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Outline
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• Background of transcriptome profiling

• Next Generation Sequencing: a revolution in 
molecular biology

• RNA-seq application: gene fusion detection

Images throughout the presentation from pixabai.com, commons.wikimedia.org
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Central dogma of molecular biology
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Central dogma of molecular biology
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transcription translation
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Transcriptome profiling

5

transcription translation

Transcriptome profiling goal is to characterize RNA in a tissue or cell.

The ‘simpler’ structure of RNA allows to employ most techniques used for DNA 
analysis – hybridization, polymerase chain reaction, etc.

Nucleotides 
A,C,T,G

Nucleotides 
A,C,U,G

Amino Acids
A,R,N,D,C,E,Q,G,H,I,

L,K,M,F,P,S,T,W,Y,V
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Pre-genome era (< 1990s)
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~1970 Reverse Transcriptase à Allows the 
reverse transcription of RNA to DNA, 
generating cDNA

~ 1977 Sanger Sequencing à enables to 
‘read’ the sequence of DNA
~ 1977 Northern blot à enable to measure 
the expression of RNA

~1983 Polymerase Chain Reaction (PCR) 
à allows the duplication/amplification of 
pieces of DNA 
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Genome Era (1990s – 2000s)
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~ 1991 Expressed Sequence 
Tags (ESTs) sequencing (500-
800 nucleotides)

~ 1995 Series Analysis of 
Gene Expression (SAGE) (9-
12 nucleotides)

Science 21 Jun 1991; Vol. 252:Issue 5013: 1651-6

Science 20 Oct 1995:Vol. 270, Issue 5235, pp. 484-487

Science 286, 531 (1999);
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Genome Era (1990s – 2000s)
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~ 1991 Expressed Sequence 
Tags (ESTs) sequencing (500-
800 nucleotides)

~ 1995 Series Analysis of 
Gene Expression (SAGE) (9-
12 nucleotides)

~ 1999 Microarray

Science 21 Jun 1991; Vol. 252:Issue 5013: 1651-6

Science 20 Oct 1995:Vol. 270, Issue 5235, pp. 484-487

that class discovery could be tested by class
prediction: If putative classes reflect true
structure, then a class predictor based on
these classes should perform well.

To test this hypothesis, we evaluated the
clusters A1 and A2. We constructed predic-
tors to assign new samples as “type A1” or
“type A2.” Predictors that used a wide range
of different numbers of informative genes
performed well in cross-validation. For ex-
ample, a 20-gene predictor gave 34 accurate
predictions with high prediction strength, one
error, and three uncertains (34 ). The one
“error” was the assignment of the sole AML
sample in class A1 to class A2, and two of the
three uncertains were ALL samples in class
A2. The cross-validation thus not only
showed high accuracy, but actually refined
the SOM-defined classes: With one excep-
tion, the subset of samples accurately classi-
fied in cross-validation were those perfectly
subdivided by the SOM into ALL and AML

classes. The results suggest an iterative pro-
cedure for refining clusters, in which an SOM
is used to initially cluster the data, a predictor
is constructed, and samples not correctly pre-
dicted in cross-validation are removed. The
edited data set could then be used to generate
an improved predictor to be tested on an
independent data set (35).

We then tested the class predictor of the
A1-A2 distinction on the independent data set.
In the general case of class discovery, predic-
tors for novel classes cannot be assessed for
“accuracy” on new samples, because the “right”
way to classify the independent samples is not
known. Instead, however, one can assess
whether the new samples are assigned a high
prediction strength. High prediction strengths
indicate that the structure seen in the initial data
set is also seen in the independent data set. The
prediction strengths, in fact, were quite high:
The median PS was 0.61, and 74% of samples
were above threshold (Fig. 4B). To assess these

results, we performed the same analyses with
random clusters. Such clusters consistently
yielded predictors with poor accuracy in cross-
validation and low prediction strength on the
independent data set (Fig. 4B). On the basis of
such analysis (36), the A1-A2 distinction can
be seen to be meaningful, rather than simply a
statistical artifact of the initial data set. The
results thus show that the AML-ALL distinc-
tion could have been automatically discovered
and confirmed without previous biological
knowledge.

We then sought to extend the class dis-
covery by searching for finer subclasses of
the leukemias. We used a SOM to divide the
samples into four clusters (denoted B1 to
B4). We subsequently obtained immunophe-
notype data on the samples and found that the
four classes largely corresponded to AML,
T-lineage ALL, B-lineage ALL, and B-lin-
eage ALL, respectively (Fig. 4C). The four-
cluster SOM thus divided the samples along

Fig. 3. (A) Prediction strengths. The scatter-
plots show the prediction strengths (PSs) for
the samples in cross-validation (left) and on the
independent sample (right). Median PS is de-
noted by a horizontal line. Predictions with PS
! 0.3 are considered as uncertain. (B) Genes
distinguishing ALL from AML. The 50 genes
most highly correlated with the ALL-AML class
distinction are shown. Each row corresponds to
a gene, with the columns corresponding to
expression levels in different samples. Expres-
sion levels for each gene are normalized across
the samples such that the mean is 0 and the SD
is 1. Expression levels greater than the mean
are shaded in red, and those below the mean
are shaded in blue. The scale indicates SDs
above or below the mean. The top panel shows
genes highly expressed in ALL, the bottom panel shows genes more
highly expressed in AML. Although these genes as a group appear
correlated with class, no single gene is uniformly expressed across the class,

illustrating the value of a multigene prediction method. For a complete list
of gene names, accession numbers, and raw expression values, see www.
genome.wi.mit.edu/MPR.
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Molecular Classification of
Cancer: Class Discovery and
Class Prediction by Gene
Expression Monitoring

T. R. Golub,1,2*† D. K. Slonim,1† P. Tamayo,1 C. Huard,1

M. Gaasenbeek,1 J. P. Mesirov,1 H. Coller,1 M. L. Loh,2

J. R. Downing,3 M. A. Caligiuri,4 C. D. Bloomfield,4

E. S. Lander1,5*

Although cancer classification has improved over the past 30 years, there has
been no general approach for identifying new cancer classes (class discovery)
or for assigning tumors to known classes (class prediction). Here, a generic
approach to cancer classification based on gene expression monitoring by DNA
microarrays is described and applied to human acute leukemias as a test case.
A class discovery procedure automatically discovered the distinction between
acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL) without
previous knowledge of these classes. An automatically derived class predictor
was able to determine the class of new leukemia cases. The results demonstrate
the feasibility of cancer classification based solely on gene expression moni-
toring and suggest a general strategy for discovering and predicting cancer
classes for other types of cancer, independent of previous biological knowledge.

The challenge of cancer treatment has been to
target specific therapies to pathogenetically
distinct tumor types, to maximize efficacy
and minimize toxicity. Improvements in can-
cer classification have thus been central to
advances in cancer treatment. Cancer classi-
fication has been based primarily on morpho-
logical appearance of the tumor, but this has
serious limitations. Tumors with similar his-
topathological appearance can follow signif-
icantly different clinical courses and show
different responses to therapy. In a few cases,
such clinical heterogeneity has been ex-
plained by dividing morphologically similar
tumors into subtypes with distinct pathogen-
eses. Key examples include the subdivision
of acute leukemias, non-Hodgkin’s lympho-
mas, and childhood “small round blue cell
tumors” [tumors with variable response to
chemotherapy (1) that are now molecularly
subclassified into neuroblastomas, rhabdo-
myosarcoma, Ewing’s sarcoma, and other
types (2)]. For many more tumors, important
subclasses are likely to exist but have yet to

be defined by molecular markers. For exam-
ple, prostate cancers of identical grade can
have widely variable clinical courses, from
indolence over decades to explosive growth
causing rapid patient death. Cancer classifi-
cation has been difficult in part because it has
historically relied on specific biological in-
sights, rather than systematic and unbiased
approaches for recognizing tumor subtypes.
Here we describe such an approach based on
global gene expression analysis.

We divided cancer classification into two
challenges: class discovery and class predic-
tion. Class discovery refers to defining pre-
viously unrecognized tumor subtypes. Class
prediction refers to the assignment of partic-
ular tumor samples to already-defined class-
es, which could reflect current states or future
outcomes.

We chose acute leukemias as a test case.
Classification of acute leukemias began with
the observation of variability in clinical out-
come (3) and subtle differences in nuclear
morphology (4 ). Enzyme-based histochemi-
cal analyses were introduced in the 1960s to
demonstrate that some leukemias were peri-
odic acid-Schiff positive, whereas others
were myeloperoxidase positive (5). This pro-
vided the first basis for classification of acute
leukemias into those arising from lymphoid
precursors (acute lymphoblastic leukemia,
ALL) or from myeloid precursors (acute my-
eloid leukemia, AML). This classification
was further solidified by the development in
the 1970s of antibodies recognizing either
lymphoid or myeloid cell surface molecules
(6 ). Most recently, particular subtypes of

acute leukemia have been found to be asso-
ciated with specific chromosomal transloca-
tions—for example, the t(12;21)(p13;q22)
translocation occurs in 25% of patients with
ALL, whereas the t(8;21)(q22;q22) occurs in
15% of patients with AML (7 ).

Although the distinction between AML
and ALL has been well established, no single
test is currently sufficient to establish the
diagnosis. Rather, current clinical practice
involves an experienced hematopathologist’s
interpretation of the tumor’s morphology,
histochemistry, immunophenotyping, and cy-
togenetic analysis, each performed in a sep-
arate, highly specialized laboratory. Although
usually accurate, leukemia classification re-
mains imperfect and errors do occur.

Distinguishing ALL from AML is critical
for successful treatment; chemotherapy regi-
mens for ALL generally contain corticoste-
roids, vincristine, methotrexate, and L-asparagi-
nase, whereas most AML regimens rely on a
backbone of daunorubicin and cytarabine (8).
Although remissions can be achieved using
ALL therapy for AML (and vice versa), cure
rates are markedly diminished, and unwarrant-
ed toxicities are encountered.

We set out to develop a more systematic
approach to cancer classification based on the
simultaneous expression monitoring of thou-
sands of genes using DNA microarrays (9). It
has been suggested (10) that such microar-
rays could provide a tool for cancer classifi-
cation. Microarray studies to date (11), how-
ever, have primarily been descriptive rather
than analytical and have focused on cell cul-
ture rather than primary patient material, in
which genetic noise might obscure an under-
lying reproducible expression pattern.

We began with class prediction: How
could one use an initial collection of samples
belonging to known classes (such as AML
and ALL) to create a “class predictor” to
classify new, unknown samples? We devel-
oped an analytical method and first tested it
on distinctions that are easily made at the
morphological level, such as distinguishing
normal kidney from renal cell carcinoma
(12). We then turned to the more challenging
problem of distinguishing acute leukemias,
whose appearance is highly similar.

Our initial leukemia data set consisted of
38 bone marrow samples (27 ALL, 11 AML)
obtained from acute leukemia patients at the
time of diagnosis (13). RNA prepared from
bone marrow mononuclear cells was hybrid-
ized to high-density oligonucleotide microar-
rays, produced by Affymetrix and containing
probes for 6817 human genes (14 ). For each
gene, we obtained a quantitative expression
level. Samples were subjected to a priori
quality control standards regarding the
amount of labeled RNA and the quality of the
scanned microarray image (15).

The first issue was to explore whether

1Whitehead Institute/Massachusetts Institute of
Technology Center for Genome Research, Cambridge,
MA 02139, USA. 2Dana-Farber Cancer Institute and
Harvard Medical School, Boston, MA 02115, USA. 3St.
Jude Children’s Research Hospital, Memphis, TN
38105, USA. 4Comprehensive Cancer Center and Can-
cer and Leukemia Group B, Ohio State University,
Columbus, OH 43210, USA. 5Department of Biology,
Massachusetts Institute of Technology, Cambridge,
MA 02142, USA.

*To whom correspondence should be addressed. E-
mail: golub@genome.wi.mit.edu; lander@genome.wi.
mit.edu.
†These authors contributed equally to this work.
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Science 286, 531 (1999);
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Number or PubMed articles

9
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Massively Parrallel Sequencing, a.k.a. 
Next Generation Sequencing
A revolution in molecular biology
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The human genome reference 
sequence is completed in 2003
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Cost of sequencing decreased faster 
than Moore’s Law

13Wetterstrand KA. DNA Sequencing Costs: Data from the NHGRI Genome Sequencing Program 
(GSP) Available at:www.genome.gov/sequencingcosts. Accessed 3.28.2017

http://www.genome.gov/sequencingcosts
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NGS allows the rapid 
sequencing of millions of 
“short” DNA/cDNA 
fragments

14

Many applications of NGS have been 
developed

DNA/RNA sequencing are the most 
common applications of NGS
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Common NGS approaches

15
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RNA-Seq Experiment

Data management:

Mapping the reads
Creating summaries

Downstream analysis: the interesting stuff
Differential expression, chimeric transcripts, novel 
transcribed regions, etc.

16
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Chimeric Transcripts
Shedding light on gene fusions
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What are chimeric transcripts?

19

Transcripts that are not co-
linear in the genome space
They can arise from:
genomic rearrangements, 
i.e. gene fusions

post-transcriptional events, 
i.e. trans-splicing or cis-
splicing
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Why are they (gene 
fusions) important?

20

Fusion genes are often oncogenes

Ex: BCR-ABL1 (Philadelphia 
chromosome) in Chronic 
myelogenous leukemia (CML) 
and Acute Lymphoblastic 
leukemia (ALL) t(9;22)(q34;q11)

Fusion involving a proto-oncogene 
with a strong promoter resulting in 
upregulation (lymphomas)

Ex: (IgH locus)-MYC in Burkitt's 
lymphoma (cMYC over-
expressed)

Hampton OA et al. Genome Res 2009

Breast Cancer
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Why are they (trans-splicing events) 
important?

21

Trans(cis)-splicing was initially found in 
lower eukariotes, such as trypanosomes 
and worms

Short sequences of nucleotides are 
trans-spliced to distant 5' of many 
protein coding genes

Recently, they were found in mammalian 
cells:

JAZF1-SUZ12 in endometrial stroma 
cells (Li et al. Science 2008)

SLC45A3-ELK4 in prostate tissues 
(Rickman et al. Cancer Res 2009)

65% of protein-coding genes have distal 5' 
transcription start sites (ENCODE pilot) --
> revised to ~50% the ENCODE 2012

Horiuchi, Takayuki, and Toshiro Aigaki.  Biology of the Cell 98, no. 2 (January 9, 2012): 135–140.
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An historical perspective of gene fusions
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1914
Theodore 

Boveri
hypothesized 
that cancer 

originates from 
chromosomal 

damage  

1950s 
Improved 

cytogenetics
techniques

1960
Novel & 

Hungerford 
report a 
recurrent
minute 

chromosom
e in chronic 
mylogenous

leukemia 
(CML)

1970s
Chromosome

banding enables the 
identification of 

specific arms and 
regions. Several 

rearrangements are 
identified in 

hematological 
malignancies: CML, 
BL, APL, follicular 

lymphoma

1980s-1990s
The list of 

rearrangements 
and tumor types 
grows including 

most 
mesenchymal 
tumors: e.g. 

Ewing sarcoma, 
alveolar 

rhabdomyo-
sarcoma

Early 2000s
Most 

rearrangements 
were discovered 

mainly in 
hematological and 

mesenchymal 
neoplasms

compared to 
epithelial

2005
The first fusion

(TMPRSS2-
ERG) in a 
common
epithelial 

tumor 
(prostate 

cancer) was 
discovered (by 
bionformatics

analysis)

2005 -
Present
Several 

thousands
fusion 

events have 
been 

characteriz
ed, mainly 
from NGS 

approaches

Mitelman, F. and Heim, S. (2015) How it all began, in Cancer Cytogenetics: Chromosomal and Molecular Genetic 
Aberrations of Tumor Cells, Fourth Edition (eds S. Heim and F. Mitelman), John Wiley & Sons, Ltd, Chichester, UK
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How many different gene fusions do we know?

23

Cases: 66,479
Fusions: 10,277

Mitelman Database of Chromosome Aberrations and Gene Fusions in Cancer (2016). Mitelman F, Johansson B and Mertens F (Eds.), 
http://cgap.nci.nih.gov/Chromosomes/Mitelman
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Gene fusions are important for clinical 
treatment…

24
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… and diagnostic/prognostic purposes

25

CANCER

Identification of a Disease-Defining Gene Fusion
in Epithelioid Hemangioendothelioma
Munir R. Tanas,1 Andrea Sboner,2 Andre M. Oliveira,3 Michele R. Erickson-Johnson,3

Jessica Hespelt,1 Philip J. Hanwright,1 John Flanagan,4 Yuling Luo,4 Kerry Fenwick,5

Rachael Natrajan,5 Costas Mitsopoulos,5 Marketa Zvelebil,5 Benjamin L. Hoch,6

Sharon W. Weiss,7 Maria Debiec-Rychter,8 Raf Sciot,9 Rob B. West,10 Alexander J. Lazar,11

Alan Ashworth,5 Jorge S. Reis-Filho,5 Christopher J. Lord,5 Mark B. Gerstein,2,12

Mark A. Rubin,13 Brian P. Rubin1*

Integrating transcriptomic sequencing with conventional cytogenetics, we identified WWTR1 (WW domain–
containing transcription regulator 1) (3q25) and CAMTA1 (calmodulin-binding transcription activator 1) (1p36)
as the two genes involved in the t(1;3)(p36;q25) chromosomal translocation that is characteristic of epithelioid
hemangioendothelioma (EHE), a vascular sarcoma. This WWTR1/CAMTA1 gene fusion is under the transcriptional
control of the WWTR1 promoter and encodes a putative chimeric transcription factor that joins the amino terminus
of WWTR1, a protein that is highly expressed in endothelial cells, in-frame to the carboxyl terminus of CAMTA1, a
protein that is normally expressed only in brain. Thus, CAMTA1 expression is activated inappropriately through a
promoter-switch mechanism. The gene fusion is present in virtually all EHEs tested but is absent from all other
vascular neoplasms, demonstrating it to be a disease-defining genetic alteration. A sensitive and specific break-
apart fluorescence in situ hybridization assay was also developed to detect the translocation and will assist in
the evaluation of this diagnostically challenging neoplasm. The chimeric WWTR1/CAMTA1 transcription factor
may represent a therapeutic target for EHE and offers the opportunity to shed light on the functions of two poorly
characterized proteins.

INTRODUCTION
Little is known about the biology of epithelioid hemangioendothelioma
(EHE), an enigmatic vascular (endothelial cell) sarcoma that was first
described relatively recently (1). EHE occurs over a wide age range,
affects both sexes equally, and can arise in soft tissue, bone, and vis-
ceral organs, in particular liver and lungs. The mainstay of treatment
for localized disease is surgical resection. However, EHE that occurs in
liver and lungs characteristically presents with multifocal disease and
is a significant cause of morbidity and mortality, because transplanta-
tion is often the only treatment option available. Furthermore, no
treatment options exist for patients with metastatic EHE, underscoring
the need to better understand the pathogenesis of this neoplasm.

In general, sarcomas are classified according to their line of differ-
entiation (that is, their resemblance to normal, nonneoplastic tissues).
EHE is classified as a vascular tumor because the neoplastic cells have

characteristics in common with normal, nonneoplastic endothelial
cells. Vascular differentiation in EHE is difficult to identify histologi-
cally, because the neoplastic cells do not organize themselves into well-
formed blood vessels. Instead, EHE is characterized by a proliferation
of round (epithelioid) cells that typically form cord-like structures em-
bedded within an edematous, proteoglycan-rich extracellular matrix
(Fig. 1A). Endothelial cell differentiation is documented only by the
expression of CD31 [also called platelet endothelial cell adhesion mol-
ecule (PECAM-1)] and CD34 (a cell surface glycoprotein involved in
cell-cell adhesion), which are also expressed by normal endothelial
cells (Fig. 1B), as well as by ultrastructural features supportive of en-
dothelial differentiation (2). Consequently, EHE is challenging to diag-
nose and was recognized as a distinct entity only within the last 30 years,
a product of careful histological evaluation and advancements made in
immunohistochemistry. The seminal paper first describing EHE as a
distinct cancer emphasized its ability to mimic carcinoma histological-
ly, which is a substantial diagnostic pitfall (1).

The advent of immunohistochemistry did not entirely resolve the
difficulty in diagnosing EHE. Other vascular neoplasms that are his-
tological mimics of EHE, including epithelioid hemangioma (a benign
vascular neoplasm) and epithelioid angiosarcoma (which has a more
aggressive clinical course than EHE), also express CD31 and CD34 anti-
gens. To date, no specific biomarker exists for EHE, and distinguish-
ing this cancer from other epithelioid vascular neoplasms (epithelioid
hemangioma and epithelioid angiosarcoma) is based solely on the
identification of characteristic histological features. Recently, the pres-
ence of a reciprocal t(1;3)(p36;q25) translocation—which results in the
short arm of chromosome 1, band 3, sub-band 6 (1p36) being fused to
the long arm of chromosome 3, band 2, sub-band 5 (3q25)—was found
in two of three EHEs with reported karyotypes (3, 4); however, the

1Department of Molecular Genetics and Anatomic Pathology, Lerner Research
Institute, Taussig Cancer Center, Cleveland Clinic, Cleveland, OH 44195, USA. 2Program
in Computational Biology and Bioinformatics and Department of Molecular Bio-
physics and Biochemistry, Yale University, New Haven, CT 06520, USA. 3Department of
Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA. 4Ad-
vanced Cell Diagnostics, Hayward, CA 94545, USA. 5The Breakthrough Toby Robins
Breast Cancer Research Centre, Institute of Cancer Research, London SW3 6JB, UK.
6Department of Anatomic Pathology, University of Washington, Seattle, WA 98195–6100,
USA. 7Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA
30322, USA. 8Department of Human Genetics, Katholieke Universiteit Leuven, Leuven
B-3000, Belgium. 9Department of Pathology, Katholieke Universiteit Leuven, Leuven B-3000,
Belgium. 10Pathology Department, Stanford University Medical Center, Stanford, CA 94305,
USA. 11Department of Pathology and Sarcoma Research Center, University of Texas M. D.
Anderson Cancer Center, Houston, TX 77030–4009, USA. 12Department of Computer Sci-
ence, Yale University, New Haven, CT 06520, USA. 13Department of Pathology and Lab-
oratory Medicine, Weill Cornell Medical College, New York, NY 10021, USA.
*To whom correspondence should be addressed: rubinb2@ccf.org
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distinct entities, which we anticipate will shape further investigation of
both cancers.

By identifying the WWTR1/CAMTA1 gene fusion in EHE, we can
begin to address the molecular underpinnings of this sarcoma. On the
basis of what is currently known about the two genes, we hypothesize
that the WWTR1/CAMTA1 fusion protein functions as a chimeric
transcription factor. WWTR1 encodes a transcriptional coactivator
that contains several protein binding domains but no DNA binding
domains. The protein is named after its WW domain, which refers to
two conserved tryptophan residues and is known to recognize other
transcription factors with a PPXY motif (for example, RUNX1 and
RUNX2). Wwtr1 acts as a developmental switch in murine mesen-
chymal stem cells, controlling whether they display an adipocytic or
osteogenic phenotype (12), and studies in mice suggest that the pro-
tein plays an important role in the pathogenesis of cystic kidney disease

(13, 14). WWTR1 is known to interact with DNA binding transcription
factors, including those of the Runx family in mice and thyroid tran-
scription factor 1 (TTF-1) in humans, which are important in the
development of bone (Runx2) and lung (TTF-1), respectively (6, 12).
WWTR1 is overexpressed in human breast cancer (15) and papillary
thyroid carcinoma (16).

CAMTA1 encodes a transcription factor that is found in all multi-
cellular organisms tested and is evolutionarily conserved fromArabidopsis
to humans. Evidence of CAMTA1’s role as a transcriptional regulatory
protein stems from studies performed in Drosophila and Arabidopsis
(7). Little is known about the protein’s function in mammalian cells,
but in humans, the gene is expressed almost exclusively within the brain
and has been implicated inmemory because high amounts ofCAMTA1
mRNA have been identified in memory-related regions (17). CAMTA1
has been implicated in cancer, primarily because of its location within

Fig. 3. Genomic breakpoints demonstrated by PCR and FISH: Incidence
of the WWTR1/CAMTA1 gene fusion in vascular neoplasms. (A) Schematic
representation of genomic DNA breakpoints in EHE. Ex, exon. (B and C)
DNA FISH. Diagrammatic representations of the fusion FISH assay (B) and
break-apart FISH assay (C). (D) DNA FISH fusion assay results in neoplastic
EHE cells (performed on one EHE sample). The two green signals rep-
resent WWTR1, which is not involved in the translocation. Two green
signals are present as a result of aneusomy of chromosome 3 (an extra
chromosome 3), which is unrelated to the translocation. The orange sig-
nal represents CAMTA1, which is present on the normal chromosome. The

yellow signal (composed of fused orange and green signals) represents
the WWTR1/CAMTA1 fusion at the genomic level. (E and F) Break-apart
probes showing rearrangements of WWTR1 (E) and CAMTA1 (F). Arrows
indicate the break-apart signals (split orange and green signals) in neoplas-
tic EHE cells. A normal cell containing two intact signals (yellow signals) is
shown for comparison in the lower left corner of (F). The break-apart as-
say for each gene was performed at least once on each specimen
(duplicate cores were evaluated on the tissue microarray). (G) Summary
of results for break-apart FISH assays in EHE and other vascular neoplasms.
NOS, not otherwise specified.
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Exclusively present in 
epitheliod
hemangioendothelioma
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Fusion Detection from paired-end 
RNA-Seq
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How to identify fusion transcripts
from paired-end RNA-seq?

27

Paired-end sequencing means that we know the sequence of 
the two ends of a fragment



Clinical & Research Genomics 2018 | RNA-seq | A. Sboner

Mapping

Institute for Computational Biomedicine
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Mapping

ATCCAGCATTCGCGAAGTCGTA
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How to identify fusion transcripts from 
paired-end RNA-seq?

30

Straightforward:
If the two ends map to different genes, then we 
have a potential fusion transcript

Paired-end sequencing means that we know the sequence of 
the two ends of a fragment
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What about different isoforms?
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✦ Each PE read can be assigned to one “gene”

✦ Potential Fusion Transcripts: if pair belongs to different genes

Composite model
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Not an ideal word: sources of errors
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Mis-alignments

Base caller error

SNPs

RNA editing

Sequence similarity (paralogs, pseudogenes)

Random pairing of transcript fragments

Library preparation

Combination of mis-alignment and random pairing

PCR amplification, gene annotation inconsistencies/incompleteness
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Filtration Cascade Module
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Augmenting the support for fusion: 
fusion junction reads
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Concordant reads

Discordant reads

Fusion junction reads

Gene A

Gene B

Fusion Gene A-B

GCTTCTGTTCCTAGTCACAATTGCGGTTTGACC
TTGCGGTTTGACCTCTTCTGTTCCTAGTCACAA

TTCTGTTCCTAGTCACAA
TCTGTTCCTAGTCACAA
CTGTTCCTAGTCACAA
TGTTCCTAGTCACAA
GTTCCTAGTCACAA

TTGCGGTTTGACCTA
TTGCGGTTTGACCTAC
TTGCGGTTTGACCTACC
TTGCGGTTTGACCTACCA
TTGCGGTTTGACCTACCAC
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Tools for detecting 
fusion transcripts
From sequencing data
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http://omictools.com/gene-fusion-detection-category

RNA-seq short-reads “only”
Bellerophontes
BreakFusion
chimeraScan
CRAC
deFuse
EricScript
FusionAnalyser
FusionCatcher
FusionFinder
FusionHunter
FusionQ
FusionSeq
Jaffa
MapSplice
PRADA
shortFuse
SnowShoes-FTD
SOAPFuse/Fusion
TopHat-Fusion
STAR-fusion

RNA-seq & DNA-seq
BreakTrans
Comrad
nFuse
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ABSTRACT

Background: Fusion transcripts are formed by ei-
ther fusion genes (DNA level) or trans-splicing events
(RNA level). They have been recognized as a promis-
ing tool for diagnosing, subtyping and treating can-
cers. RNA-seq has become a precise and efficient
standard for genome-wide screening of such aber-
ration events. Many fusion transcript detection al-
gorithms have been developed for paired-end RNA-
seq data but their performance has not been com-
prehensively evaluated to guide practitioners. In this
paper, we evaluated 15 popular algorithms by their
precision and recall trade-off, accuracy of support-
ing reads and computational cost. We further com-
bine top-performing methods for improved ensemble
detection.

Results: Fifteen fusion transcript detection tools
were compared using three synthetic data sets un-
der different coverage, read length, insert size and
background noise, and three real data sets with se-
lected experimental validations. No single method
dominantly performed the best but SOAPfuse gener-
ally performed well, followed by FusionCatcher and

JAFFA. We further demonstrated the potential of a
meta-caller algorithm by combining top performing
methods to re-prioritize candidate fusion transcripts
with high confidence that can be followed by experi-
mental validation.

Conclusion: Our result provides insightful recom-
mendations when applying individual tool or combin-
ing top performers to identify fusion transcript can-
didates.

INTRODUCTION

Fusion gene is a result of chromosomal insertion, deletion,
translocation or inversion that joins two otherwise sepa-
rated genes. Fusion genes are often oncogenes that play an
important role in the development of many cancers. Trans-
splicing is an event that two different primary RNA tran-
scripts are ligated together. Both fusion genes (DNA level)
and trans-splicing events (RNA level) can form fusion tran-
scripts. These events usually come from different types of
aberrations in post-transcription and chromosomal rear-
rangements: large segment deletion (e.g. the well-known
fusion TMPRSS2-ERG in prostate cancer (1)), chromo-
some translocation (e.g. the well-known fusion BCR-ABL1
in chronic myeloid leukemia (2) and EML4-ALK in non-
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Correspondence may also be addressed to Hsei-Wei Wang. Tel: +886 2 2826 7109; Fax: 886 2 2821 2880; Email: hwwang@ym.edu.tw
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Figure 4. Fusion transcript detection results for three real data sets. Figures are similar to Figure 2 . (A) and (D): Breast cancer data set; (B) and (E)
Melanoma data set; (C) and (F): Prostate cancer data set.
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Transcript Assembly
CuffLinks
Scripture 
Trinity
Trans-Abyss

Gene fusion annotation
Chimera
Pegasus

http://omictools.com/transcriptome-assembly-category

http://omictools.com/gene-fusion-detection-category
http://omictools.com/transcriptome-assembly-category


Clinical & Research Genomics 2018 | RNA-seq | A. Sboner

Summary and Future directions
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• Massively Parallel Sequencing has enabled the discovery 
of fusion transcripts

• Specificity is the main challenge: too many false positives!

• Longer reads: could help overcome the limitations of short 
reads

• Combination of tools may help further improve on the 
reduction of FP

• “For the large bioinformatics community, development of a 
high-performing (accurate and fast) fusion detection tool 
or methods to combine top- performing tools remains an 
important and open question”

ans2077@med.cornell.edu
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