations.

Mixture of tumor and 
normal tissue.

Cancer Heterogeneity.

Cancer	Genomes	

Normal cell

somatic 
mutations

Growth to tumor



Outline	of	two	genomics	projects

Project	I:	 Using	Linked-Read	technologies	for	
metagenomics

Project	II:	Phylogeny	reconstruction	using	
integration	of	bulk	and	single	cell	sequencing



Beyond	short-read	sequencing

Long	Read:
• Pacbio
• ONT

Linked	Read	(or	read	cloud	technologies):
• Moleculo (Illumina Synthetic	Long	read)
• 10X	Genomics
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Expensive,	low	throughput,	high	DNA	input
But	they	are	real	long-reads!

Cheaper,	high	throughput,	low	DNA	input
But	they	are	fake	long-reads!	



BackgroundLinked-Read	Technologies
(e.g.	10X	Genomics)
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Knowing	that	the	reads	“should”	form	clusters,	can	we	
handle	ambiguity	in	read	mappings	and	SV	detection	better?



10X	Genomics	model
…

Long	molecules /	fragments:
1. coverage	CF
2.mean	length:	~10-100Kb

NA12878	Genome

Short	reads:
1. coverage	CR
2. length:150	bps

Barcodes:
1. #	useful	barcode	~	1M	
2. Distribution of	barcode:	
Poisson



10X	Genomics	application

Large	structural	variation	calling

Haplotype	phasing



a	new	set	of	algorithmic	challenges

1. Each	long	fragment	of	DNA	is	covered	only	
sparsely by	short	reads.

2. No	information	about	the	relative	ordering	
of	reads from	the	same	fragment	is	
preserved.	

3. Typically	each	barcode	matches	reads	from	2-
20	long	fragments	of	DNA.	



Problem:	Linked-read	Deconvolution

The	deconvolution	of	reads	with	a	single	
barcode	into	clusters	that	correspond	to	a	single	
long	fragment	of	DNA.

This	is	one	particular	issue	common	to	all	
applications	of	linked-read	technology!

• Any	idea?!



Linked-read	Deconvolution	when	a	reference	is	available

Problem:	Linked-read	Deconvolution

Linked-read	Deconvolution	when	a	reference	is	not	
available	(metagenomics	application?)

10X	Metagenomics	Consortium!	
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• A	new	graph-based	algorithm	for	
an	approximate	solution.

• Our	approach	also	further	uses	some	
techniques	from	the	field	of	topic	
modeling	in	Natural	Language	Processing	
(NLP).

MINERVA



Our	graph	based	method

Key	Observation:	reads	from	the	same	
fragment	would	tend	to	overlap	with	similar	
sets	of	reads that	had	different	barcodes.	

We	justified	this	mathematically,	while	of	course	
long	repeats	can	be	sources	of	errors.



Our	graph	based	method

1) Fragments are	generated
2) Fragments are	sequenced and	tagged
3) Reads in	a	given barcode are	aligned to	other

barcodes
4) A	bipartite	graph between reads and	barcodes is

constructed
5) A	graph between reads that co-occur with barcode is

constructed
6) Reads are	clustered into groups



primary	real	data	sets	from	two	
microbial	mock	communities

• Dataset	1:	5	bacterial	species:	E.	coli,	Enterobacter	cloacae,	
Micrococcus	luteus,	Pseudomonas	antarctica,	and	Staph.	
epidermis.	

• Dataset	2:	8	bacterial	species	and	2	fungi:	Bacillus	subtilis,	
Cryptococcus	neoformans,	Enterococcus	faecalis,	E.	coli,	
Lactobacillus	fermentum,	Listeria	monocytogenes,	
Psuedomonas aeruginosa,	Sachharomyces cerevisiae,	
Salmonella	enterica, and	Staphylococcus	aureus.	

• Roughly	1ng	of	high	molecular	weight,	processed	using	a	
10X	Chromium	instrument,	sequenced	on	an	Illumina	Hiseq
with	2x150	paired-end	reads.	



Experimental	Results	

• Minerva	was	able	to	identify	subgroups	in	
barcodes	that	largely	corresponded	to	individual	
fragments	of	DNA.	i.e.	Enhanced	Barcodes.	

• We	quantified	this	using	two	measures:	
– Shannon	diversity	index	H	=	∑	pi log	pi
– Purity	P	=	max(p⃗)	

where	pi indicates	the	proportion	of	an	enhanced	
barcode	that	belongs	to	each	fragment.	



Shannon	Index	

Minerva	deconvolves barcodes

(Left)	Purity	for	enhanced	and	standard	barcodes	
(Right)	Shannon	index	in	dataset	one	for	enhanced	and	standard	barcodes	



Applications	of	Enhanced	Barcodes

1. It	is	useful	to	group	enhanced	
barcodes	that	likely	came	from	
the	same	genome.	

We	used	a	clustering	algorithm	based	
on	Latent	Dirichlet Allocation	(LDA),	a	
classic	model	in	NLP.

2. This	technique	can	be	used	to	
improve	de	novo	assembly	
algorithms.	(We	tested	with	
some	unpublished	work	from	
collaborators,	cloudSpades!)	



Minerva	improves	taxonomic	assignments
• Minerva	can	improve	the	specificity	of	short	read	
taxonomic	assignments	obtained	from	Kraken,	a	
popular	tool.

• All	reads	from	the	same	long-fragment	must	have	
the	same	taxonomic	rank!

• We	were	able	to	rescue	a	large	number	of	reads	
from	unspecific	taxonomic	assignments.



Minerva	improves	taxonomic	assignments

Using	enhanced	barcodes	we	can	promote	the	taxonomic	assignment	of	reads.	Width	
of	each	frond	is	proportional	to	the	number	of	reads	promoted	from	a	specific	rank.



Outline	of	two	on-going	projects

Part	I:	 Using	Linked-Read	for	Metagenomics

Part	II:	Phylogeny	reconstruction	using	bulk	and	
single	cell	sequencing



Tumor	sequencing



Cancer	Evolution

*Ding	et	al.	Clonal	evolution	in	relapsed	acute	myeloid	leukaemia
revealed	by	whole-genome	sequencing.	Nature 2012



Bulk	Sequencing	of	a	tumor	sample	

Heterogeneous	
Tumor	Sample

The	Reference	GenomeDNA	is	fragmented



Variant	Allele	Frequency	(VAF)

Fraction of	reads	
covering	position	of	
single-nucleotide	
variant	that	contain	
variant.	

Genome	position	of	a	somatic	SNV	

CCTGCAAATA	
Reference	Genome

GCAAA

CAAAT
CTGCA

CTGCA
GCAAA

TGCAA
CTGTA
TGTAA

CTGTA
3/9	=	33.3%

VAF	∝ fraction	of	tumor	cells	containing	variant	allele
*assuming	no	copy	number	aberrations



Infer	Heterogeneity	from	VAFs
Heterogeneous	
Tumor	Sample

Dirichlet Process	Mixture	models	are	popular	as	they	do	not	fix	
the	number	of	clusters	in	advance.

Variant	Allele	Frequency
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Clonal	Evolution

Sequencing	of	
mixture

Normal	genome

Selection	and	
clonal expansion

somatic	mutation

Founder cell

Time (cell divisions and subsequent accumulations) Sequencing of mixture



Single	sample	vs.	Multiple	samples

Sequencing method Mixing Inferring Tree

Bulk (one sample) yes TrAp [Strino et al., 2013]
Rec-BTP [Hajirasouliha et al., 2014]

Bulk (multiple samples) yes PhyloSub [Jiao et al., 2014]
Clomial [Zare et al., 2014]
Binary F [Hajirasouliha et al., 2014]
SubcloneSeeker [Qiao et al. 2014]
CITUP [Malikic et al., 2015]
BitPhylogeny [Yuan et al., 2015]
LICHeE [Popic et al., 2015]
SCHISM [NikNafs et al. 2015]
AncesTree [El-Kebir, Oesper et al., 2015]
BAMSE [Toosi, Moeini, Hajirasouliha, 
2017]



● BAMSE defines a Bayesian prior over all possible 
clustering of mutations and tree configurations

● Accurate maximum likelihood values by convex 
optimization



#chr		position				 description				 Normal				S1 S2 S3 ... SM
M1 1							184306474			 A/G	HMCN1	 0.0							 0.1			 0.2			 0.25		 0.15				
M2 1							18534005				 C/A	IGSF21				 0.0							 0.1			 0.25	 0.2			 0.1					
M3 1							110456920			 G/A	UBL4B						 0.0							 0.4			 0.4			 0.45		 0.45				
...
MN 10 26503064				 C/G	MYO3A					0.0							 0.4		 0.0			 0.0			 0.24
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Note:	In	general,	the	method	can	handle	any	type	of	variant	given	its	
cell	prevalence	(CP)	values	in	each	sample
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Mutations	do	not	recur	independently	in	different	cells
Þ cells	sharing	the	same	mutation	must	have	inherited	it	

from	a	common	ancestral	cell

Perfect	Phylogeny	Model:	Assumption



Three	SNV	Ordering	Constraints:

1. a	mutation	present	in	a	given	set	of	samples	cannot	be	a	successor	of	a	mutation	

present	in	a	smaller	subset	of	these	samples

2. a	mutation	cannot	have	a	VAF	higher	than	that	of	its	predecessor	mutation	

(except	due	to	CNVs)

3. the	sum	of	the	VAFs	of	mutations	disjointly	present	in	distinct	subclones	cannot	

exceed	the	VAF	of	a	common	predecessor	mutation	present	in	these	subclones

M1:	S1 S3 S4		

M2:	S1 S2 S3 S4

M1:	0.2	VAF

M2:	0.4	VAF

M1:	0.3	VAF

M2:	0.2	VAF M3:	0.3	VAF

(1) (2) (3)

Perfect	Phylogeny	Model:	Constraints	



Three	SNV	Ordering	Constraints:

1. a	mutation	present	in	a	given	set	of	samples	cannot	be	a	successor	of	a	mutation	

present	in	a	smaller	subset	of	these	samples

2. a	mutation	cannot	have	a	VAF	higher	than	that	of	its	predecessor	mutation	

(except	due	to	CNVs)

3. the	sum	of	the	VAFs	of	mutations	disjointly	present	in	distinct	subclones	cannot	

exceed	the	VAF	of	a	common	predecessor	mutation	present	in	these	subclones

M1:	S1 S3 S4		

M2:	S1 S2 S3 S4

M1:	0.2	VAF

M2:	0.4	VAF

M1:	0.3	VAF

M2:	0.2	VAF M3:	0.3	VAF

(1) (2) (3)

Goal:	find	all	lineage	trees	that	satisfy	the	above	three	constraints

Perfect	Phylogeny	Model:	Constraints	



Lineage	tree	across	multiple	samples

1.	Group	Somatic	SNV.

3.	Search	the	network	for	

all spanning	trees.

2.	Construct	Evolutionary	

Constraint	Network.

LICHeE:	software	package



Gerlinger,	M.,	et	al.	(2014).	"Genomic	architecture	and	evolution	of	clear	cell	renal	cell	carcinomas	defined	by	multiregion sequencing."	
Nature	genetics	46(3):	225-233.

8	patients,	587	SNVs

ccRCC Study	by	Gerlinger et.	al	(2014)



ccRCC Study	by	Gerlinger et.	al	(2014)
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ccRCC Study	by	Gerlinger et.	al	(2014)
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Single	cell	genome	sequencing

Katie	Vicari*
*Image	From:	Eberwine et	al.	Nature	Methods 2014



Single Cell Sequencing (SCS) Bulk Sequencing

ID Chromosome Position MutantCount ReferenceCount INFO

mut1 15 73021943 393 1607 geneID=BBS4

mut2 9 138702709 337 1663 geneID=CAMSAP1

mut3 3 51263127 382 1618 geneID=DOCK3

mut4 1 38226084 412 1588 geneID=EPHA10

mut5 6 133850054 201 1799 geneID=EYA4

mut6 19 40895668 654 1346 geneID=HIPK4

mut7 6 27101163 380 1620 geneID=HIST1H2AG

mut8 8 95877709 516 1484 geneID=INTS8

mut9 8 120255800 966 1034 geneID=MAL2

mut10 1 24390601 466 1534 geneID=MYOM3

Single	cell	vs.	bulk	sequencing



Single Cell Sequencing (SCS) Bulk Sequencing

Advantages

• Better sequencing resolution
• The presence or absence of every mutation in 

each cell is clearly distinguishable
• New technique that can only improve as time 

passes
• Low rate of False Positives (read errors)

Disadvantages

• Data extracted from SCS are extremely 
noisy:
o High rate of False Negatives (~15-30 

% -- allelic dropout)
o High rate of Missing Values (~10-40 

%)

Advantages

• Better accuracy
• Cheaper than Single Cell Sequencing

Disadvantages

• Lower sequencing resolution
• More difficult interpretation of the data

Single	cell	vs.	bulk	sequencing



Thank	you!

David	Danko (Tri-CBM)	
Simone	Ciccolella (Visiting	Student)
Camir Ricketts	(Tri-CBM)
Dmitrii Meleshko (Tri-CBM)

Weill	Cornell	Medicine
Chris	Mason	
Daniela	Bezdan

Salem	Malikic (SFU)
Stephen	Williams	(10X	Genomics)
Patrick	Marks	(10X	Genomics)
Cenk Sahinalp (Indiana)
Victoria	Popic (Illumina)


