33240891 33240901 33240911 33240921 33240931 33240941 33240951 33240961 33240971 33240981 33240991 AATTTCATTTGTATTATCTCTCTCTA*CATACAC TGTCCGCAGACGCACTCTCCATTGTTACTGCAGATTTCTGAACTGTTTTC TCCTGCAGTAAGCATCCATGTCTTCACTGTT AATTTCATTTTATTATCCTTCTTCCTA*TATACAC TGTCCGCAGACGCACTCTCCATTGTTACTGCAGAT CTGAACTGTTTTCTTTCCTGCAGTAAGCATCCATGTCTTCACTGTT AATTTCATTTTATTATCCCTCTTCTTT*CTAATAC tgtccgcagacgcactctccattgttactgca tttctgaactgttttctttcctgcagtaagcatccatgtcttcactgtt NATTTCATTTTTATTATCCCTCTTCCTA*CTAATACACT CCGCAGACGCACTCTCCATTGTTACTGCAGAT CTGAACTGTTTTCTTTCCTGCAGTAAGCATCCATG TTCACTGTT aaatttcatttgtattatccctcttccta*caaacacactgtccgca ACGCACTCTCCATTGTTACTGCAGATTTCTGAACT TTTCTTTCCTGCAGTAAGCATCCATGTCTTCA GTT VAATTTCATTTGTATTATCCCTCTTCCTA*CAAACACACTGTCCGCAG cggagtctccattgttactgcagatttctgaa GTTTTCTTTCCTGCAGTAAGCATCCATGTCTT CTGTT ATTTCATTTGTATTATCCCTCTTCCTA*CAAAC CACTGTCCGCAGACGCACTCTCCATTGTTACTGCAGATTTCTGAACTGTT CTTTCCTGCAGTAAGCATCCATGTCTTCACTGTT VA TTTCATTTGTATTATCCCTCTTCCTA*CAAACA CTGTCCGCAGACGCACTCTCCATTGTTACTGC tttctgaactgttttctttcctgcagtaagcatcc GTCTTCACTGTT A TTTCATTTGTATTATCCCTCTTCCTA*CAAACACACTGTCCGCAGACGCAC CTCCATTGTTACTGCAGATTTCTGAACTGTTTTCTTTCCTGCAGTAAGCATCCATGTCTTCACTGTT VAATTTCATTTGTATTATCCCTCTTCCTA*CAAACACACTGTCCGCAGACGCA tctccattgttactgcagatttctgaactgtt CTTTCCTGCAGTAAGCATCCATGTCTTCACTGTT aaatttcatttgtattatccctcttccta*caaacacactgtccgcagacgcac CTCCATTGTTACTGCAGATTTCTGAACTGTTTTCT CCTGCAGTAAGCATCCATGTCTTCACTGTT aaatt ATTTGTATTATCCCTCTTCCTA*CAAACACACTGTCCGCAGACGCACTCTC ttgttactgcagatttctgaactgttttcttt tgcagtaagcatccatgtcttcactgtt aaatttc TTTGTATTATCCCTCTTCCTA*CAAACACACTG CGCAGACGCACTCTCCATTGTTACTGCAGATT ntaacttttttctttactgcagtaaacatccatgtcttcactgtt aatttca ttgtattatccctcttccta*caaacaccactgtccg agacgcactctccattgttactgcagatttct actgttttctttcctgcagtaagcatccattt TCACTGTT VAATTTCAT tgtattatccctcttccta*caaacacactgtc gcagacgcactctccattgttactgcagattt gaactgttttctttcctgcagtaagcatccat CTTCACTGTT WATTTCATT gtattatccctcttccta*caaacacactgtcc cagacgcactctccattgttactgcagatttc aactgttttctttcctgcagtaagcatccatg TTCACTGTT AATTTCATT tattatccctcttccta*caaacacactgtccg agacgcactctccattgctactgcagatttct actgttttctttcctgcagtaagcatccatgt tcactgtt AATTTCATTTGTATTATCCCTCTTCCTA*CAAACACACTGTCCGCAGACGCACTCTCCAT ttactgcagatttctgaactgttttctttcct agtaagcatccatgtcttcactgtt aaatttcatttg ATTATCCCTCTTCCTA*CAAACACACTGTCCGCAGACGCACTCTCCATTGT ctgcagatttctgaactgttttctttcctgca aagcatccatgtcttcactgtt aaatttcatttgt ttatccctcttccta*caaacacactgtccgca acgcactctccattgttactgcagatttctga tgttttctttcctgcagtaagcatccatgtcttca GTT aaatttcatttgta TATCCCTCTTCCTA*CAAACACACTGTCCGCAGACG actctccattgttactgcagatttctgaactg ttctttcctgcagtaagcatccatgtcttcactgt aaatttcatttgta tatccctcttccta*caaacacactgtccgcag GCACTCTCCATTGTTACTGCAGATTTCTGAAC ttttctttcctgcagtaagcatccatgtcttc TGTT aaatttcatttgta ATCCCTCTTCCTA*CAAACACACTGTCCGCAGACGC ctctccattgttactgcagatttctgaactgt tctttcctgcattaagcatccatgtcttcactgtt aatttcatttgtat TCCCTCTTCCTA*CAAACACACTGTCCGCAGACGCACTCTCCATTGTTACT GATTTCTGAACTGTTTTCTTTCCTGCAGTAAGCAT atgtcttcactgtt aatttcatttgtatt CCCTCTTCCTA*CAAACACACTGTCCGCAGACGCAC ctccattgttactgcagatttctgaactgttt TTTCCTGCAGTAAGCATCCATGTCTTCACTGTT aaatttcatttgtatt CCCTCTTCCTA*CAAACACACTGTCCGCAGACGCACTCTCCATTGTTACTG gatttctgaactgttttctttcctgcagtaag TCCATGTCTTCAATGTT AATTTCATTTGTATTA CCTCTTCCTA*CAAACACACTGTCCGCAGACGC ctctccattgttactgcagatttctgaactgt CTTTCCTGCAGTAAGCATCCATGTCTTCACTGTT aatttcatttgtattat TCTCTTCCTA*CAAACACACTGTCCGCAGACGCACT ccattgttactgcagatttctgaactgttttc TCCTGCAGTAAGCATCCATGTCTTCACTGTT aaatttcatttgtattat CCTCTTCCTA*CAAACACACTGTCCGCAGACGCACT ccattgttactgcagatttctgaactgttttc TCCTGCAGTAAGCATCCATGTCTTCACTGTT ATTTCATTTGTATTATCCCTCTTCCTA*CAAACACACTGTCCGCAGACGCA tctccattgttactgcagatttctgaactgttttc CCTGCAGTAAGCATCCATGTCTTCACTGTT aaat tcatttgtattatccctcttccta*caaacaccgtcccgcagacgcactc CATTGTTACTGCAGATTTCTGAACTGTTTTCTTTCCTGCAGTAATCATCC gtcttcactgtt aat ttcattgtattatccctcttccta*caaacacactgtccgcagacgcactc CATTGTTACTGCAGATTTCTGAACTGTTGTCTTTCCTGCAGTAAGCATCCATGTCTTCACTGTT aaatttcatttgtattatc ctcttccta*caaacacactgtccgcagacgcactc cattgttactgcagatttctgaactgttttct CCTGCAGTAAGCATCCATGTCTTCACTGTT

Clinical and Research Genomics Spring 2018 Lectures 01-02-03 Professor: Christopher E. Mason, Ph.D.

TAs: Ebrahim Afshinnekoo Alexa McIntyre

Course Over Eight Sessions:

- I. Sequencing Methods, Single-Cell Dynamics, and Molecular Detection Techniques (March 14th)
- II. RNA Sequencing, Epitranscriptomes, and Gene Fusions (March 21st)
- **III.** Epigenomes, DNA Modifications, and Chromatin Dynamics (March 28th)
- IV. Microbiome and Metagenome Characterizations and Cross-Species Analysis (April 4th)
- V. Complex Genome Re-arrangements, Transposons, and Tools for Genetic Variant Calling (April 11th)
- VI. Cancer Genomics, Non-coding Regulation and Variation, and Statistical Power (April 25th)
- VII. Systems Biology, Big Data, and Disease Classification (May 2nd)
- VIII. Big Health, Sculpting Evolution, Synthetic Biology, & Genome Engineering (May 9th)

All classes on Wednesday, 10:00-11:30 1305 York Avenue, 13th floor, Y13-01

Stay updated with the course webpage:

http://physiology.med.cornell.edu/faculty/mason/lab/clinicalgenomics/schedule.html

GGAACTTGATGCTCAGAGAGACAAGTCATTGCCCAAGGTCACACAGCTGGC AACTGGCAGACGAGATTCACGCCCTGGCAATTGACTCCAGAATCCTAACCTT AACCCAGAAGCACGGCTTCAAGCCCTGGAAACCACAATACCTGTGGGCAGCCA GGGGGAGGTGCTGGAATCTCATTTCACATGTGGGGAGGGGGCTCCTGTGCTC AAGGTCACAACCAAAGAGGAAGCTGTGATTAAAACCCAGGTCCCATTTGCAA GCCTCGACATTTTAGCAGGAGGCTCATATGTTCCCACCCCTCCCATTCCCACTC

Finish

CTTGCTGAGGCTGGAGTGCAGTGGCGAGATCTCGGCTCACTGTAACCTCCGCC TCCCGGGTTCAAGCGATTCTCCTGCCTCAGCCTCCCAAGTAGCTAGGATTACA CACCATGTTGGCCAGGCTGGTCTCAAACTCCTGACCTTAAGTGATTCGCCCAC TGTGGCCTCCCAAAGTGCTGGGAT<u>TACA</u>GGCGTGAGCTACCGCCCCAGCCC CTCCCATCCCACTTCTGTCCAG CTACTTTCTTTCTGGGATCCAG GAGTCCAGATCCCCAGCCC TTCATCCAGGCACAGGAAA GGACAGGGTCAGGAAAG CCTCCACATTCCCCTTC CACGCTTGGCCCCCAG TTACTGGGCGAGGTGT CCTCCCTTCCTGGGG CTCTATGCCCCACCT CCTTCCTCCCTCTG AGAACAGCCCACCTC GTGACTGGGCTGCC GGGGGCGGGACAGG GGGAGCCCTATAAT CTACTCAGCCCCAG CGGAGGTGAAGGA AGCGCAGTCGGGG GCACGGGGGATGAG GACCCTGGGAAGC CCTGGCCTCCAGGT CGGGCTTGGGGAGA GGAGGAGCGGGGGT ACCTGGGAAGGGCT GTGGGGGAGAGCAGCT GGGCAGCAGAGACGA GGACTGGGATGTAAGC GTCACTATCATTATCG AGCACCTACTGGGTGTG CATAACTGGGGGAGCCAG GGGCAGCGACACGGTAGC GAACTTTAAAATGAGGACT GAATTAGCTCATAAATGGAACA ACTGTGAGGTTGGAGCTTAGAA TGTGAAGGGAGAATGAGGAATGCGAGACTGGGACTGAGATGGAACCGGCGGT TTTCTATGGAGGCCGACCTGGGGATGGGGGAGATAAGAGAAGACCAGGAGGGA GTTAAATAGGGAATGGGTTGGGGGGGGGGGCTTGGTAAATGTGCTGGGATTAGGCT GTTGCAGATAATGCAACAAGGCTTGGAAGGCTAACCTGGGGTGAGGCCGGGT TCCTTCCCCAGACTGGCCAATCACAGGCAGGAAGATGAAGGTTCTGTGGGCTG CCTGGGCCCCCTCTTCTGAGGCTTCTGTGCTGCTTCCTGGCTCTGAACAGCGAT TTGACGCTCTCTGGGCCTCGGTTTCCCCCCATCCTTGAGATAGGAGTTAGAAGTT GTTTTGTTGTTGTTGTTGTTGTTGTTGTTGTTTTTTGAGATGAAGTCTCGCT

Time

Our genes come from the migration patterns of haplotypes throughout human history ("Population Stratification")

Genotype data can even predict your birthplace

Specific genes can have significant impact

Myostatin (MSTN) homozygous nulls (-/-) give lean and large muscles

http://thevoiceofnetizen.blogspot.com

Low density lipoprotein receptor 5 (LRP5) heterozygotes (+/-) can have strong bones

C-C chemokine receptor type 5 (CCR5) homozygous nulls (-/-) have HIV protection

Constitutional CHEK2 mutations are associated with a decreased risk of lung and laryngeal cancers

Cezary Cybulski*, Bartłomiej Masojć, Dorota Oszutowska, Ewa Jaworowska¹, Tomasz Grodzki², Piotr Waloszczyk², Piotr Serwatowski², Juliusz Pankowski², Tomasz Huzarski, Tomasz Byrski, Bohdan Górski, Anna Jakubowska, Tadeusz Dębniak, Dominika Wokołorczyk, Jacek Gronwald, Czesława Tarnowska¹, Pablo Serrano-Fernández, Jan Lubiński and Steven A.Narod³

International Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University, ul. Połabska 4, 70-115 Szczecin, Poland, ¹Department of Otolaryngology and Laryngological Oncology, Pomeranian Medical University, ul.Unii Lubelskiej, 71–252 Szczecin, Poland, ²Lung Diseases Hospital, ul. Sokołowskiego 11, 70–891 Szczecin, Poland and ³Women's College Research Institute, Toronto, Ontario M5G IN8, Canada

*To whom correspondence should be addressed. Tel: +48 91 466 1532; Fax: +48 91 466 1533; Email: cezarycy@sci.pam.szczecin.pl

Mutations in the CHEK2 gene have been associated with increased risks of breast, prostate and colon cancer. In contrast, a previous report suggests that individuals with the I157T missense variant of the CHEK2 gene might be at decreased risk of lung cancer and upper aero-digestive cancers. To confirm this hypothesis, we genotyped 895 cases of lung cancer, 430 cases of laryngeal cancer and 6391 controls from Poland for four founder alleles in the CHEK2 gene, each of which has been associated with an increased risk of cancer at several sites. The presence of a CHEK2 mutation was protective against both lung cancer [odds ratio (OR) = 0.3; 95% confidence interval (CI) 0.2–0.5; $P = 3 \times 10^{-8}$] and laryngeal cancer (OR = 0.6; 95% CI 0.3–0.99; P = 0.05). The basis of the protective effect is unknown, but may relate to the reduced viability of lung cancer cells with a CHEK2 mutation. Lung cancers frequently possess other defects in genes in the DNA damage response pathway (e.g. p53 mutations) and have a high level of genotoxic DNA damage induced by tobacco smoke. We speculate that lung cancer cells with impaired CHEK2 function undergo increased rates of cell death.

Introduction

Germ line mutations in *CHEK2* have been associated with a range of cancer types, in particular of the breast and the prostate, but cancers of

of Brennan *et al.* We have extended our series of lung cancer cases from 272 to 895 and our control sample from 4000 to 6391. We have also identified a fourth deleterious *CHEK2* allele (a large deletion of exons 9 and 10). Because smoking is the principal risk factor for lung cancer in Poland and elsewhere, we asked whether the protective effect of *CHEK2* might extend to laryngeal cancer patients as well.

Materials and methods

We studied 895 unselected cases of lung cancer (226 women and 669 men) diagnosed in the Lung Diseases Hospital in Szczecin, Poland, between 2004 and 2006. We also ascertained 430 consecutive, unselected patients with squamous cell carcinoma of the larynx (70 women and 360 men) at Department of Otolaryngology and Laryngological Oncology of the Pomeranian Medical University, Szczecin, Poland, during the period 2001-2004. Patients were recruited from the oncology services of the contributing hospitals and were unselected for age or family history. Patients were approached by a member of the study team during an outpatient visit to the oncology clinic and were asked if they wished to participate. Patient acceptance rates exceeded 80% for both cancer sites. Patients provided written informed consent. A blood sample of 10 cc was then drawn for DNA extraction. Two hundred and seventy-two of the lung cancer patients have been included in our previous study (5). The mean age of diagnosis of the lung cancer patients was 61.4 years (range 29-88 years) and of the laryngeal cancer patients was 58.2 years (range 30-84). Patients completed a questionnaire about their smoking habits at the time of cancer diagnosis. Smoking histories were available for 818 of 895 (91%) lung cancer cases and for 387 of 430 (90%) laryngeal cancer cases. The study was approved by the Ethics Committee of the Pomeranian Medical University in Szczecin.

Unmatched analysis

In the unmatched analysis, four non-overlapping control groups were combined in order to maximize the number of controls.

The first control group of 1896 healthy adults, including 1079 women (age range 15–91, mean 58.3) and 817 men (age range 23–90, mean 59.4). These controls were selected at random from the computerized patient lists of five large family practices located in the region of Szczecin. These healthy adults were invited to participate by mail and participated in 2003 and 2004. Participation rates for this group exceeded 70%. During the interview, the goals of the study were explained, informed consent was obtained, genetic counselling was given and a blood sample was taken for DNA analysis. A detailed family history of cancer was taken (first- and second-degree relatives included). Probands were included regardless of their cancer family history status. Individuals affected with any malignancy were excluded from the study.

The second control group consisted of 1417 unselected young adults (705 women and 712 men; age range 18–35, mean 24.3) from Szczecin metropolitan region who submitted a blood sample for paternity testing between 1994 and 2001.

The third control group consisted of 2183 children from nine cities in Poland

The effects from Moore's Law ushered in a whole new era of technology

Microprocessor Transistor Counts 1971-2011 & Moore's Law

Initially we expected a \$1K Genome in 2040

George Church

Cost per Genome

NATURE | NEWS FEATURE

Technology: The \$1,000 genome

With a unique programme, the US government has managed to drive the cost of genome sequencing down towards a much-anticipated target.

Erika Check Hayden

19 March 2014

BUSINESS

Illumina says it can deliver a \$100 genome — soon

Human Genome Sequencing

https://www.genome.gov/images/illustrations/sequencing.pdf

Since DNA defines the biochemical recipe for the genesis of organisms, sequencing allows us to create molecular portraits of development and disease at single-base resolution.

Kahvejian, 2008

The future is already here; it's just not evenly distributed.

-William Gibson

NGS has also enabled a democratization of the genomes by 2009, making it personal and ubiquitous

FAQ #3: What is the cost of human genome sequencing?

Pushkarev et al 2009

Year	Estimated cost	Technology	Ref.	Machine runs	s Authors	Coverage
2001	\$300,000,000	Sanger (ABI)	1	?	251	4
2001	\$100,000,000	Sanger (ABI)	2	100,000	274	5
2007	\$10,000,000	Sanger (ABI)	3	100,000	31	7
2008	\$2,000,000	Roche(454)	4	234	27	7
2008	\$1,000,000	Illumina	5	98	48	33
2008	\$500,000	Illumina	6	35	77	36
2008	\$250,000	Illumina	7	40	196	30
2009	\$48,000	Helicos Th:	is wor	ck 4	3	28

http://arep.med.harvard.edu/gmc/nexgen.html

NGS sites are globally distributed

And cover a wide range of applications in academia, government, and industry

But, hard drive space is not keeping pace, creating a phalanx of companies aimed at the cloud

Year

Does a \$1,000 genome need a \$100,000 interpretation? At least a big phone bill.

Quantum sequencing?

Tunneling to measure base changes

Sequencing Technologies

1. "Old School" dye-terminator sequencing (Sanger). 300-1000bp

2. "New School" methods

- a. Emulsion PCR Pyrosequencing
- b. Solid-phase amplification sequencing by synthesis (clonal or single molecule)
- c. Sequencing by ligation
- d. Single-molecule, real-time (SMRT) sequencing
- e. Electrical sequencing

Sequencing Technologies

1. "Old School" dye-terminator sequencing (Sanger). 300-1000bp

By 2009, many options emerged

Platform	Library/ template preparation	NGS chemistry	Read length (bases)	Run time (days)	Gb per run	Machine cost (US\$)	Pros	Cons	Biological applications	Refs
Roche/454's GS FLX Titanium	Frag, MP/ emPCR	PS	330*	0.35	0.45	500,000	Longer reads improve mapping in repetitive regions; fast run times	High reagent cost; high error rates in homo- polymer repeats	Bacterial and insect genome <i>de novo</i> assemblies; medium scale (<3 Mb) exome capture; 16S in metagenomics	D. Muzny, pers. comm.
Illumina/ Solexa's GA ₁₁	Frag, MP/ solid-phase	RTs	75 or 100	4‡, 9§	18‡, 35§	540,000	Currently the most widely used platform in the field	Low multiplexing capability of samples	Variant discovery by whole-genome resequencing or whole-exome capture; gene discovery in metagenomics	D. Muzny, pers. comm.
Life/APG's SOLiD 3	Frag, MP/ emPCR	Cleavable probe SBL	50	7‡, 14§	30 [‡] , 50§	595,000	Two-base encoding provides inherent error correction	Long run times	Variant discovery by whole-genome resequencing or whole-exome capture; gene discovery in metagenomics	D. Muzny, pers. comm.
Polonator G.007	MP only/ emPCR	Non- cleavable probe SBL	26	5§	12§	170,000	Least expensive platform; open source to adapt alternative NGS chemistries	Users are required to maintain and quality control reagents; shortest NGS read lengths	Bacterial genome resequencing for variant discovery	J. Edwards, pers. comm.
Helicos BioSciences HeliScope	Frag, MP/ single molecule	RTs	32*	8*	37‡	999,000	Non-bias representation of templates for genome and seq-based applications	High error rates compared with other reversible terminator chemistries	Seq-based methods	91
Pacific Biosciences (target release: 2010)	Frag only/ single molecule	Real-time	964*	N/A	N/A	N/A	Has the greatest potential for reads exceeding 1 kb	Highest error rates compared with other NGS chemistries	Full-length transcriptome sequencing; complements other resequencing efforts in discovering large structural variants and haplotype blocks	S. Turner, pers. comm.

Michael Metzker, 2010

Then, by 2014, an ecosystem of options erupted

				0.00							
Optical Sequencing											
Platform	Instrument	Template Preparation	Chemistry	Avearge Length	Longest Read						
Illumina	HiSeq2500	BridgePCR/cluster	Rev. Term., SBS	100	150						
Illumina	HiSeq2000	BridgePCR/cluster	Rev. Term., SBS	100	150						
Illumina	MiSeq	BridgePCR/cluster	Rev. Term., SBS	250	300						
GnuBio	GnuBio	emPCR	Hyb-Assist Sequencing	1000*	64,000*						
Life Technologies	SOLiD 5500	emPCR	Seq. by Lig.	75	100						
LaserGen	LaserGen	emPCR	Rev. Term., SBS	25*	100*						
Pacific Biosciences	RS	Polymerase Binding	Real-time	1800	15,000						
454	Titanium	emPCR	PyroSequencing	650	1100						
454	Junior	emPCR	PyroSequencing	400	650						
Helicos	Heliscope	adaptor ligation	Rev. Term., SBS	35	57						
Intelligent BioSystems	MAX-Seq	Rolony amplification	Two-Step SBS (label/unlabell)	2x100	300						
Intelligent BioSystems	MINI-20	Rolony amplification	Two-Step SBS (label/unlabell)	2x100	300						
ZS Genetics	N/A	Atomic Lableing	Electron Microscope	N/A	N/A						
Halcyon Molecular	N/A	N/A	Direct Observation of DNA	N/A	N/A						

Halcyon Molecular	N/A N/A		Direct Observation of DNA	N/A	N/A						
Electical Sequencing											
Platform Instrument		Template Preparation	Chemistry	Avearge Length	Longest Read						
IBM DNA Transistor	N/A	none	Microchip Nanopore	N/A	N/A						
NABsys	N/A	none	Nanochannel	N/A	N/A						
Bionanogenomics	N/A	anneal 7mers	Nanochannel	N/A	N/A						
Life Technologies	PGM	emPCR	Semi-conductor	150	300						
Life Technologies	Proton	emPCR	Semi-conductor	120	240						
Life Technologies	Proton 2	emPCR	Semi-conductor	400*	800*						
Genia	N/A	none	Protein nanopore (a-hemalysin)	N/A	N/A						

Protein Nanopore

Protein Nanopore

Protein Nanopore

Table 1: Types of High-Throughput Sequencing Technologies

*Values are estimates from companies that have not yet released actual data

none

none

none

MinION

GridION 2K

GridION 8K

Oxford Nanopore

Oxford Nanopore

Oxford Nanopore

Mason, Porter, Smith, 2014

10,000*

500,000*

500,000*

10,000

10,000

10,000

Coming of age: ten years of nextgeneration sequencing technologies

Sara Goodwin¹, John D. McPherson² and W. Richard McCombie¹

Abstract | Since the completion of the human genome project in 2003, extraordinary progress has been made in genome sequencing technologies, which has led to a decreased cost per megabase and an increase in the number and diversity of sequenced genomes. An astonishing complexity of genome architecture has been revealed, bringing these sequencing technologies to even greater advancements. Some approaches maximize the number of bases sequenced in the least amount of time, generating a wealth of data that can be used to understand increasingly complex phenotypes. Alternatively, other approaches now aim to sequence longer contiguous pieces of DNA, which are essential for resolving structurally complex regions. These and other strategies are providing researchers and clinicians a variety of tools to probe genomes in greater depth, leading to an enhanced understanding of how genome sequence variants underlie phenotype and disease.

Costs vary widely, some unknown

		2018 Sequencing Costs Per Platform																
Chemistry	Company	Release	Instrument	Notes	Instrument	Run Time (h)	wells / pores / clusters / channels	active wells / pores / cluster	PassFilter Reads Active Pores	Output / Sequenc e Site or Pore	Mean Read Length	Mb / Run	Gb / Run	Raw Cost / Run (\$)	Reage Cost /Gt	nt 0 (\$)	Cost / 30) Human Genome (X 1 (\$)
ExAmp	Illumina	Q1 2017	NovaSeq6000	6Tb run (dual FC S4)	\$950,000	48	20,000,000,000	100%	#############	1.00	300	6,000,000	6,000	#########	\$ 10	0.17	\$ 91	15
ExAmp	Illumina	Q1 2017	NovaSeq5000	2Tb run (dual FC S2)	\$850,000	60	6,800,000,000	95%	6,460,000,000	1.00	300	1,938,000	1,938	#########	\$ 15	5.43	\$ 1,38	89
ExAmp	Illumina	Q1 2014	X10	1Tb run	\$1,000,000	72	6,200,000,000	95%	5,890,000,000	1.00	302	1,778,780	1,779	#########	\$	7.17	\$ 64	45
ExAmp	Illumina	Q1 2015	X5	1Tb run	\$1,000,000	72	6,200,000,000	95%	5,890,000,000	1.00	302	1,778,780	1,779	#########	\$ 10).79	\$ 97	71
ExAmp	Illumina	Q1 2015	HiSeq4000	Regular (v4, 1TB)	\$900,000	144	5,200,000,000	97%	5,044,000,000	1.00	300	1,513,200	1,513	#########	\$ 19	9.76	\$ 1,77	78
TruSBS	Illumina	Q1 2012	HiSeq2500	Regular	\$740,000	_	4,000,000,000	95%	3,800,000,000	1.00	250	950,000	950	#########	\$ 3 [.]	1.47	\$ 2,83	33
TruSBS	Illumina	Q1 2012	HiSeq2500	RapidGenome	\$740,000	_	600,000,000	95%	570,000,000	1.00	300	171,000	171	\$ 6,972.00	\$ 40).77	\$ 3,66	69
TruSBS	Illumina	Q1 2015	NextSeq	2x150bp run	\$225,000	30	520,000,000	95%	494,000,000	1.00	300	148,200	148	\$ 4,000.00	\$ 26	6.99	\$ 2,42	29
TruSBS	Illumina	Q1 2015	NextSeq	2x75bp run	\$225,000	30	520,000,000	95%	494,000,000	1.00	150	74,100	74	\$ 2,500.00	\$ 30	8.74	\$ 3,03	36
TruSBS	Illumina	Q1 2015	NextSeq	1x75bp run	\$225,000	30	520,000,000	95%	494,000,000	1.00	75	37,050	37	\$ 1,300.00	\$ 35	5.09	\$ 3,15	58
TruSBS	Illumina	Q1 2013	MiSeq	v2	\$125,000	24	25,000,000	95%	23,750,000	1.00	500	11,875	12	\$ 1,000.00	\$84	1.21	\$ 7,57	79
TruSBS	Illumina	Q1 2016	MiniSeq	v1	\$49,500	24	26,000,000	95%	24,700,000	1.00	300	7,410	7	\$ 1,000.00	\$ 134	.95	\$ 12,14	46
Solid-state	Illumina	Q3 2017	Firefly	v1	\$19,900	4	5,000,000	95%	4,750,000	1.00	300	1,425	1	\$ 400.00	\$ 280	0.70	\$ 25,26	33
Nanopore	Genia	2019?	UNK	v1	unk	48	8,000	50%	4,000	500	5,000	10,000	7	\$ 1,000.00	\$ 100	0.00	\$ 9,00	00
cPAS-DNB	BGI	Q1 2018	MGISEQ-2000	2x100		48					200	600,000.00	600	\$ 5,000.00	\$ 8	3.33		
cPAS-DNB	BGI	Q1 2018	MGISEQ-200	2x100	\$150,000	48					200		60					
cPAS-DNB	BGI	Q1 2018	MGIFLP	2x100?														
Sanger	LifeTech	Q1 1995	3730xl	capillary/Sanger	\$300,000	2	96	100%	96	1.00	750	0.07	#######	\$ 90.00	\$ 1,250	0.00	\$ 112,50	00
IonTorrent	LifeTech	Q1 2010	PGM	318chip	\$75,000	2	11,000,000	50%	5,500,000	1.00	400	2,200	2	\$ 1,100.00	\$ 500	0.00	\$ 45,00	00
IonTorrent	LifeTech	Q3 2012	Proton	Proton 1	\$225,000	2	100,000,000	65%	65,000,000	1.00	120	7,800	8	\$ 1,525.00	\$ 195	5.51	\$ 17,59) 6
IonTorrent	LifeTech	Q3 2015	S5 / S5XL	520 chip	\$50,000	2	5,000,000	95%	4,750,000	1.00	400	1,900	2	\$ 300.00	\$ 157	.89	\$ 14,21	11
IonTorrent	LifeTech	Q3 2015	S5 / S5XL	530 chip	\$50,000	2	20,000,000	95%	19,000,000	1.00	400	7,600	8	\$ 300.00	\$ 39	9.47	\$ 3,55	53
IonTorrent	LifeTech	Q3 2015	S5 / S5XL	540 chip	\$50,000	2	80,000,000	95%	76,000,000	1.00	200	15,200	15	\$ 300.00	\$ 19	9.74	\$ 1,77	76
IonTorrent	LifeTech	Q1 2015	Proton	Proton 2	\$225,000	6	300,000,000	80%	240,000,000	1.00	120	28,800	29	\$ 1,000.00	\$ 34	1.72	\$ 3,12	25
CsgG	Oxford Nanopore	Q2 2015	MinION	Min500	\$500	6	512	75%	384	778	15000	4,479	4.48	\$ 500.00	\$ 111	.63	\$ 10,04	17
CsgG	Oxford Nanopore	Q2 2017	GridIONx5	5 pores	\$125,000		2,560	75%	1,920	3,888	15,000	111,974	111.97	2,500	\$ 22	2.33	\$ 2,00	09
CsgG	Oxford Nanopore	Q2 2017	PrOmethION	100,000 pores	\$75,000	6	98,304	75%	73,728	6,221	15000	6,879,707	6,879.71	#########	\$ 4	1.33	\$ 38	89
DNA Pol	PacBio	Q1 2014	RSII	C2XL (120 min)	\$700,000	6	150,000	45%	67,500	1.00	11000	743	0.74	\$ 150.00	\$ 202	2.02	\$ 18,18	32
DNA Pol	PacBio	Q1 2016	Sequel	C2XL (360 min)	\$350,000	8	1,000,000	60%	600,000	1.00	11000	6,600	6.60	\$ 700.00	\$ 106	6.06	\$ 9,54	45
DNA Pol	PacBio	Q4 2018	Sequel	v3 (P6-c4)	\$350,000	8	8,000,000	35%	2,800,000	1.00	11000	30,800	30.80	\$ 350.00	\$ 1 ⁻	1.36	\$ 1,02	23
SBS	QIAGEN	Q1 2015	GeneReader	150 bp run	\$225,000	33	16,000,000	95%	15,200,000	1.00	150	2,280	2.28	\$ 500.00	\$ 219	.30	\$ 19,73	37
Pyroseq	Roche	Q1 2007	454	FLX	\$100,000	8	1,600,000	65%	1,040,000	1.00	500	520	0.52	\$ 1,200.00	\$ 2,307	.69	\$ 207,69) 2

The \$1000 genome is here!

- More often ~\$1100 per genome. Coming down.
- Exome sequencing costs also are dropping
- Certain platforms are better suited for certain tasks:
 - Counting applications (ChIP-Seq, RNA-Seq) need more reads
 - De novo assembly work needs longer reads
 - Whole genome re-sequencing requires lower errors rate and high processivity

Genomics England is delivering the **100,000 Genomes Project.**

We are creating a new genomic medicine service with the NHS – to support **better diagnosis and better treatments** for patients. We are also enabling medical research.

More information about the 100,000 Genomes Project

News story

Genome sequencing project reaches the halfway mark

50,000 human genomes have now been sequenced from patients with cancer or rare diseases, under the 100,000 Genomes Project.

Published 28 February 2018

https://www.genomicsengland.co.uk/

Health Information Grants & Funding News & Events Research & Training In Home » Research & Training » All of Us Research Program ALL OF US SM RESEARCH PROGRAM In

All of Us Research Program

Scale and Scope

Participation

Program Components

Funding

FAQ

Advisory Groups

Events

Announcements

In the News

Multimedia

October 12, 2016

PMI Cohort Program announces new name: the All of Us Research Program

The Precision Medicine Initiative[®] (PMI) Cohort Program will now be called the *All of Us* Research Program and will be the largest health and medical research program on precision medicine. A set of core values is guiding its development and implementation:

- Participation is open to all.
- · Participants reflect the rich diversity of the U.S.
- Participants are partners.

1 million U.S. Veterans too!

Office of Research & Development

ORD Home

- About Us
- Services
- Programs

See All Programs

Animal Research

Biosafety & Biosecurity

 Cooperative Studies Program (CSP)

Health Disparities & Minority Health

Million Veteran Program (MVP)

Million Veteran Program (MVP)

MVP is a national, **voluntary** research program funded entirely by the Department of Veterans Affairs Office of Research & Development. The goal of MVP is to partner with Veterans receiving

their care in the VA Healthcare System to study how genes affect health. To do this, MVP will build one of the world's largest medical databases by safely collecting blood samples and health information from one million Veteran volunteers. Data collected from MVP will be stored anonymously for research on diseases like diabetes and cancer, and military-related illnesses, such as post-traumatic stress disorder. Learn more.

Frequently Asked Questions

- How do I participate?
- Do I need to schedule an appointment to participate?

Contact the MVP Information Center toll-free at:

Text size: + -

CONTACT MVP

866-441-6075

INFORMED CONSENT

A lot of genomic and medical data coming

Announcements of Large Genome Consortia:

- AllOfUs 1M U.S. Patients with medical data
- Netherlands GoNL- 250trios preclinical (<u>http://www.nlgenome.nl/)</u>
- Faroer islands 100k pre-clinical
- Qatar 300k pre-clinical
- Iceland 2.5k pre-clinical
- UK 100k clinical
- Genomics Medicine Ireland (GMI) with AbbVie
- Finland, number unknown clinical (<u>https://www.fimm.fi/en/research/grand-challenge-programs/finnish-genome-sequencing-and-preventive-health-care</u>)
- Poland 100K
- Swiss Genome 100K
- Geisinger Health 100K (with Regeneron)
- Astrozenica (2M with HLI)
- 1 million U.S. Veterans Project
- Newfoundland 100K

Large impact for normal genomes and diseases, especially cancer

1000 Genomes

A Deep Catalog of Human Genetic Variation

ICGC Goal: To obtain a comprehensive description of genomic, epigenomic, and transcriptomic (GET) changes in 50 different tumor types and/or subtypes which are of clinical and societal importance across the globe.

We can also observe the dynamics and evolution of cancers

Clonal fractions at initial diagnosis

Day 170

First relapse

60 80 100

Ding L, et.al, Clonal evolution in relapsed acute myeloid leukemia revealed by whole-genome sequencing. Nature. 2012 Jan 11:481(7382):506-10.

And look beyond just humans

Genome 10K Project

To understand how complex animal life evolved through changes in DNA and use this knowledge to become better stewards of the planet

The Genome 10K project: Assembling a "Noah's Ark" of genomic data to save dying species.

https://genome10k.soe.ucsc.edu/

https://www.hgsc.bcm.edu/i5k-pilot-project-summary

Plants as well!

http://ldl.genomics.cn/page/pa-research.jsp

Consideration of WGS for each platform

Reversible Terminator Bases are Essential Technology Used in Many Chemistries

Illumina SBS Technology

http://www.illumina.com/technology/sequencing_technology.ilmn

Sequencing by Synthesis (SBS)

Now three kinds of chemistry

Figure 2: Four-, Two-, and One-Channel Chemistry — Four-channel chemistry uses a mixture of nucleotides labeled with four different fluorescent dyes. Two-channel chemistry uses only one dye. The images are processed by image analysis software to determine nucleotide identity.

Paired-End Sequencing allows for two looks at a sequence

© Illumina, Inc.

Indexed sequencing method is now standard for single and paired reads

Pacific Biosciences Single Molecule Real-Time (SMRT) Sequencing

Pacific Biosciences — Real-time sequencing

Single Molecule Kinetics Allow for the Direct Detection of Methylation

Approach: Kinetic detection of methylated bases during SMRT DNA sequencing

Example: N⁶-methyladenosine (^mA)

Flusberg et al., 2010.

Kinetics can detect other base modifications

Kinetics allow one to watch protein translation as it occurs

Uemura et al., 2010

"Post-Light," Semi-Conductor Sequencing:

Life Technologies Personal Genome Machine (PGM) and the Proton I and Proton II

Latest Ion Platforms Thermo Fisher's Ion S5 & S5 XL

DNA Sequencing with a protein nanopore

Exonuclease-Seq

Strand-Seq

PromethION

Other (Maybe Killer) Apps

Analyte

Protein Aptamer

Direct RNA Sequencing

Small molecule

They are small

Meyer et al., Cell, 2012 | Saletore et al., Genome Biology, 2012 | McIntyre et al., 2015

Base space is now "squiggle space"

Zero-G Pipetting: Hardest Lab Job Ever

Dr. Andrew Feinberg

E

Zero-gravity genomics passes first test

Two experiments demonstrate sample transfer and sequencing in a low-gravity environment.

Chris Cesare

13 October 2015

🔍 Rights & Permissions

After 160 swoops in NASA's zero-gravity aeroplane, researchers have the first evidence that genetic sequencing can be done in space.

MENU 🗸

Q

Login

13

 \times

E-alert

Search

+

Submit

EDITOR-IN-CHIEF Dr. Cheryl A. Nickerson, Ph.D.

nature.com > npj microgravity

npj Microgravity

DNA sequencing in space: Nanopores ready for liftoff

Results from the first DNA sequencing experiments performed in microgravity reveal a promising future for portable 'nanopore' devices in space missions. Read the paper in full.

McIntyre ABR et al., Nature Microgravity, 2016.

SpaceX CRS-7 blows up

National Aeronautics and Space Administration

Office of the Administrator Washington, DC 20546-0001

Dr. Christopher Mason Weill Cornell Medical College 1300 York Ave. New York, NY 10065

Dear Dr. Mason:

As NASA astronaut Scott Kelley tweeted on Sunday, June 28, 2015, "space is hard."

Speaking as a fellow researcher, I can only imagine how devastated you must be feeling right now with the loss of SpaceX's CRS-7. I am saddened and disappointed too. I am sure that the tremendous honor of being selected to have your experiment flown on the International Space Station is of little solace after the loss of months, and perhaps even years, of hard work.

I am writing to encourage you – and in fact, to urge you – to continue your inquiry. The story of space exploration is the story of people just like you who meet adversity, head on, with determination and scientific and technological advancement. If you think about it, virtually every major innovation and technological breakthrough in human history has been the product of many different stops and starts; learning and being better because of failures and setbacks and, ultimately, enhanced knowledge and moving forward.

SpaceX CRS-9: perfect launch and booster return July 18, 2016

Topics

Missions Galleries

Downloads

About

Latest

Related

Weekly Recap From the Expedition Lead Scientist 5 days ago

Weekly Recap From the Expedition Lead Scientist 13 days ago

Biological Sciences on the International Space Station 19 days ago

SAGE III to Look Back at Earth's Atmospheric 'Sunscreen' 19 days ago

eekly Recan Fi

Weekly Recap From the Expedition Lead Scientist 19 days ago

Weekly Recap From the Expedition Lead Scientist 24 days ago

Weekly Recap From the Expedition Lead Scientist a month ago

Aug. 29, 2016

First DNA Sequencing in Space a Game Changer

For the first time ever, DNA was successfully sequenced in microgravity as part of the **Biomolecule** Sequencer experiment performed by NASA astronaut Kate Rubins this weekend aboard the International Space Station. The ability to sequence the DNA of living organisms in space opens a whole new world of scientific and medical possibilities. Scientists consider it a game changer.

DNA, or deoxyribonucleic acid, contains the instructions each cell in an organism on Earth needs to live. These instructions are represented by the letters A, G, C and T, which stand for the four chemical bases of DNA, adenine, guanine, cytosine, and thymine. Both the number and arrangement of these bases differ among organisms, so their order, or sequence, can be used to identify a specific organism.

Great to see this team at work from training to operations at "the dawn of genomics...in space" #AstroKate

12

...

9:40 PM - 29 Aug 2016

Houston, TX

You, Aaron Burton, Kristen John and 3 others

From zero to one billion: sequencing the one billionth base pair of DNA in space. go.nasa.gov /2bV2UnD

sequencing the one billionth base pair of DNA

Clip from NASA TV

3:28 PM - 14 Sep 2016

Almost perfect when compared to PacBio

The first genome sequence, assembly, and AMR detection off Earth SCIENTIFIC REPORTS

Altmetric: 171

More detail ≫

Article | OPEN

Nanopore DNA Sequencing and Genome Assembly on the International Space Station

Sarah L. Castro-Wallace, Charles Y. Chiu, Kristen K. John, Sarah E. Stahl, Kathleen H. Rubins, Alexa B. R. McIntyre, Jason P. Dworkin, Mark L. Lupisella, David J. Smith, Douglas J. Botkin, Timothy A. Stephenson, Sissel Juul, Daniel J. Turner, Fernando Izquierdo, Scot Federman, Doug Stryke, Sneha Somasekar, Noah Alexander, Guixia Yu, Christopher E. Mason & Aaron S. Burton ™

Scientific Reports 7, Article number: 18022	Received: 01 August 2017
(2017)	Accepted: 11 December 2017
doi:10.1038/s41598-017-18364-0	Published online: 21 December 2017

https://www.nature.com/articles/s41598-017-18364-0
As good, or better (8/9) data in space

Bacteria are splattered with epigenetic marks

Genome-wide mapping of methylated adenine residues in pathogenic *Escherichia coli* using single-molecule real-time sequencing

Gang Fang, Diana Munera, David I Friedman, Anjali Mandlik, Michael C Chao, Onureena Banerjee, Zhixing Feng, Bojan Losic, Milind C Mahajan, Omar J Jabado, Gintaras Deikus, Tyson A Clark, Khai Luong, Iain A Murray, Brigid M Davis, Alona Keren-Paz, Andrew Chess, Richard J Roberts, Jonas Korlach, Steve W Turner, Vipin Kumar, Matthew K Waldor & Eric E Schadt

Affiliations | Contributions | Corresponding authors

Nature Biotechnology 30, 1232-1239 (2012) | doi:10.1038/nbt.2432

Calling current (pA) differences, similar to PacBio

Certain positions of the pore and more informative then others

Is a 2.6 minute genome possible? No today, but if the physics holds up...

	Table 2: Nanopore and Nanochannel Sequencing Considerations																		
<u>Parameter</u>	DNA fragment (avearge bp)	Pore Speed (bp/s)	# nanopores	% of Pores Functional	transit time (seconds)	transit time (minutes)	run time (hours)	max # molecules / pore / run	% of time pores have DNA	actual # molecules/ pore/run	# of bases sequenced per device	Ru	ın Cost (\$)	\$	/ Mb	\$	6 / Gb	Hours for 30X WGS of 3.1Gb	Model
ē	10,000	100	512	0.5	100	1.67	6	216	80%	172.8	442,368,000	\$	1,000	\$	2.26	\$2	2,260.56	1261.4	T1
Ξ	10,000	100	512	0.5	100	1.67	24	864	80%	691.2	1,769,472,000	\$	1,000	\$	0.57	\$	565.14	1261.4	T2
F	10,000	100	512	0.5	100	1.67	48	1728	80%	1382.4	3,538,944,000	\$	1,000	\$	0.28	\$	282.57	1261.4	Т3
																			L.,
e	10,000	100	512	0.5	100	1.67	6	216	80%	172.8	442,368,000	\$	1,000	\$	2.26	\$2	2,260.56	1261.4	S1
Siz	100,000	100	512	0.5	1000	16.67	6	21.6	80%	17.28	442,368,000	\$	1,000	\$	2.26	\$2	2,260.56	1261.4	S2
	1,000,000	100	512	0.5	10000	166.67	6	2.16	80%	1.728	442,368,000	\$	1,000	\$	2.26	\$2	2,260.56	1261.4	S3
																			1
8 e	10,000	100	512	0.5	100	1.67	6	216	80%	172.8	442,368,000	\$	1,000	\$	2.26	\$2	2,260.56	1261.4	S&T1
lin	100,000	100	512	0.5	1000	16.67	24	86.4	80%	69.12	1,769,472,000	\$	1,000	\$	0.57	\$	565.14	1261.4	S&T2
s,	1,000,000	100	512	0.5	10000	166.67	48	17.28	80%	13.824	3,538,944,000	\$	1,000	\$	0.28	\$	282.57	1261.4	S&T3
	10.000	100			100	1.67		216		172.0	42,200,000,000	-	1.000	-	0.022	+	22.45	12.0	DOTA
es	10,000	100	50000	0.5	100	1.67	6	216	80%	172.8	43,200,000,000	\$	1,000	\$	0.023	\$	23.15	12.9	P&II
or	10,000	100	100000	0.5	100	1.6/	6	216	80%	172.8	86,400,000,000	\$	1,000	\$	0.012	\$	11.5/	6.5	P&12
ш.	10,000	100	150000	0.5	100	1.6/	6	216	80%	1/2.8	129,600,000,000	\$	1,000	\$	0.008	\$	1.72	4.3	P&13
	10.000	100	E0000	0.5	100	1.67	6	216	800/	172.0	43 200 000 000	<i>*</i>	10.000	<i>*</i>	0.22	¢	221.40	12.0	D0.T1
k Ne	10,000	100	100000	0.5	100	1.67	24	210	80%	601.2	43,200,000,000	*	20,000	*	0.23	≯	57.97	12.9	PATI
Tir 8	10,000	100	150000	0.5	100	1.67	24	1720	80%	1292.4	1 036 800 000 000	>	20,000	>	0.00	\$	27.07	0.5	PRIZ
	10,000	100	150000	0.5	100	1.67	40	1728	80%	1362.4	1,036,800,000,000	\$	30,000	>	0.03	⇒	20.94	4.5	Pais
N D	10.000	100	50000	0.5	100	1.67	6	216	80%	172.8	43 200 000 000	\$	10.000	\$	0.23	\$	231.48	12.9	PS&T1
se ee e	10,000	1000	100000	0.5	10	0.17	24	8640	80%	6912	3 456 000 000 000	Ψ \$	20,000	\$	0.01	\$	5 79	0.6	PS&T2
Pol Ti,	10,000	10000	150000	0.5	1	0.02	48	172800	80%	138240	103,680,000,000,000	\$	30,000	 \$	0.00	\$	0.29	0.04	PS&T3
	-,						-					т.	, /	т.					

Bionanogenomics - Irys System

QIAGEN GeneReader

>100,000 Reactions Assembled in < 5 min

4,000,000 750,000 Barcodes in One Tube

GENOMICS

Chromium: 1M Partitions from 4M Barcode Pool

	Conventional Approaches	GemCode	Chromium
Partitions	384	>100,000	>1,000,000
Barcode pool	384	750,000	4,000,000
Input DNA	100ng+	1ng	1ng

< 🖶

日本語要約

Haplotyping germline and cancer genomes with high-throughput linked-read sequencing

Grace X Y Zheng, Billy T Lau, Michael Schnall-Levin, Mirna Jarosz, John M Bell, Christopher M Hindson, Sofia Kyriazopoulou-Panagiotopoulou, Donald A Masquelier, Landon Merrill, Jessica M Terry, Patrice A Mudivarti, Paul W Wyatt, Rajiv Bharadwaj, Anthony J Makarewicz, Yuan Li, Phillip Belgrader, Andrew D Price, Adam J Lowe, Patrick Marks, Gerard M Vurens, Paul Hardenbol, Luz Montesclaros, Melissa Luo, Lawrence Greenfield, Alexander Wong, David E Birch, Steven W Short, Keith P Bjornson, Pranav Patel, Erik S Hopmans, Christina Wood, Sukhvinder Kaur, Glenn K Lockwood, David Stafford, Joshua P Delaney, Indira Wu, Heather S Ordonez, Susan M Grimes, Stephanie Greer, Josephine Y Lee, Kamila Belhocine, Kristina M Giorda, William H Heaton, Geoffrey P McDermott, Zachary W Bent, Francesca Meschi, Nikola O Kondov, Ryan Wilson, Jorge A Bernate, Shawn Gauby, Alex Kindwall, Clara Bermejo, Adrian N Fehr, Adrian Chan, Serge Saxonov, Kevin D Ness, Benjamin J Hindson & Hanlee P Ji 📃 Show fewer authors

Affiliations | Contributions | Corresponding authors

Nature Biotechnology 34, 303–311 (2016) | doi:10.1038/nbt.3432 Received 16 May 2015 | Accepted 12 November 2015 | Published online 01 February 2016

Summary: Subject 2

45.3X Sequencing depth 2 lanes, 2x150 HiSeq 4k

Sample	Peak Size
Subject 1	26,169 BP
Subject 2	20,976 BP

			S	equ	iend	cing	I			
Number of	Reac	ds							1,28	3,597,058
Median Insert Size 353 bp										
Mean Depth 45.3 X										45.3 X
Zero Cover	age									7.58%
Mapped Reads 90.8%									90.8%	
PCR Duplic	ation	1								11.7%
30000000										
250000000										
20000000										
15000000										
10000000										
5000000			-							
0										
0	D	10	20	30	40	50	60	20	80	06
			(Covera	ige Hi	stogra	m			

Input DNA	
Molecule Length	μ 23,238 bp σ 36,407
DNA in Molecules >20kb	37.0%
DNA in Molecules >100kb	2.29%
Estimated DNA Loaded	0.178 ng

company confidential

Summary: Subject 2

- 1.5 M GEMs detected
- 18 N50 LPM
- 456 k N50 phase block

GEM PerformanceGEMs Detected1,472,328N50 Linked-Reads per Molecule (LPM)18.0Mean DNA per GEM386,228 bp

Comparison to NA12878 HMW control

- EA Qiagen MagAttract protocol and chemistry
 - ~95 kb mean DNA molecule length

Input DNA Molecule Length µ 94,923 bp σ 64,103 DNA in Molecules >20kb 95.0% DNA in Molecules >100kb 36.4% **Total DNA mass** 240 \$ 8 20 8 80 280 320 360

Molecule Length (kb)

NA12878

Comparison to NA12878 HMW control

24X increase in N50 phase block length

Emerging Technologies

Hybridization -Assisted Nanopore Sequencing (HANS):

- -1 million bases per second
- -Variable probe length can be used for HANS
- -Long Reads (100kb)
- -Single molecule

ZS Genetics, Inc. Working At The Scale Of Life

Single-atom labeling and then visualization with EM

- -Long Reads (20kb)
- -Single molecule

The new Illumina Firefly (iSeq100) can sequence in <6h.

Nanostring's Hyb & Seq

Simple Workflow

No library preparation or amplification required

<30 minutes of hands on time Flexible input type (tissue, swabs, cells, etc.)

Sample-to-results in 4 hrs

Hyb & Seq

Sequencing Probes:

- Sequencing domain base-pairs with single-molecule target
- Barcode domain has three regions (R₁, R₂, R₃) encoding hexamer sequence
- Set of 4096 sequencing probes enables sequencing of any target sequence

Two-color Reporter Probes:

- Three reporter probes bind sequentially to barcode domain (R₁, R₂ and R₃)
- Each reporter probe represents a dinucleotide sequence

Long and Short reads possible (up to 33kb)

Clinical Sample Processing

Completed in 90 min No amplification, No library preparation

Assay Validation: Limit of Detection

Input cell number

Hyb & Seq simultaneously detected 10 pathogens at ≤ 1000 cells/ml from a same sample using a single tube assay

Assay Validation: No cross reactions with human DNA

- Amplification-free sequencing of pathogens even in the presence of human cell background (5 million cells, cell line GM19240/NA12878)
- High concordance of sequencing results with or without excess of human cells background
- Same workflow regardless of sample background (swab, cells, tissue, etc)
- Eliminates reads waste due to carrier human DNA/RNA

Clinical samples from WCM

Sample Name	Site	Final microbiology report
WCM300	Head Epidural Fluid	Sparse P. aeruginosa, Sparse Enterococcus faecalis
WCM301	Spleen	Sparse E. coli, Sparse Proteus mirabilis, Sparse
		Lactobacillus sp. (no final speciation)*
WCM302	R tibia	Sparse MRSA
WCM303	R leg wound	MSSA
WCM304	R 3 rd metatarsal	Sparse Proteus mirabilis, Few Staphylococcus
		agalactiae, Sparse MSSA
WCM305	L thigh wound	MSSA
WCM306	Lung	Many Pseudomonas aeruginosa

With Lars Westblade

Precision Clinical Metagenomics IRB#: 1606017347

Hyb & Seq Sequencing Results

	WCM301 Spleen		WCM302 Tibia			WCM303 Leg Wound			WCM304 3 rd Metatarsal			WCM305 Thigh Wound			WCM306 Lung			
	Lab	qPCR	H&S	Lab	qPCR	H&S	Lab	qPCR	H& S	Lab	qPCR	H&S	Lab	qPCR	H&S	Lab	qPCR	H&S
Lactobacillus fermentum	+		+	-		-	-		-	-		-	-		-	-		-
Pseudomonas aeruginosa	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	+	+	+
Staphylococcus aureus	-	-	-	+	+	+	+	+	+	+	+	+	+		-	-	-	-

- · Six different clinical samples were analyzed
- Five positive calls across three kingdom of organisms
- High concordance with pathology lab analysis (98%; 65/66) and 100% concordance with PCR analysis
- Simultaneously detected intra- and inter-species DNA and RNA
- *One discordant same was only found in the broth and flagged as ambiguous

Each Platform has various sources of noise, and thus Error

- De-Phasing
 - Lagging strand dephasing from incomplete extension
 - Leading strand dephasing from over-extension
- Dark Nucleotides
- Polymerase errors (10⁻⁵ to 10⁻⁷)
- Single molecule challenges
 - High noise
 - Polymerase "wiggling" from tail
- Platform-specific errors
 - Illumina more likely to have error after 'G'
 - PCR-based methods miss GC- and AT-rich regions

Each platform is slightly different, and so intrinic errors are different

SeQC Consortium

Many platforms are cycle-dependent on error rate - ILMN

Many platforms are cycle-dependent on error rate - ION

What do you do with the reads?

Alignment to the genome

The reads: FASTQ

The most common format is FASTQ, based off the FASTA data format:

>SequenceID

CGTAGTCTATATATGCGCGAATGCGTA

But....

FASTQ also includes quality information: @Sample_Info CCTTGCTGCC +

3.6;#\$!>><
Understanding FASTQ

For Illumina, sequences have an ID: @HWUSI-EAS100R:6:73:941:1973#0/1

HWUSI-EAS100R	the unique instrument name
6	flowcell lane
73	tile number within the flowcell lane
941	'x'-coordinate of the cluster within the tile
1973	'y'-coordinate of the cluster within the tile
#0	index number for a multiplexed sample (0 for no indexing)
/1	the member of a pair, /1 or /2 (paired-end or mate-pair reads only)

Understanding Quality Scores

Q-values are the probability (p) of a base being incorrect. From Sanger sequencing:

 Q_{value} =-10log₁₀p

So, if your p=0.1, then $Q_{value} = (-10log_{10}(0.1))$ = (-10(-1)) = 10If your p=0.01, then $Q_{value} = (-10log_{10}(0.01))$ = (-10(-2)) = 20If p=0.001, then $Q_{value} = (-10log_{10}(0.001))$ = (-10(-3)) = 30

Understanding Quality Scores

- Q-values are the probability (p) of a base being incorrect, but it is most efficient to represent this with a single bit in ASCII (American Standard Code for Information Interchange) format.
- The first 32 symbols in ASCII are control characters, so we start at 33.

Phred-Based Base Quality


```
If your ASCII character is 'B', then 66-64=2, so P=10^{-Q/10}
```

```
-0.2 = \log_{10}p
```

 $10^{-0.2}$ =p, so p=0.63, or 63% change of an incorrect base.

If your ASCII character is 'h', then 104-64=40, so

- $40 = (-10\log_{10}p)$
- $-4.0 = \log_{10}p$
- 10^{-4} =p, so p=0.0001, or 0.01% change of an incorrect base.

Phred-Based Base Quality Today

SS	SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS	SSSSSSSSSS	SSSSSSSSS	SSSS		
		xx	*****	******	*****	
				111111111111111111111111111111111111111		
			J JJJ	333333333333333333333333333333	1333333333	
LI	LLLLLLLLLLLLLLL	LLLLLLLL	LLLLLLLL	LLLL.		
1'	'#\$%&'()*+,/0123	3456789:;<	=>?@ABCDE	FGHIJKLMNOPORSTUVWXYZ[\]^	`abcdefghijklmnopgr	stuvwxvz{ }~
						1
33		59	64	73	104	126
ο.				40		
		-5.		9	40	
			0	9		
			3	9		
Ο.				41		
s -	- Sanger Pi	nred+33,	raw reads	typically (0, 40)		
х -	- Solexa So	olexa+64,	raw reads	typically (-5, 40)		
I -	- Illumina 1.3+ Pł	nred+64,	raw reads	typically (0, 40)		
J -	- Illumina 1.5+ Pł	nred+64,	raw reads	typically (3, 40)		
	with 0=unused, 1	l=unused,	2=Read Se	gment Quality Control Indi	icator (bold)	
	(Note: See discu	ussion abo	ve).			
ь -	- Illumina 1.8+ Ph	nred+33,	raw reads	typically (0, 41)		

Cock et al (2009) The Sanger FASTQ file format for sequences with quality scores, and the Solexa/Illumina FASTQ variants. Nucleic Acids Research,

Many Options for Alignment - 2009

	MAQ	ELAND	SOAP	BFAST	Bowtie	SHRiMP	Rmap	SeqMap	Novocraft
Algorithm Parameters									
Version	0.71	1.1	1.11	0.1.11	0.9.8	1.1.0	0.41	1.0.8	1.06
SNP-calls	✓	-	✓	-	-	✓	-	-	-
Uses Quality Scores	✓	-	-	✓	✓	✓	✓	-	✓
Indels	PE only	PE only	✓	✓	-	✓	-	✓	-
Splicing	-	-	-	-	-	-	-	-	-
Paired-End	✓	✓	✓	✓	-	-	-	-	✓
Threading	-	✓	✓	✓	✓	-	-	-	✓
Max # Mismatches (*in Seed)	3*	2*	5	-	3*, or UD	-	-	2	7
Default Seed Size	10	32	-	-	28	-	-	-	-
Max Input Length	63	-	60	-		-	64	-	-
5' Read Trimming	-	✓	-	-	✓	-	-	-	-
3' Read Trimming	✓	✓	✓	-	✓	-	-	-	✓
Methylation Alignment	-	-	-	✓	-	-	-	-	-
Repeats/Adaptor Removal	✓	✓	-	✓	✓	-	-	-	✓
Strand-specific search	-	-	✓	-	-	-	-	✓	-
Platforms									
ABI SOLID	✓		✓	✓	✓	✓			
Illumina GA	✓	✓	✓	✓	✓	✓	✓	✓	✓
Roche 454					✓	✓			
Helicos Heliscope		✓	✓					✓	

Many Options for Alignment - 2018

- Bfast
- BioScope
- Bowtie
- BWA
- CLC bio
- CloudBurst
- Eland/Eland2
- GenomeMapper
- GnuMap
- Karma

- MAQ
- MOM
- Mosaik
- MrFAST/MrsFAST
- NovoAlign
- PASS
- PerM
- RazerS
- RMAP
- SSAHA2

- Segemehl
- SeqMap
- SHRiMP
- Slider/SliderII
- SOAP/SOAP2
- Srprism
- Stampy
- vmatch
- ZOOM
-

Many common methods are BW-based

Trapnell and Salzberg, 2010

Burrows-Wheeler Transformation (BWT)

- •First discovered in 1983 by Wheeler at AT&T Bell Labs
- Used for compression in 1994.
- First implemented for aligners with "Bowtie" Ben Langmead, Cole Trapnell, Mihai Pop, and Steven Salzberg
- •Allows for fast searching with a small memory footprint

http://bio-bwa.sourceforge.net/

Li H. and Durbin R. "Fast and accurate short read alignment with Burrows-Wheeler transform." (2009) *Bioinformatics*, 25, 1754-60.

Burrows M, Wheeler DJ. "A Block Sorting Lossless Data Compression Algorithm." Technical Report 124. Palo Alto, CA: Digital Equipment Corporation; 1994.

Plan ahead for all genomes to be sequenced and available

However, your internet browser home page will likely change:

Home Genomes Blut Tables Gene Borter PCR Session FAQ Help Riman (<i>Heme splpa</i>) Genome Borser Gateway	of the state of a	SEQanswer	S		epicentre	in just 4 hours!
The UEXC Genome Buyeser was conserved by the Breast of the University of Children All tuples network. Solvere Copyright of the Breast of the University of Children All tuples network.	the the	e next generation sequencing comm	unity			acception (
Cable genome assembly possible or variant term game Warmet 1 Max 1 </th <th>👻 SEQanswers Home</th> <th>3</th> <th></th> <th></th> <th></th> <th>User Name User Name Remember Me? Password Log in</th>	👻 SEQanswers Home	3				User Name User Name Remember Me? Password Log in
mask steph, add outram tracks. track hites: tra	Register	FAQ	Community 👻	Calendar	Today's Posts	Search
About the Hamma Feb. 2009 (GRCh37/hg19) assembly (assembly insegnates:) The February 2009 human reference exposure (GRCh37) was produced by the General Edentical Constrainting. For more information about this secondly, see (GRCh12) in the NCEI Assembly database.		You are currently	γ viewing the SEQanswers forums as a guest, κ	which limits your access. <u>Click here to register</u>	now, and join the discussion	
Sample position queries	» Site Navigation	» New Posts				Our Sponsors S
A genome position can be specified by the accession number of a sequenced genomic clone, an mRNA or EST or STS marker, a chromosonal coordinate range, or keywords from the GenBark description of an	* About SEQanswers	Title, Username, & Date		Last Post R	eplies Views Forum	TTTCACTCATCTTGTT
mXXA. Ine toolwing its solve examples of viale position queries for the human genome. See the <u>USER's ranke</u> for more information. Request: Genome Revower Response:	 Next Gen Summaries Forums 	NGS library prep on crosslinked chro Janiz	omatin	Today 09:31 AM by Janiz 🔊	0 1 Sample Prep / Library Generation	TA A TGGAGTGATCA TATGGACACTTCGTGC
chr? Diplays all of chromosome 7 chr/in_g200212 Diplays all of the unplaced config g000212	» <u>Wiki</u> Jastrument Man	convert junctions.bed to .juncs xy6699		Today 09:30 AM by craigb 2	1 76 RNA Sequencing	CTTCGGACGGCAGCCT TACTTTGAAACTCTGT
2013 Dipplysy region for hand p13 or dr 20 thr3:1000000 Dipplysy region for hand p13 or dr 20 thr3:1000000 Dipplysy region for hand p13 or dr 20 thr3:1000000 Dipplysy region for hand p13 or dr 20 thr3:100000000 Dipplysy region for hand p13 or dr 20	* Instrument Map	R - problem in heatmap reading Chuckytah		Today 09:26 AM by <u>Chuckytah</u>	6 79 Bioinformatics	
Billishif-RH0075 Diplays region between genome landmacks, such as the STS markers RH10061 and RH0075, or chromosome bands 15q11 to 15q13, or SNPs ns1042522 and ns1800770. This syntax may also be used for other range queries, such as between uniquely determined ESTs, nRNAs, nrtSop, etc.	* Log in 🛞	BAM viewer that displays by insert mcrusch		Today 08:57 AM by mauba	3 53 Bioinformatics	Enhanced
n1042322;s180070 D1630046 Displays region around \$T\$ marker D1650046 from the Genethon Marshfield maps. Includes 100,000 bases on each side as well.	Password:	SAM to CUFFLINKS SAM format repinementer		Today 08:53 AM by <u>dharan</u>	4 904 Bioinformatics	
AA205474 Diejelusy region of TST with Gimilank accession AA205474 in BRCA1 cancer gene on chr 17 AC00810 Displays region of chone with Gimilank accession AC008101 APR08811 Displays region of MRAV with Gimilank accession number APR0811	Remember Me?	Cufflinks annotation handling busine	ess	Today 08:40 AM by col 2	8 440 Bioinformatics	Uncover the facts.
PRP Diploys region of groune with HUXID Green Nonenceluture Committee identifier PRNP	Log in					illumina

Single cells

Used to be very hard to look at individual cells

Contributed by Sherman M. Weissman, October 8, 2012 (sent for review August 22, 2012)

receive a notification as new content becomes available.

But now it's very easy – Fluidigm C1

Drop-seq single cell analysis

1000s of DNA-barcoded single-cell transcriptomes

http://mccarrolllab.com/dropseq/ http://www.cell.com/abstract/S0092-8674%2815%2900549-8

WaferGen iCell8

BioRad QX200 & ILMN system

QX200[™] Droplet Digital[™] PCR System

Chromium NGS

CHROMIUM™

Whole Genome Sequencing

The upgraded Chromium product suite includes solutions for whole genome sequencing, exome sequencing and single-cell transcriptomics. Resolve phasing, structural variants and variants in previously inaccessible parts of the genome using the Chromium Whole Genome Sequencing Kit.

Product Features:

Reagent Kit Contents:

10X Genomics Single-Cell

The explosion of scRNA-seq experiments

Svennson et al., arXiv 2017

Many options today for single-cell sequencing

Source	Instrument	Number of Cells	input cells	est. cost per run	est. cos per cel	t UMIs	Cell Phenotype	DNA	RNA	ΑΤΑϹ	3'	full cDNA	Size Range _l (m)
10X Genomics	Chromium	5,000	100,000	\$ 1,290	\$ 0.2	5 yes	no	yes	yes	yes	yes	no	1_60
Becton Dickinsor	CSseq / BDPrecis	96	unk	\$ 10,000	\$ 104.1	7 yes	no	unk	unk	unk	unk	unk	5-100
Becton Dickinsor	Resolve	10,000	50,000	\$ 10,000	\$ 1.0) yes	yes	unk	unk	unk	unk	unk	5-100
BioRad-ILMN	ddSeq	1,200	10,000	\$ 1,200	\$ 1.0) unk	no	no	yes	unk	unk	unk	unk
Drop-Seq	DropSeq	10,000	100,000	\$ 1,000	\$ 0.1) yes	no	no	yes	yes	yes	no	1-100
Fluidigm	C1	96	5,000	\$ 1,900	\$ 19.7	9 yes	no	yes	yes	yes	no	yes	5-10, 11-17, 17-24
Fluidigm	scRRBS	96	5,000	\$ 1,900	\$ 45.0) yes	no	yes	yes	yes	no	yes	5-10, 11-17, 17-24
Fluidigm	C1- high throughp	800	5,000	\$ 4,000	\$ 5.0) yes	no	yes	yes	yes	yes	no	5-10, 11-17, 17-24
Fluidigm	Polaris	800	5,000	\$ 10,000	\$ 12.5) no	yes	no	yes	no	yes	yes	5-10, 11-17, 17-24
In-Drop	custom	10,000	100,000	\$ 5,000	\$ 0.5) yes	no	no	yes	no	yes	no	5-100
Raindance	RainDrop	unk	unk	unk	unk	yes	no	unk	unk	unk	unk	unk	unk
QIAGEN	CellRaft	44,000	unk	unk	unk	unk	no	unk	unk	unk	unk	unk	unk
WaferGen	iCell8	1,800	40,000	\$ 2,750	\$ 1.5	3 yes	limited	soon	yes	unk	unk	maybe	5-100

Single cell capture and RNA chemistry using nanodroplets

Oil

Cells + Enzymes

http://mccarrolllab.com/dropseq/ Macosko et al., Cell 2015

Single cell capture and RNA chemistry using nanodroplets

Unique Molecular Identifiers

Cell 1 Cell 1 Cell 2 Cell 2

Barcoded beads

Reverse transcription, barcoding and UMI labeling

PCR amplification

Sequencing and computation

1.3 million neurons catalogued

	PRODUCTS	TECHNOLOGY	COMPANY	CAREERS	SUPPORT	COMMUNITY
Support > Single Cell > Datasets				SEAF	сн с	ONTACT SUPPORT

Single Cell Datasets

- Chromium Megacell Demonstration (v2 Chemistry)
 - 1.3 Million Brain Cells from E18 Mice
- Chromium Demonstration (v2 Chemistry)
 - 100 1:1 Mixture of Fresh Frozen Human (HEK293T) and Mouse (NIH3T3) Cells
 - 1k 1:1 Mixture of Fresh Frozen Human (HEK293T) and Mouse (NIH3T3) Cells
 - 6k 1:1 Mixture of Fresh Frozen Human (HEK293T) and Mouse (NIH3T3) Cells
 - 12k 1:1 Mixture of Fresh Frozen Human (HEK293T) and Mouse (NIH3T3) Cells
 - 4k PBMCs from a Healthy Donor
 - 8k PBMCs from a Healthy Donor
 - 9k Brain Cells from an E18 Mouse
 - 3k Pan T Cells from a Healthy Donor
 - 4k Pan T Cells from a Healthy Donor
 - Aggregate of t_3k and t_4k

1.3 million mouse embryonic brain cells, 10X Chromium

10x Genomics | LIT000015 Chromium™ Million Brain Cells Application Note

Home HCA Areas of Impact News Publications Data Coordination Join HCA Contact

MISSION

To create comprehensive reference maps of all human cells—the fundamental units of life—as a basis for both understanding human health and diagnosing, monitoring, and treating disease.

Beyond single cell RNA-seq

Single nuclei sequencing	scNuc-seq
Epigenomics	scBS-seq, scRRBS-seq, scCHIP-seq, scATAC-seq, scDNase-seq
Genomics	Whole genome, exome

Multiple simultaneous measurements

RNA + DNA	DR-seq, G&T-seq
RNA + methylation	scM&T-seq, scMT-seq
RNA + DNA + methylation	scTrio-seq
RNA + protein	index sorting, CITE-seq
RNA + genome editing	Perturb-seq, CRISP-seq, CROP-seq

nature methods

Techniques for life scientists and chemists

Home | Current issue | Comment | Research | Archive v | Authors & referees v | About the journal v

home > archive > issue > brief communication > abstract

ARTICLE PREVIEW

view full access options >

К.

NATURE METHODS | BRIEF COMMUNICATION

G&T-seq: parallel sequencing of single-cell genomes and transcriptomes

Iain C Macaulay, Wilfried Haerty, Parveen Kumar, Yang I Li, Tim Xiaoming Hu, Mabel J Teng, Mubeen Goolam, Nathalie Saurat, Paul Coupland, Lesley M Shirley, Miriam Smith, Niels Van der Aa, Ruby Banerjee, Peter D Ellis, Michael A Quail, Harold P Swerdlow, Magdalena Zernicka-Goetz, Frederick J Livesey, Chris P Ponting & Thierry Voet

Affiliations | Contributions | Corresponding authors

Nature Methods 12, 519–522 (2015) | doi:10.1038/nmeth.3370 Received 18 November 2014 | Accepted 27 March 2015 | Published online 27 April 2015

home > archive > issue > brief communication > full text

NATURE METHODS | BRIEF COMMUNICATION

< 🖶

Parallel single-cell sequencing links transcriptional and epigenetic heterogeneity

Christof Angermueller, Stephen J Clark, Heather J Lee, Iain C Macaulay, Mabel J Teng, Tim Xiaoming Hu, Felix Krueger, Sébastien A Smallwood, Chris P Ponting, Thierry Voet, Gavin Kelsey, Oliver Stegle & Wolf Reik

Affiliations | Contributions | Corresponding authors

Nature Methods 13, 229–232 (2016) | doi:10.1038/nmeth.3728 Received 29 October 2015 | Accepted 09 December 2015 | Published online 11 January 2016

We report scM&T-seq, a method for parallel single-cell genome-wide methylome and transcriptome sequencing that allows for the discovery of associations between transcriptional and epigenetic variation. Profiling of 61 mouse embryonic stem cells confirmed known links between DNA methylation and transcription. Notably, the method revealed previously unrecognized associations between heterogeneously methylated distal regulatory elements and transcription of key pluripotency genes.

日本語要約

Single-cell chromatin accessibility reveals principles of regulatory variation

Jason D. Buenrostro, Beijing Wu, Ulrike M. Litzenburger, Dave Ruff, Michael L. Gonzales, Michael P. Snyder, Howard Y. Chang & William J. Greenleaf

Affiliations | Contributions | Corresponding authors

Nature 523, 486–490 (23 July 2015) | doi:10.1038/nature14590 Received 12 January 2015 | Accepted 26 May 2015 | Published online 17 June 2015

日本語要約

The DNA methylation landscape of human early embryos

Hongshan Guo, Ping Zhu, Liying Yan, Rong Li, Boqiang Hu, Ying Lian, Jie Yan, Xiulian Ren, Shengli Lin, Junsheng Li, Xiaohu Jin, Xiaodan Shi, Ping Liu, Xiaoye Wang, Wei Wang, Yuan Wei, Xianlong Li, Fan Guo, Xinglong Wu, Xiaoying Fan, Jun Yong, Lu Wen, Sunney X. Xie, Fuchou Tang & Jie Qiao

Affiliations | Contributions | Corresponding authors

Nature 511, 606–610 (31 July 2014) | doi:10.1038/nature13544 Received 10 November 2013 | Accepted 30 May 2014 | Published online 23 July 2014

Single-cell methylome landscapes of mouse embryonic stem cells and early embryos analyzed using reduced representation bisulfite sequencing

Hongshan Guo^{1,3}, Ping Zhu^{1,2,3}, Xinglong Wu¹, Xianlong Li¹, Lu Wen¹ and Fuchou Tang^{1,4}

Other methods also emerging

Div-Seq: A single nucleus RNA-Seq method reveals dynamics of rare adult newborn neurons in the CNS

http://biorxiv.org/content/biorxiv/early/2016/03/27/045989.full.pdf

Analysis: Structure of a generic pipeline

Counting Molecules

- Counting reads
 - featureCounts, etc.
- Counting UMIs
 - Unique
 - does not account for PCR and sequencing errors
 - Directional adjacency graph (UMItools)
 - Bayesian (dropEst)
 - Proprietary (SevenBridges for BD Precise)

Commonly used open-source tools

- 1. Infer which barcodes come from valid cells **UMI-tools**
- Extract cell barcodes and UMIs from R1 and add to R2 – UMI-tools
- 3. Align to reference genome (GRCh38) **STAR**
- Assign reads to genes (Ensembl) featureCounts
- 5. Count unique UMIs per gene UMI-tools
- 6. QC fastqc, picard, multiqc, custom scripts

Normalization challenges

5

10

1

100 1000 104

Estimated number of transpriote per est

Kolodziejczyk *et al.*, Briefings in Functional Genomics 2017

Normalization + Differential Expression Analysis

Gene Expression Imputation

Gene Expression Imputation

Designed for single cell Local or global Beyesian method Need other information Imputation strategy LLSimpute N N local No. of nearest genes Low-rank error tolerance δ Ν global N $\mathbf{2}$ BISCUIT 1 and 2 Υ global Υ dispersion parameter Υ scUnif Υ global cell labels $\mathbf{2}$ MAGIC Ν diffusion time $\mathbf{2}$ Υ global Υ local Ν $\mathbf{2}$ scImpute dropout rate cutoff cluster numbers $\mathbf{2}$ DrImpute Υ local N SAVER Υ global Υ size factor 1

TABLE 1 Summary of the eight imputation methods

Strategy 1 represents imputing dropout based on co-expressed or similar genes, while strategy 2 denotes imputing dropout by borrowing information from similar cells.

Clustering Cells

Differential Expression Analysis

SC3: consensus clustering of single-cell RNA-seq data

Clustering Cells

GiniClust: detecting rare cell types from single-cell gene expression data with Gini index

Single Cell Trajectory Inference

- "Pseuodotime" introduced in Trapnell *et al.*, Nature Biotechnology 2014 (Monocle)
- Steps:
 - 1. (Optional) Choose genes that define a biological process
 - 2. Reduce dimensionality
 - 3. Order cells

Single Cell Trajectory Inference

Single Cell Trajectory Inference

- "Pseuodotime" introduced in Trapnell *et al.*, Nature Biotechnology 2014 (Monocle)
- Steps:
 - (Optional) Choose genes that define a biological process
 - 2. Reduce

Differential Expression Analysis using Monocle

Simulating scRNA-seq data

Vieth et al., Bioinformatics 2017

Zappia et al., Genome Biology 2017

scRNASeqDB

a database for gene expression profiling in human single cell by RNA-seq

Welcome to scRNASeqDB!

Single-cell RNA-Seq (scRNA-seq) are an emerging method which facilitates to explore the comprehensive transcriptome in a single cell. To provide a useful and unique reference resource for biology and medicine, we developed the scRNASeqDB database, which contains 36 human single cell gene expression data sets collected from Gene Expression Omnibus (GEO), involving 8910 cells from 174 cell groups. We also provides detailed information for gene expression of cells in different status, as well as some features, including heatmap and boxplot of gene expression, gene correlation matrix, GO and pathway annotations.

You can also submit scRNASeq data sets to our database. Feel free to contact us if you have any questions!

Current curation

Number of GSE datasets: 38

Number of GSM entries: 13440

Number of cell groups: 200

New datasets

GSE86982	REGION-SPECIFIC NEURAL STEM CELL LINEAGES REVEALED BY SINGLE- CELL RNA-SEQ FROM HUMAN EMBRYONIC STEM CELLS [Smart-seq]
GSE86977	REGION-SPECIFIC NEURAL STEM CELL LINEAGES REVEALED BY SINGLE- CELL RNA-SEQ FROM HUMAN EMBRYONIC STEM CELLS [Cel-seq]

Search scRNASeqDB

• Gene symbol Gene Ensembl ID

TBK1

Search

Please input gene symbol of Ensembl ID

Gene Cloud

News

More

GSE86982 has been added to our database.

2017/03/31

https://bioinfo.uth.edu/scrnaseqdb/index.php?r=site/index

Questions?

Thanks also to Dr. Priyanka Vijay!